亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        液相色譜串聯(lián)質(zhì)譜法同時檢測DNA中3_甲基腺嘌呤和3_乙基腺嘌呤

        2014-09-02 21:25:54田永峰等
        分析化學(xué) 2014年8期
        關(guān)鍵詞:鳥嘌呤腺嘌呤乙基

        田永峰等

        摘要利用陽離子交換固相萃取柱(Waters Oasis MCX)富集凈化DNA樣品,建立了液相色譜串聯(lián)質(zhì)譜(LCMS/MS)同時檢測DNA中3甲基腺嘌呤(N3MeA)和3乙基腺嘌呤(N3EtA)的方法。采用氘代3甲基腺嘌呤(d3N3MeA)和氘代3乙基腺嘌呤(d5N3EtA)為內(nèi)標(biāo); 進(jìn)樣量3 μL,分析時間為13 min;親水相互作用色譜柱(Waters XBridge HILIC)進(jìn)行液相分離,流動相為10 mmol/L甲酸銨乙腈溶液(5∶95, V/V, pH=4.0),流速250 μL/min;質(zhì)譜條件:電噴霧離子源,多反應(yīng)監(jiān)測正離子掃描方式;電噴霧電壓:5500 V, 霧化氣: 369 Pa, 氣簾氣:185 Pa, 電離溫度: 400 ℃,駐留時間: 40 ms。本方法對N3MeA和N3EtA的檢出限分別為0.043和0.007 μg/L,方法回收率為87.8%~103.0%。采用本方法檢測了卷煙煙氣粒相物暴露的DNA中N3MeA和N3EtA含量。結(jié)果表明,卷煙煙氣粒相物暴露后的小牛胸腺DNA中3甲基腺嘌呤和3乙基腺嘌呤可被本方法定量檢出。1引言

        卷煙煙氣中包含超過5000種化學(xué)物質(zhì)\[1,2\],其中包含致突變并可導(dǎo)致DNA發(fā)生烷基化損傷的物質(zhì)\[3\]。這些物質(zhì)可與DNA反應(yīng)形成烷化類的DNA加合物,已經(jīng)成為多學(xué)科的研究熱點\[4~7\]。煙氣中致癌性的烷化試劑與DNA反應(yīng)的主要位點是鳥嘌呤的N7位和腺嘌呤的N3位,DNA反應(yīng)后形成7烷化鳥嘌呤和3烷化腺嘌呤\[8,9\]。3烷化腺嘌呤中比較重要的是3甲基腺嘌呤(N3methyladenine,N3MeA)\[10\]、和3乙基腺嘌呤(N3ethyladenine,N3EtA)\[8\],其結(jié)構(gòu)式見圖1。3甲基腺嘌呤在3烷化腺嘌呤中突變性最強,并且具有基因毒性,3乙基腺嘌呤雖然不具有基因毒性,但是在經(jīng)體內(nèi)烷基糖基酶的修復(fù)后會在DNA中產(chǎn)生脫嘌呤的位點,這些位點被認(rèn)為是引起基因突變并導(dǎo)致癌癥的主要因素\[11~16\]。因此,DNA中的3甲基腺嘌呤,3乙基腺嘌呤被認(rèn)為是卷煙煙氣接觸后DNA發(fā)生烷基化損傷的標(biāo)志物\[17,18\]。準(zhǔn)確測定DNA中3甲基腺嘌呤和3乙基腺嘌呤,可用于評估DNA受到的破壞程度及可能的致癌風(fēng)險\[19\]。

        [TS(]圖13甲基腺嘌呤和3乙基腺嘌呤結(jié)構(gòu)式

        Fig.1Structures of N3methyladenine (N3MeA) and N3ethyladenine (N3EtA) [HT5][TS)]

        目前,DNA中3烷化腺嘌呤的檢測方法有氣相色譜質(zhì)譜法(GCMS)\[8\],該方法前處理比較繁瑣,需要化學(xué)衍生化,并且靈敏度低和專一性不強;酶聯(lián)免疫法(ELISA)解決了3烷化腺嘌呤檢測中的專一性問題,但是操作過程繁瑣,結(jié)果穩(wěn)定性較差\[20\]。液相色譜串聯(lián)質(zhì)譜技術(shù)因其具有靈敏度高、選擇性好、操作簡便、分析結(jié)果穩(wěn)定可靠的特點,成為DNA加合物研究中的理想方法\[21,22\]。Hu 等首次報導(dǎo)了一種在線固相萃取結(jié)合液相色譜串聯(lián)質(zhì)譜同時分析DNA中7甲基鳥嘌呤、3甲基腺嘌呤和O6甲基鳥嘌呤的方法\[23\],該方法檢測7甲基鳥嘌呤、3甲基腺嘌呤和O6甲基鳥嘌呤的運行時間為12min。目前,同時檢測DNA中3甲基腺嘌呤和3乙基腺嘌呤的液相色譜串聯(lián)質(zhì)譜方法還未見報道。

        本實驗建立了一種同時測定DNA中3甲基腺嘌呤、3乙基腺嘌呤的液相色譜串聯(lián)質(zhì)譜方法。本方法靈敏度高,穩(wěn)定性好。利用本方法研究了卷煙煙氣粒相物暴露后,DNA中3甲基腺嘌呤和3乙基腺嘌呤的含量。本方法可用于臨床上評估烷基化試劑暴露后DNA的損傷程度。

        2實驗部分

        2.1儀器、試劑與材料

        1200快速液相色譜儀(美國安捷倫公司)配備G1367D自動進(jìn)樣器、G1312B二元溶劑泵、G1316B柱溫箱; API 5500 三重四級桿串聯(lián)質(zhì)譜儀(美國加州應(yīng)用生物系統(tǒng)公司),配備電噴霧電離源(ESI); 數(shù)據(jù)采集與處理在Analyst 1.5.1軟件上實現(xiàn)。RH20吸煙機(德國伯格瓦特公司)。

        氘代3甲基腺嘌呤(d3N3MeA)、氘代3乙基腺嘌呤(d5N3EtA)、3甲基腺嘌呤、3乙基腺嘌呤(純度≥98%,加拿大Toronto Research Chemical公司); 甲醇、乙腈、氨水、乙酸乙酯和甲酸銨(美國TEDIA有限公司),DMSO(上海安普公司),所有的試劑均為色譜純,實驗中所用的水為超純水。OASIS MCX 6cc固相萃取小柱(500 mg,6 mL,Waters公司)。3R4F標(biāo)準(zhǔn)參比卷煙購自美國肯塔基大學(xué)。

        2.2.3標(biāo)準(zhǔn)工作溶液的配制分別準(zhǔn)確稱10 mg的3甲基腺嘌呤、3乙基腺嘌呤、氘代3甲基腺嘌呤和氘代3乙基腺嘌呤固體于5個10 mL容量瓶中,用乙腈定容,分別得到1 g/L的3甲基腺嘌呤、3乙基腺嘌呤、氘代3甲基腺嘌呤和氘代3乙基腺嘌呤儲備液。然后用儲備液稀釋配制不同濃度的標(biāo)準(zhǔn)溶液和工作溶液。

        3結(jié)果和討論

        3.1質(zhì)譜條件的選擇

        用蠕動泵以10 μL/min的流速連續(xù)注射,分別將50 μg/L的3甲基腺嘌呤、3乙基腺嘌呤、氘代3甲基腺嘌呤和氘代3乙基腺嘌呤標(biāo)準(zhǔn)溶液注入ESI離子源中,在正離子模式下進(jìn)行一級質(zhì)譜掃描,得到相應(yīng)的準(zhǔn)分子離子峰\[M+H\]+,然后對準(zhǔn)分子離子峰進(jìn)行子離子掃描,得到碎片離子信息。選取豐度較強、干擾較小的作為定量離子對。為了達(dá)到更高的靈敏度,對碰撞能量、去簇電壓等參數(shù)進(jìn)行了優(yōu)化。在多反應(yīng)監(jiān)測掃描模式下,3甲基腺嘌呤優(yōu)化結(jié)果為定量離子對m/z 150/123,定性離子對為m/z 150/108,內(nèi)標(biāo)離子對為m/z 153/126; 3乙基腺嘌呤優(yōu)化結(jié)果為:定量離子對m/z 164/136,定性離子對為m/z 164/119,內(nèi)標(biāo)離子對為m/z 168/137。

        3.3方法學(xué)考察

        分別吸取0.1,0.2,0.5,1,2,5和10 μg/L 的3乙基腺嘌呤,1,2,5,10,20和40 μg/L的3甲基腺嘌呤標(biāo)準(zhǔn)溶液各3 μL,注入LCMS/MS系統(tǒng)進(jìn)行分離分析。3甲基腺嘌呤和3乙基腺嘌呤的線性回歸方程分別為y=0.25x+0.0238和y=0.0145x-0.00135 (y為峰面積,x為濃度),線性良好,相關(guān)系數(shù)r均大于 0.999。利用加標(biāo)稀釋得到方法的檢出限,3倍信噪比對應(yīng)的濃度為檢出限,3甲基腺嘌呤和3乙基腺嘌呤的檢出限分別為0.043 和0.007 μg/L。采用樣本加標(biāo)的方法獲得方法回收率,總共選取了3個添加水平,每個添加水平重復(fù)測定4次,得到方法的回收率和重復(fù)性,結(jié)果見表1。3甲基腺嘌呤和3乙基腺嘌呤的回收率分別為88.0%~102.3%和98.0%~102.0%,方法精密度小于10%,證明方法的準(zhǔn)確性和重復(fù)性結(jié)果較好。

        3.4方法應(yīng)用

        使用本方法對卷煙煙氣暴露的DNA中3甲基腺嘌呤和3乙基腺嘌呤進(jìn)行分析,結(jié)果表明,3甲基腺嘌呤含量為1.17~3.78μg/L, 未檢出3乙基腺嘌呤。 由此可見,本方法對DNA樣本檢測靈敏度高,選擇性好,適用于卷煙煙氣暴露的DNA烷基化損傷研究以及環(huán)境中烷基化試劑對DNA暴露后的3甲基腺嘌呤、3乙基腺嘌呤的生物監(jiān)測。

        3Hu C W, Liu H H, Li Y J, Chao M R. Chem. Res.Toxicol., 2012, 25(2): 462-470

        4Swenberg J A, Dyroff M C, Bedell M A, Popp J A, Huh N, Kirstein U, Rajewsky M F. Proc. Natl. Acad. Sci., 1984, 81(6): 1692-1695

        5Scherer E, Timmer A P, Emmelot P. Cancer. Lett., 1980, 10(1): 1-6

        6Kopplin A, Eberleadamkiewicz G, Glüsenkamp K H, Nehls P, Kirstein U. Carcinogenesis., 1995, 16(11): 2637-2641

        7Singer B. Nature., 1976, 264(5584): 333-339

        8Prevost V, Shuker D E G. Chem. Res. Toxicol., 1996, 9(2): 439-444

        9Chao M R, Wang C J, Chang L W, Hu C W. Carcinogenesis., 2005, 27(1): 146-151

        10Hu C W, Lin B H, Chao M R. Int. J. Mass. Spectrom., 2011, 304(23): 68-73

        11Beranek D T. Mutat. Res., 1990, 231(1): 11-30

        12Shuker D E G, Prevost V, Friesen M D, Eberle G, Rajewsky M F, Bartsch H. Environ. Health. Perspect., 1993, 99: 33-37

        13Hecht S S. Mutat. Res., 1998, 424(12): 127-142

        14Caldwell W S, Greene J M, Plowchalk D R, DeBethizy J D. Chem. Res. Toxicol., 1991, 4(5): 513-516

        15Tricker A R, Ditrich C, Preussmann R. Carcinogenesis., 1991, 12(2): 257-261

        16Hoffmann D, Brunnemann K D, Prokopczyk B, Djordjevic M V. J. Toxicol. Environ. Health., 1994, 41(1): 1-52

        17Carmella S G, Borukhova A, Akerkar S A, Hecht S S. Cancer. Epidemiol. Biomarkers. Prev., 1997, 6(2): 112-120

        18Hecht S S. Mutat. Res., 1999, 424(12): 127-142

        19Vineis P, Perera F. Int. J. Cancer., 2000, 88(3): 325-328

        20Pan J, Awoyemi B, Xuan Z, Vohra P, Wang H T, Dyba M, Greenspan E, Fu Y, Creswell K, Zhang L, Berry D, Tang M S, Chung F L. Chem. Res. Toxicol., 2012, 25(12): 2788-2795

        21Feng S, Roethig H J, Liang Q, Kinser R, Jin Y, Scherer G, Urban M, Engl J, Riedel K . Biomarkers., 2006, 11(1): 28-52

        22Hu C W, Chao R M. Chem. Res. Toxicol., 2012, 25(11): 2386-2392

        23Hu C W, Chen C M, Ho H H, Chao M R. Anal. Bioanal. Chem., 2012, 402(3): 1199-1208

        24Chen H, Lin C, Jiang X Y, Pang Y Q, Tang G L, Hou H W, Jiang J H, Hu Q Y. Food. Chem. Toxicol., 2012, 50(3): 612-618

        AbstractA liquid chromatographytandem mass spectrometry (LCMSMS) method has been developed for the simultaneous determination of N3methyladenine (N3MeA) and N3ethyladenine (N3EtA) in calf thymus DNA. The DNA samples has been purified and enriched by cation exchange cartridge (Waters Oasis MCX). d3N3MeA and d5N3EtA were used as isotope internal standard. The DNA samples were injected with autosampler. The injected volume was 3 μL and analysis time was 13 min. The sample separation was carried out on hydrophilic interaction chromatograph (Waters XBridge HILIC) with 10 mmol/L ammonium formateacetonitrile (5∶92, V/V, pH=4.0) as mobile phase. The flow rate was set at 250 μL/min. Mass spectrometry was performed by electrospray ionization (ESI) with multireactions monitoring (MRM). The optimized operation conditions of MS were as follows: nebulizer gas 369 Pa; curtain gas 185 Pa, turbo ionspray temperature 400 ℃, ionspray voltage 5500 V, dwell time 40 ms. The limits of detection were 0.043 and 0.007 μg/L for N3MeA and N3EtA, respectively. The recoveries were between 87.8% and 103.0% for N3MeA and N3EtA. This method was successfully applied to the determination of N3MeA and N3EtA in calf thymus DNA by cigarette smoke condensate (CSC) exposure. This method is appropriate for routine analysis and accurate quantification of N3MeA and N3EtA by CSC exposure.

        KeywordsN3Methyladenine; N3Ethyladenine; Liquid chromatographytandem mass spectrometry; Deoxyribonucleic acid

        24Chen H, Lin C, Jiang X Y, Pang Y Q, Tang G L, Hou H W, Jiang J H, Hu Q Y. Food. Chem. Toxicol., 2012, 50(3): 612-618

        AbstractA liquid chromatographytandem mass spectrometry (LCMSMS) method has been developed for the simultaneous determination of N3methyladenine (N3MeA) and N3ethyladenine (N3EtA) in calf thymus DNA. The DNA samples has been purified and enriched by cation exchange cartridge (Waters Oasis MCX). d3N3MeA and d5N3EtA were used as isotope internal standard. The DNA samples were injected with autosampler. The injected volume was 3 μL and analysis time was 13 min. The sample separation was carried out on hydrophilic interaction chromatograph (Waters XBridge HILIC) with 10 mmol/L ammonium formateacetonitrile (5∶92, V/V, pH=4.0) as mobile phase. The flow rate was set at 250 μL/min. Mass spectrometry was performed by electrospray ionization (ESI) with multireactions monitoring (MRM). The optimized operation conditions of MS were as follows: nebulizer gas 369 Pa; curtain gas 185 Pa, turbo ionspray temperature 400 ℃, ionspray voltage 5500 V, dwell time 40 ms. The limits of detection were 0.043 and 0.007 μg/L for N3MeA and N3EtA, respectively. The recoveries were between 87.8% and 103.0% for N3MeA and N3EtA. This method was successfully applied to the determination of N3MeA and N3EtA in calf thymus DNA by cigarette smoke condensate (CSC) exposure. This method is appropriate for routine analysis and accurate quantification of N3MeA and N3EtA by CSC exposure.

        KeywordsN3Methyladenine; N3Ethyladenine; Liquid chromatographytandem mass spectrometry; Deoxyribonucleic acid

        24Chen H, Lin C, Jiang X Y, Pang Y Q, Tang G L, Hou H W, Jiang J H, Hu Q Y. Food. Chem. Toxicol., 2012, 50(3): 612-618

        AbstractA liquid chromatographytandem mass spectrometry (LCMSMS) method has been developed for the simultaneous determination of N3methyladenine (N3MeA) and N3ethyladenine (N3EtA) in calf thymus DNA. The DNA samples has been purified and enriched by cation exchange cartridge (Waters Oasis MCX). d3N3MeA and d5N3EtA were used as isotope internal standard. The DNA samples were injected with autosampler. The injected volume was 3 μL and analysis time was 13 min. The sample separation was carried out on hydrophilic interaction chromatograph (Waters XBridge HILIC) with 10 mmol/L ammonium formateacetonitrile (5∶92, V/V, pH=4.0) as mobile phase. The flow rate was set at 250 μL/min. Mass spectrometry was performed by electrospray ionization (ESI) with multireactions monitoring (MRM). The optimized operation conditions of MS were as follows: nebulizer gas 369 Pa; curtain gas 185 Pa, turbo ionspray temperature 400 ℃, ionspray voltage 5500 V, dwell time 40 ms. The limits of detection were 0.043 and 0.007 μg/L for N3MeA and N3EtA, respectively. The recoveries were between 87.8% and 103.0% for N3MeA and N3EtA. This method was successfully applied to the determination of N3MeA and N3EtA in calf thymus DNA by cigarette smoke condensate (CSC) exposure. This method is appropriate for routine analysis and accurate quantification of N3MeA and N3EtA by CSC exposure.

        KeywordsN3Methyladenine; N3Ethyladenine; Liquid chromatographytandem mass spectrometry; Deoxyribonucleic acid

        猜你喜歡
        鳥嘌呤腺嘌呤乙基
        腺嘌呤聚酰亞胺/氧化石墨烯復(fù)合材料的制備及熱解動力學(xué)特性
        云南化工(2021年8期)2021-12-21 06:37:20
        8-羥基鳥嘌呤DNA糖苷酶與支氣管哮喘關(guān)系的研究進(jìn)展
        2-氨基-6-氯鳥嘌呤的合成工藝改進(jìn)研究
        8-羥鳥嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
        硫酸鋅電解液中二(2-乙基己基)磷酸酯的測定
        鳥嘌呤在聚L-甲硫氨酸/石墨烯修飾電極上的電化學(xué)行為及測定
        2-羧乙基苯基次膦酸的胺化處理及其在尼龍6中的阻燃應(yīng)用
        木醋液與6-芐基腺嘌呤對擬南芥生長的影響研究
        雙[2-(5-硝基-2H-四唑基)-2,2-二硝乙基]硝胺的合成與量子化學(xué)計算
        缺氧微環(huán)境下3-甲基腺嘌呤對視網(wǎng)膜神經(jīng)節(jié)細(xì)胞凋亡的影響
        国产女主播免费在线观看| 国产精品亚洲综合色区| 久久久亚洲欧洲日产国码αv | 91久久精品无码人妻系列| 日本精品久久性大片日本| 国产亚洲日本精品二区| 亚洲国产精品一区二区毛片| 欧美日韩亚洲中文字幕二区| 精品国内自产拍在线观看| 久久久久久久综合日本| 亚洲中文字幕乱码免费看| 亚洲av五月天一区二区| 午夜精品射精入后重之免费观看| 日韩精品中文一区二区三区在线| 国产片精品av在线观看夜色| 欧美日韩国产一区二区三区不卡| 亚洲女同成av人片在线观看| 国产大学生自拍三级视频| 国产成人综合精品一区二区| 国产播放隔着超薄丝袜进入| 人妻少妇精品专区性色av| 国产美女高潮流白浆在线观看| 日本大片在线一区二区三区| 在线观看一区二区三区视频| 国产亚洲精品av久久| 免费无码中文字幕a级毛片| 人妻aⅴ无码一区二区三区| 99热高清亚洲无码| 男人天堂亚洲一区二区| 日本丰满老妇bbw| 成片免费观看视频大全| 在线亚洲+欧美+日本专区| 大又黄又粗又爽少妇毛片| 免费av网站大全亚洲一区| 48久久国产精品性色aⅴ人妻| 久久综合给合久久狠狠狠97色69| 日本韩国黄色三级三级| 蜜桃网站免费在线观看视频| 午夜免费福利小电影| 色偷偷av亚洲男人的天堂| 亚洲日韩AV无码美腿丝袜|