陳一虎,賈化冰
(寶雞文理學院數(shù)學系,陜西寶雞721013)
精確解在非線性現(xiàn)象和動力系統(tǒng)研究中扮演著很重要的角色,而圍繞求解方法,與對稱相關(guān)的方法取得了巨大的成功,最著名的方法是經(jīng)典對稱方法,又叫Lie群方法[1-3],在此基礎(chǔ)上又有幾種推廣方法,包括非經(jīng)典對稱方法[4-8]、Lie-B?cklund對稱方法和廣義條件對稱方法(有時也稱條件Lie-B?cklund 對稱方法)[9-12]、直接方法[13-16]等,非線性發(fā)展方程的許多有意義的精確解是由這些方法獲得的.
主要討論如下形式的1+1維k階非線性發(fā)展方程
它在幾何和非牛頓流體力學方面有廣泛的應(yīng)用.
設(shè)方程(10)滿足集合1,利用(7)式有
下面對f(x)分幾種情況討論.
(i)f(x)=x.
考慮到(11)式的左端與變量x無關(guān),對(11)式兩端關(guān)于x求導得到
和T'(t)=c1T(t),得到方程(10)的精確解由下式給出
研究了擬線性擴散方程和N維徑向?qū)ΨQ非線性拋物型方程,給出了方程滿足的條件,特別是討論了函數(shù)f(x)的幾種情況,給出了方程例子和相應(yīng)的精確解.
致謝寶雞文理學院科研項目基金(ZK0953和YK1218)陜西省教育廳專項科研計劃項目基金(2013JK0572)對本文給予了資助,謹致謝意.
[1]Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989.
[2]Olver P J.Applications of Lie Groups to Differential Equations[M].2nd Ed.New York:Springer-Verlag,1993.
[3]Ibragimov N H.Transformation Groups Applied to Mathematical Physics[M].New York:Springer-Verlag,2001.
[4]Bluman G W,Cole J D.The general similarity solution of the heat equation[J].J Math Mech,1969,18:1025-1042.
[5]Arrigo D J,Broadbridge P,Hill J M.Nonclassical symmetry for nonlinear diffusion equations[J].IMA J Appl Math,1994,52:1-24.
[6]Estévez P G,Gordoa P R.Nonclassical symmetries and the singular manifold method:theory and examples[J].Stud Appl Math,1995,95:73-113.
[7]Nucci M C.Iterating the nonclassical symmetries method[J].Physica D,1994,78:124-134.
[8]Clarkson P A.Nonclassical symmetry reductions of the Boussinesq equation[J].Chaos,Solitons & Fractals,1995,5:2261-2301.
[9]Estévez P G,Qu C Z,Zhang S L.Separation of variables of a generalized porous medium equation with nonlinear source[J].J Math Anal Appl,2002,275:44-59.
[10]Fokas A S,Liu Q M.Nonlinear interaction of traveling waves of nonintegrable equations[J].Phys Rev Lett,1994,72:3293-3296.
[11]Zhdanov R Z.Conditional Lie-B?cklund symmetry and reduction of evolution equation[J].J Phys A:Math Gen,1995,28:3841-3850.
[12]Qu C Z.Symmetries and solutions to the thin film equations[J].J Math Anal Appl,2006,317:381-397.
[13]Clarkson P A,Kruskal M D.New similarity reductions of the Boussinesq equation[J].J Math Phys,1989,30:2201-2213.
[14]Clarkson P A.New exact solutions of the Boussinesq equation[J].Eur J Appl Math,1990,1:279-300.
[15]Fuschych W I,Zhdanov R Z.Anti-reduction and exact solutions of nonlinear heat equations[J].J Nonlinear Math Phys,1994,1:60-64.
[16]Estévez P G.The direct method and the singular manifold method for the Fitzhugh-Nagumo equation[J].Phys Lett,1992,A171:259-261.
[17]Galaktionov V A.Ordered invariant sets for nonlinear evolution equations of KdV-type[J].Comput Math Phys,1999,39:1564-1570.
[18]Galaktionov V A.Groups of scalings and invariant sets for higher-order nonlinear evolution equations[J].Diff Integral Eqns,2001,14:913-924.
[19]Qu C Z,Estévez P G.Extended rotation and scaling groups for nonlinear evolution equations[J].Nonlinear Anal,2003,52:1655-1673.
[20]Jia H B,Xu W.Exact solutions and invariant sets to general reaction-diffusion equation[J].Commun Theory Phys,2008,49:1389-1392.