亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        單顆粒氣溶膠質(zhì)譜儀串聯(lián)熱稀釋器在線(xiàn)測(cè)量單個(gè)氣溶膠顆粒的揮發(fā)性

        2014-09-02 21:13:00戴守輝等
        分析化學(xué) 2014年8期
        關(guān)鍵詞:吸附器質(zhì)譜儀熱熔

        戴守輝等

        摘要顆粒揮發(fā)性可以影響顆粒在大氣中的壽命,對(duì)大氣顆粒物中二次氣溶膠的形成機(jī)制研究有一定的參考價(jià)值。以往研究測(cè)量顆粒揮發(fā)性采用的是熱熔蝕器,其活性炭吸附器一旦老化后,在較高溫度下可能會(huì)釋放出活性炭,造成測(cè)量失真。本研究針對(duì)熱熔蝕器的上述缺點(diǎn),以稀釋器替代活性炭吸附器部分,與單顆粒氣溶膠質(zhì)譜儀(SPAMS)連接,建立了一種在線(xiàn)分析單個(gè)氣溶膠顆粒揮發(fā)性的測(cè)量方法。氣溶膠顆粒分別通過(guò)兩個(gè)通道進(jìn)入SPAMS分析顆粒信息。通道1,氣溶膠顆粒由管路進(jìn)入加熱器,被加熱至不同的溫度,顆粒揮發(fā)產(chǎn)生的氣體和揮發(fā)后的顆粒內(nèi)核進(jìn)入稀釋器部分,利用干凈干燥冷的稀釋氣對(duì)加熱揮發(fā)后的氣體和顆粒進(jìn)行稀釋?zhuān)诡w粒溫度降低并短時(shí)間內(nèi)不與氣體發(fā)生冷凝,最后進(jìn)入SPAMS進(jìn)行檢測(cè)。通道2為單獨(dú)硅膠管,其長(zhǎng)度與通道1相同,氣溶膠顆粒通過(guò)通道2直接進(jìn)入SPAMS檢測(cè)。通過(guò)對(duì)比通道1和通道2獲得的顆粒信息(粒徑、數(shù)目和質(zhì)譜信息等),得到氣溶膠顆粒在不同溫度下的揮發(fā)性。實(shí)驗(yàn)室用標(biāo)準(zhǔn)物質(zhì)進(jìn)行評(píng)估測(cè)試,結(jié)果表明,采用稀釋器可以避免活性炭吸附器使用時(shí)間變長(zhǎng)而失效,防止揮發(fā)性物質(zhì)冷凝回到顆粒中。應(yīng)用本方法初步測(cè)定了廣州市春季氣溶膠的揮發(fā)性,表明春季氣溶膠多為高度揮發(fā)性和中度揮發(fā)性物質(zhì)。

        1引言

        大氣氣溶膠顆粒對(duì)空氣質(zhì)量、區(qū)域和全球氣候變化,以及人類(lèi)健康都有重要影響\[1~3\]。揮發(fā)性是氣溶膠顆粒的一個(gè)重要特性,它主要由顆粒內(nèi)部物質(zhì)的化學(xué)性質(zhì)決定。當(dāng)氣溶膠被加熱或被干凈的空氣稀釋時(shí)會(huì)揮發(fā),比如柴油動(dòng)力車(chē)排放的有機(jī)化合物在低溫或高濃度的情況下會(huì)優(yōu)先以凝聚相存在于顆粒中,但是當(dāng)排放物被稀釋或加熱時(shí),這些物質(zhì)則會(huì)從顆粒相中揮發(fā)出來(lái)\[4\]。顆粒揮發(fā)性會(huì)通過(guò)二次反應(yīng)和干濕沉降的去除而直接影響其化學(xué)組分在大氣中的壽命\[5\];Pratt等通過(guò)表征加熱前后老化顆粒的化學(xué)特征,發(fā)現(xiàn)很多230 ℃加熱后的顆粒和新鮮汽車(chē)尾氣、生物質(zhì)燃燒、海鹽以及粉塵顆粒有相似的化學(xué)特征,表明顆粒揮發(fā)性的研究可以將高度老化的顆粒追溯至它們的初始來(lái)源\[6\],為顆粒物源解析提供參考。

        顆粒揮發(fā)性可以在一定程度上反映顆粒的老化過(guò)程,對(duì)大氣顆粒物中二次氣溶膠的形成機(jī)制研究有一定的參考價(jià)值\[7\]。最早氣溶膠揮發(fā)性的測(cè)量和分析,被稱(chēng)作熱分餾\[8\],主要是利用顆粒中不同物質(zhì)在一定溫度下會(huì)快速揮發(fā),而該特征溫度與這些物質(zhì)的蒸氣壓、沸點(diǎn)和蒸發(fā)焓等有密切相關(guān)\[9,10\]。揮發(fā)性的測(cè)量目前普遍采用金屬加熱管與活性炭吸附器串聯(lián)使用,合稱(chēng)熱熔蝕器(Thermodenuder, TD)\[11\],如圖1所示,其原理是:氣溶膠顆粒首先進(jìn)入加熱管,在不同的設(shè)定溫度下,易揮發(fā)的物質(zhì)從顆粒相中逃逸出來(lái),之后進(jìn)入活性炭吸附器?;钚蕴课狡鞯淖饔檬俏綋]發(fā)出來(lái)的氣相物質(zhì),防止這部分物質(zhì)在冷凝后重新和顆粒相結(jié)合。熱熔蝕器通常與一些化學(xué)分析類(lèi)儀器,如氣溶膠質(zhì)譜儀(AMS)、掃描電遷移顆粒分析儀(SMPS)、氣溶膠飛行時(shí)間質(zhì)譜儀(ATOFMS)等聯(lián)用,可在線(xiàn)分析揮發(fā)性組分的化學(xué)組成及揮發(fā)后顆粒的粒徑等信息 \[7,12,13\]?;钚蕴课狡鞯牧硗庖粋€(gè)作用就是使加熱后的顆粒冷卻,以便儀器檢測(cè)。

        使用熱熔蝕器的缺點(diǎn)是一旦活性炭吸附器的吸附能力失效后,揮發(fā)物就會(huì)重新回到顆粒物中或形成新的可冷凝態(tài)\[9,14\],影響顆粒揮發(fā)性的測(cè)量。此外,活性炭吸附器可能會(huì)由于氣體溫度過(guò)高造成活性碳的釋放,造成測(cè)量失真。本研究針對(duì)目前熱熔蝕器的這些缺點(diǎn),采用稀釋器替代活性炭吸附器部分,與國(guó)產(chǎn)單顆粒氣溶膠質(zhì)譜儀(SPAMS)連接,建立一種在線(xiàn)分析氣溶膠顆粒揮發(fā)性的測(cè)量方法,并對(duì)該方法進(jìn)行了實(shí)驗(yàn)室評(píng)估和實(shí)際大氣的應(yīng)用。本研究可為二次氣溶膠的研究提供一定的參考價(jià)值。

        2LI Lei, TAN GuoBin, ZHANG Li, FU Zhong, NIAN HuiQing, HUANG ZhengXu, ZHOU Zhen, LI Mei. Chinese J. Anal. Chem., 2013, 41(12): 1831-1836

        李 磊, 譚國(guó)斌, 張 莉, 傅 忠, 粘慧青, 黃正旭, 周 振, 李 梅. 分析化學(xué), 2013, 41(12): 1831-1836

        3Watson J G. J. Air Waste Manage., 2002, 52(6): 628-713

        4Lipsky E M, Robinson A L. Environ. Sci. Technol., 2006, 40(1): 155-162

        5Simcik M F, Franz T P, Zhang H X, Eisenreich S J. Environ. Sci. Technol., 1998, 32(2): 251-257

        6Pratt K A, Prather K A. Environ. Sci. Technol., 2009, 43(21): 8276-8282

        7Jonsson A M, Hallquist M, Saathoff H. J. Aerosol Sci., 2007, 38(8): 843-852

        8Hudson J G, Da X Y. J. Geophys. Res., 1996, 101(D2): 4435-4442

        9Burtscher H, Baltensperger U, Bukowiecki N, Cohn P, Huglin C, Mohr M, Matter U, Nyeki S, Schmatloch V, Streit N, Weingartner E. J. Aerosol Sci., 2001, 32(4): 427-442

        10Villani P, Picard D, Marchand N, Laj P. Aerosol Sci. Technol., 2007, 41(10): 898-906

        11Huffman J A, Ziemann P J, Jayne J T, Worsnop D R, Jimenez J L. Aerosol Sci. Technol., 2008, 42(5), 395-407

        12Hara K, Osada K, NishitaHara C, Yabuki M, Hayashi M, Yamanouchi T, Wada M, Shiobara M. Atmos. Chem. Phys., 2011, 11(18): 9803-9812

        13Hall W A, Johnston M V. Aerosol Sci. Technol., 2012, 46(9): 983-989

        14Cheng M D, Allman S E. Rev. Sci. Instrum., 2011, 82(12): 125106

        15LI Mei, DONG JunGuo, HUANG ZhengXu, LI Lei, GAO Wei, NIAN HuiQing, FU Zhong, CHENG Ping, ZHOU Zhen. Chinese J. Anal. Chem., 2012, 40(6): 936-939

        李 梅, 董俊國(guó), 黃正旭, 李 磊, 高 偉, 粘慧青, 傅 忠, 程 平, 周 振. 分析化學(xué), 2012, 40(6): 936-939

        16Ishizaka Y, Adhikari M. J. Geophys. Res., 2003, 108(D4): 4138

        AbstractVolatility can influence the lifetime of particles in the atmosphere, and provide useful information on the formation of secondary aerosol. The previous studies generally utilized thermodenuder (TD) to investigate the volatility behavior of particles. Using TD, semivolatile species are vaporized at different temperature, and the vaporized gas is adsorpted by activated charcoal. However, carbon might be emitted from activated charcoal under high temperature or activated charcoal ageing. In this study, a new method was developed for the measurement of particle volatility by coupling a thermodiluter system to an online single particle aerosol mass spectrometer (SPAMS). Aerosol particles were passed into two different channels, and then analyzed by SPAMS. Through Channel 1, aerosol particles were heated to different temperature by heating tube, then nonvolatile particles and volatile gas entered into the diluter. After diluting and cooling by diluent air, the nonvolatile particles were analyzed by SPAMS. Through Channel 2, aerosol particles were analyzed directly by SPAMS without the heating process. Particle volatility was obtained by comparing the information (particle size, particle number and mass spectrum) of particles through Channels 1 and 2. Laboratory tests showed that the diluter could avoid the recondensation of volatiles to the particles. This developed method was applied in the real time measurement of individual particle volatility in the spring of Guangzhou. The results showed that these particles were primarily comprised of highly volatile and moderate volatile species.

        KeywordsAerosol; Single particle; Volatility; Diluter; Single particle aerosol mass spectrometer

        11Huffman J A, Ziemann P J, Jayne J T, Worsnop D R, Jimenez J L. Aerosol Sci. Technol., 2008, 42(5), 395-407

        12Hara K, Osada K, NishitaHara C, Yabuki M, Hayashi M, Yamanouchi T, Wada M, Shiobara M. Atmos. Chem. Phys., 2011, 11(18): 9803-9812

        13Hall W A, Johnston M V. Aerosol Sci. Technol., 2012, 46(9): 983-989

        14Cheng M D, Allman S E. Rev. Sci. Instrum., 2011, 82(12): 125106

        15LI Mei, DONG JunGuo, HUANG ZhengXu, LI Lei, GAO Wei, NIAN HuiQing, FU Zhong, CHENG Ping, ZHOU Zhen. Chinese J. Anal. Chem., 2012, 40(6): 936-939

        李 梅, 董俊國(guó), 黃正旭, 李 磊, 高 偉, 粘慧青, 傅 忠, 程 平, 周 振. 分析化學(xué), 2012, 40(6): 936-939

        16Ishizaka Y, Adhikari M. J. Geophys. Res., 2003, 108(D4): 4138

        AbstractVolatility can influence the lifetime of particles in the atmosphere, and provide useful information on the formation of secondary aerosol. The previous studies generally utilized thermodenuder (TD) to investigate the volatility behavior of particles. Using TD, semivolatile species are vaporized at different temperature, and the vaporized gas is adsorpted by activated charcoal. However, carbon might be emitted from activated charcoal under high temperature or activated charcoal ageing. In this study, a new method was developed for the measurement of particle volatility by coupling a thermodiluter system to an online single particle aerosol mass spectrometer (SPAMS). Aerosol particles were passed into two different channels, and then analyzed by SPAMS. Through Channel 1, aerosol particles were heated to different temperature by heating tube, then nonvolatile particles and volatile gas entered into the diluter. After diluting and cooling by diluent air, the nonvolatile particles were analyzed by SPAMS. Through Channel 2, aerosol particles were analyzed directly by SPAMS without the heating process. Particle volatility was obtained by comparing the information (particle size, particle number and mass spectrum) of particles through Channels 1 and 2. Laboratory tests showed that the diluter could avoid the recondensation of volatiles to the particles. This developed method was applied in the real time measurement of individual particle volatility in the spring of Guangzhou. The results showed that these particles were primarily comprised of highly volatile and moderate volatile species.

        KeywordsAerosol; Single particle; Volatility; Diluter; Single particle aerosol mass spectrometer

        11Huffman J A, Ziemann P J, Jayne J T, Worsnop D R, Jimenez J L. Aerosol Sci. Technol., 2008, 42(5), 395-407

        12Hara K, Osada K, NishitaHara C, Yabuki M, Hayashi M, Yamanouchi T, Wada M, Shiobara M. Atmos. Chem. Phys., 2011, 11(18): 9803-9812

        13Hall W A, Johnston M V. Aerosol Sci. Technol., 2012, 46(9): 983-989

        14Cheng M D, Allman S E. Rev. Sci. Instrum., 2011, 82(12): 125106

        15LI Mei, DONG JunGuo, HUANG ZhengXu, LI Lei, GAO Wei, NIAN HuiQing, FU Zhong, CHENG Ping, ZHOU Zhen. Chinese J. Anal. Chem., 2012, 40(6): 936-939

        李 梅, 董俊國(guó), 黃正旭, 李 磊, 高 偉, 粘慧青, 傅 忠, 程 平, 周 振. 分析化學(xué), 2012, 40(6): 936-939

        16Ishizaka Y, Adhikari M. J. Geophys. Res., 2003, 108(D4): 4138

        AbstractVolatility can influence the lifetime of particles in the atmosphere, and provide useful information on the formation of secondary aerosol. The previous studies generally utilized thermodenuder (TD) to investigate the volatility behavior of particles. Using TD, semivolatile species are vaporized at different temperature, and the vaporized gas is adsorpted by activated charcoal. However, carbon might be emitted from activated charcoal under high temperature or activated charcoal ageing. In this study, a new method was developed for the measurement of particle volatility by coupling a thermodiluter system to an online single particle aerosol mass spectrometer (SPAMS). Aerosol particles were passed into two different channels, and then analyzed by SPAMS. Through Channel 1, aerosol particles were heated to different temperature by heating tube, then nonvolatile particles and volatile gas entered into the diluter. After diluting and cooling by diluent air, the nonvolatile particles were analyzed by SPAMS. Through Channel 2, aerosol particles were analyzed directly by SPAMS without the heating process. Particle volatility was obtained by comparing the information (particle size, particle number and mass spectrum) of particles through Channels 1 and 2. Laboratory tests showed that the diluter could avoid the recondensation of volatiles to the particles. This developed method was applied in the real time measurement of individual particle volatility in the spring of Guangzhou. The results showed that these particles were primarily comprised of highly volatile and moderate volatile species.

        KeywordsAerosol; Single particle; Volatility; Diluter; Single particle aerosol mass spectrometer

        猜你喜歡
        吸附器質(zhì)譜儀熱熔
        核空氣凈化系統(tǒng)碘吸附器性能的綜合評(píng)價(jià)方法研究
        熱熔標(biāo)線(xiàn)施工必備『神器』
        一種熱熔橡膠瀝青防水涂料的研制
        石油瀝青(2021年2期)2021-07-21 07:39:50
        熱熔型路面灌縫材料的制備研究
        石油瀝青(2018年4期)2018-08-31 02:29:38
        一種熱熔壓鉚一體機(jī)
        移動(dòng)式氣體純化裝置
        低溫與特氣(2018年2期)2018-04-16 22:14:05
        保證水處理過(guò)程的連續(xù)性
        構(gòu)建模型,解決質(zhì)譜儀問(wèn)題
        基于質(zhì)譜儀爐氣分析的VOD精煉過(guò)程模型開(kāi)發(fā)
        上海金屬(2015年3期)2015-11-29 01:10:04
        熱電離飛行時(shí)間質(zhì)譜儀性能評(píng)價(jià)
        日韩美女av二区三区四区| 最新国产乱人伦偷精品免费网站| 久久aⅴ无码av免费一区| 男人天堂AV在线麻豆| 永久免费观看的黄网站在线| 欧美做受又硬又粗又大视频| 国产在线无码一区二区三区视频| 白丝爆浆18禁一区二区三区| 99久久亚洲精品无码毛片| 精品一区二区三区四区少妇| 青青手机在线视频观看| 白白色发布视频在线播放| 国产亚洲欧美精品永久| 欧美日韩一区二区综合| 国产短视频精品区第一页| 极品粉嫩小仙女高潮喷水视频| 男女上床免费视频网站| 红桃av一区二区三区在线无码av| 国产肉体xxxx裸体784大胆| 日本高清www无色夜在线视频| 不卡国产视频| 免费啪啪av人妻一区二区| 美女在线一区二区三区视频| 久久久精品人妻无码专区不卡| 久久99精品国产99久久| 最新精品国偷自产在线婷婷| 一区二区三区夜夜久久| 午夜久久久久久禁播电影| 国产成人精品av| 91免费国产| 美腿丝袜在线观看视频| 97久久超碰国产精品旧版| 少妇太爽了在线观看| 国产高清一区在线观看| 亚洲av本道一本二本三区| 亚洲黄色天堂网站在线观看禁18| 草草浮力地址线路①屁屁影院| 久久国产精99精产国高潮 | 精品黄色一区二区三区| 蜜桃视频一区二区在线观看| 国产成人涩涩涩视频在线观看|