張正哲,姬玉欣,陳輝,郭瓊,周煜璜,吳聰慧,金仁村
杭州師范大學 生命與環(huán)境科學學院,浙江 杭州 310036
綜 述
厭氧氨氧化工藝的應用現(xiàn)狀和問題
張正哲,姬玉欣,陳輝,郭瓊,周煜璜,吳聰慧,金仁村
杭州師范大學 生命與環(huán)境科學學院,浙江 杭州 310036
張正哲, 姬玉欣, 陳輝, 等. 厭氧氨氧化工藝的應用現(xiàn)狀和問題. 生物工程學報, 2014, 30(12): 1804–1816.
Zhang ZZ, Ji YX, Chen H, et al. Application and obstacles of ANAMMOX process. Chin J Biotech, 2014, 30(12): 1804–1816.
厭氧氨氧化 (Anaerobic ammonium oxidation, ANAMMOX) 工藝因其高效低耗的優(yōu)勢,在廢水生物脫氮領域具有廣闊的應用前景。在過去的20年中,許多基于ANAMMOX反應的工藝得以不斷研究和應用。預計到2014年末,全球范圍內(nèi)的ANAMMOX工程將會超過100座。綜述了各種形式的ANAMMOX工藝,包括短程硝化-厭氧氨氧化、全程自養(yǎng)脫氮、限氧自養(yǎng)硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厭氧氨氧化-反硝化耦合、單級厭氧氨氧化短程硝化脫氮工藝。對一體式和分體式工藝運行條件進行了比較,結(jié)合ANAMMOX工藝工程 (主要包括移動床生物膜,顆粒污泥和序批式反應器系統(tǒng)) 應用現(xiàn)狀,總結(jié)了工程化應用過程中遇到的問題及其解決對策,在此基礎上對今后的研究和應用方向進行了展望。今后的研究重點應集中于運行條件的優(yōu)化和水質(zhì)障礙因子的解決,尤其是工藝自動化控制系統(tǒng)的開發(fā)和特殊廢水對工藝性能影響的研究。
厭氧氨氧化工藝,廢水生物脫氮,工程化應用,運行策略
厭氧氨氧化 (Anaerobic ammonium oxidation,ANAMMOX) 工藝,最初由荷蘭Delft工業(yè)大學于20世紀末開始研究,并于本世紀初成功開發(fā)應用的一種新型廢水生物脫氮工藝[1]。它以20世紀90年代發(fā)現(xiàn)的ANAMMOX反應(1) 為基礎,該反應在厭氧條件下以氨為電子供體,亞硝酸鹽為電子受體反應生成氮氣[2],在理念和技術上大大突破了傳統(tǒng)的生物脫氮工藝。ANAMMOX工藝具有脫氮效率高、運行費用低、占地空間小等優(yōu)點[3-5],在污水處理中發(fā)展?jié)摿薮?。目前該工藝在處理市政污泥液領域[5-7]已日趨成熟,位于荷蘭鹿特丹Dokhaven污水廠的世界上首個生產(chǎn)性規(guī)模的ANAMMOX裝置容積氮去除速率 (NRR) 更是高達9.5 kg N/(m3·d)。此外,ANAMMOX工藝在發(fā)酵工業(yè)廢水[8-9]、垃圾滲濾液[10-11]、養(yǎng)殖廢水[12-13]等高氨氮廢水處理領域的推廣也逐步開展,在世界各地的工程化應用也呈星火燎原之勢。
NH4++1.32NO2–+0.066HCO3–+0.13H+→1.02N2+0.26NO3–+0.066CH2O0.5N0.15+2.03H2O (1)
本文介紹了不同形式的ANAMMOX工藝,通過比較其運行條件,并結(jié)合ANAMMOX工藝工程應用現(xiàn)狀,總結(jié)了該工藝工程化應用面臨的問題和解決對策,在此基礎上對今后的研究和應用方向進行了展望。
經(jīng)過20多年的研究和發(fā)展,基于ANAMMOX反應開發(fā)出來的較成熟的工藝有SHARON (Single reactor for high activity ammonia removal over nitrite)-ANAMMOX工藝、全程自養(yǎng)脫氮 (Completely autotrophic nitrogen removal over nitrite, CANON) 工藝、限氧自養(yǎng)硝化反硝化 (Oxygen limited autotrophic nitrification and denitrification, OLAND) 工藝、反硝化氨氧化 (Denitrifying ammonium oxidation, DEAMOX) 工藝、好氧反氨化(Aerobic deammonification, DEMON) 工藝。近年來,研究人員仍在不斷探索其他形式的ANAMMOX衍生工藝,譬如同步短程硝化、厭氧氨氧化、反硝化耦合 (Simultaneous partial nitrification, ANAMMOX and denitrification, SNAD) 工藝、單級厭氧氨氧化短程硝化脫氮(Single-stage nitrogen removal using ANAMMOX and partial nitritation, SNAP) 工藝等 (表1)。
目前,存在兩種方法為ANAMMOX提供電子受體亞硝酸鹽,一種是在一個獨立的曝氣反應器中產(chǎn)生而隨后進入ANAMMOX反應器,另一種是在一個無O2或者微O2的ANAMMOX反應器中產(chǎn)生并立即參與ANAMMOX反應。據(jù)此,可將ANAMMOX工藝相應分為分體式 (兩級系統(tǒng)) 和一體式 (單級系統(tǒng)) 兩種,一體式包括CANON、OLAND、DEAMOX、DEMON、SNAP、SNAD等工藝,分體式主要是SHARON-ANAMMOX工藝。一體式工藝的基建成本低[14]、結(jié)構緊湊、裝置運行和控制簡單,并且其短程硝化產(chǎn)生的亞硝酸鹽立即參與ANAMMOX反應,能有效避免因亞硝酸鹽累積造成的抑制[4],另外單位體積脫氮速率高也是一體化工藝的優(yōu)勢。但是一體化工藝啟動時間長,反應器內(nèi)微生物間的生態(tài)關系復雜,經(jīng)受負荷沖擊時易失穩(wěn)[15-16],并引發(fā)連鎖反應,導致“雪崩”效應,系統(tǒng)受擾紊亂后恢復時間也長[17]。與一體式工藝相比,分體式工藝中的兩反應器可單獨進行靈活和穩(wěn)定的調(diào)控[14,18],系統(tǒng)受擾后恢復時間短[17],ANAMMOX反應器進水具有相對穩(wěn)定的氨氮和亞硝氮比例。其次由于短程硝化階段能削減某些毒物和有機物,避免其直接進入ANAMMOX反應器,所以更適合處理含毒物和有機物的廢水[19-20]。另外,處理高負荷含氮廢水時,分體式工藝的高投資成本會通過較低的運營成本得以補償[15]。因此,這兩種工藝各有利弊,實際應用時需根據(jù)具體情況,做到“因水制宜,量水裁藝”。
圖1 ANAMMOX工程化裝置 (2014年的數(shù)據(jù)代表在建或者設計中的工程) 和涉及ANAMMOX主題科研文獻的逐年發(fā)展 (Web of science,于4/8/2014訪問)Fig. 1 Cumulative development of full-scale ANAMMOX installations (2014 represents known plants under design/construction) and scientific publications on the topic of ANAMMOX (Web of science, accessed on 4/8/2014).
在過去的10年里,ANAMMOX工程化應用逐漸興起,正如圖1所示,ANAMMOX工程化裝置和研究文獻呈逐年增長趨勢。第一座工程化裝置的誕生與ANAMMOX的發(fā)現(xiàn)和發(fā)展有短暫的滯后,由此可見中試和實驗室研究對工程化應用具有積極的推動作用。預計到2014年末,全球范圍內(nèi)的ANAMMOX工程將會超過100座。表2列舉了世界上一些具有代表性的ANAMMOX工程及其主要運行參數(shù)[44]。其中大部分工程坐落于歐洲,也正日益盛行于南美洲。為了更好地控制短程硝化反應,短程硝化-厭氧氨氧化 (Partial nitritation-ANAMMOX, PN-ANAMMOX) 裝置大多采用兩級系統(tǒng)或利用已有的短程硝化系統(tǒng) (如SHARON反應器)。但隨著工程化經(jīng)驗越來越豐富,重點開始轉(zhuǎn)向單級系統(tǒng)。目前,工程化的裝置主要包括移動床生物膜反應器[45](Moving bed biofilm reactor, MBBR)、顆粒污泥反應器[46]和序批式反應器(Sequencing batch reactor, SBR)[4,47],還有少數(shù)生物轉(zhuǎn)盤 (Rotating biological contactors, RBC)[24]和活性污泥系統(tǒng)[48]。
DEMON是最為風靡的SBR系統(tǒng),該工藝首先裝配在奧地利Strass,采用自主設計的基于pH調(diào)控的進水控制系統(tǒng),用來處理污泥壓濾液[49]。利用水力旋流器可以分別調(diào)節(jié)適合氨氧化菌 (Ammonia-oxidizing bacteria, AOB) 和ANAMMOX菌 (Anaerobic ammonium oxidizing bacteria, AnAOB) 的泥齡 (Sludge retention time, SRT),并且可從接種污泥中分離出生長緩慢的AnAOB[50]。還能使小絮體中的亞硝酸氧化菌(Nitrite-oxidizing bacteria, NOB) 被洗出,使大聚集體中的AnAOB得以持留。另一種SBR技術是由瑞士聯(lián)邦水生科學技術研究所開發(fā)的基于氨控制的PN-ANAMMOX工藝。該工藝最早裝配在瑞士Zürich[4,51],在每個運行周期的開始階段或者曝氣階段進水,進水流量受氨傳感器調(diào)控,因此SBR運行周期長度不固定。氨信號也可由電導率信號替代,通過控制曝氣量確保短程硝化和ANAMMOX同步進行,一般溶解氧(Dissolved oxygen, DO) 濃度控制在0.1 mg/L以下,通常情況下建議采用連續(xù)曝氣,啟動階段或者污泥活性較低時采用間歇曝氣。此外,一些PN-ANAMMOX設施采用其他調(diào)控策略,差異主要在于進水模式 (間歇或連續(xù))、污泥存在形式 (懸浮或附著生長)、曝氣控制方式。比如德國Ingolstadt污水廠的SBR采用間歇進水 (6 h周期內(nèi)進水4次) 和間歇曝氣 (6 min曝氣/9 min停止)。但在德國Gütersloh污水廠的SBR周期為24 h,白天連續(xù)進水,進水量取決于污泥壓濾液的產(chǎn)生量。當氨濃度達到上限時啟動曝氣,當pH或者氨濃度跌至下限時停止曝氣,DO濃度控制在0.5 mg/L以下[44]。
一體式顆粒污泥反應器也應用于工業(yè)廢水的自養(yǎng)脫氮工程。目前在我國建造了數(shù)座實際工程,主要在發(fā)酵行業(yè) (包括釀酒、味精、酵母廢水),其中通遼梅花味精廢水Ⅰ期工程ANAMMOX反應器容積高達6 600 m3,是迄今世界上規(guī)模最大的ANAMMOX工程。
傳統(tǒng)的生物膜技術也成功用于PN-ANAMMOX工藝。RBC是最早發(fā)現(xiàn)存有ANAMMOX反應的反應器之一[24,52-53],隨后被Ghent大學成功應用于OLAND工藝中[7]。RBC的運營成本低,但工藝缺乏靈活性。目前,荷蘭Sneek市有兩座采用OLAND工藝處理厭氧消化廁所水的RBC裝置,一座容積0.5 m3的裝置服務于64人口當量,另一座容積6 m3服務于464人口當量[44]。通過調(diào)節(jié)轉(zhuǎn)盤轉(zhuǎn)速 (1?4 r/min)來實現(xiàn)工藝控制,確保DO濃度處于目標值(0.60?0.65 mg/L)。荷蘭Hulst市也有利用RBC處理化肥生產(chǎn)廢水的工程,通過在線監(jiān)測氨來調(diào)控進水,調(diào)節(jié)轉(zhuǎn)盤轉(zhuǎn)速控制DO濃度。預計到2015年該工程的氮負荷可達150 kg N/d[44]。
2001年在德國Hattingen污水廠建造了一座生物膜PN-ANAMMOX工程,用于處理污泥壓濾液。該工程DeAmmon工藝中MBBR系統(tǒng)的40%?50%由填料填充,并設有曝氣裝置和攪拌器[45,54]。2007年第二座采用DeAmmon工藝的MBBR裝置在瑞典Himmerfj?rden污水廠開始建造[55]。生物膜的理念還被應用在位于瑞典Malm?的ANITAMoxTM工藝設計中,該裝置不僅用于處理污泥壓濾液,還可為其他裝置培養(yǎng)種子載體。在此基礎上采用復合固定膜活性污泥裝置還可將性能提高3?4倍[44]。
該復合裝置持留的懸浮污泥具有90%的AOB,其負荷比單一的生物膜系統(tǒng)高。在PN-ANAMMOX工藝中也有懸浮污泥理念的應用。荷蘭Colsen的新活性污泥 (New activated sludge,NAS) 系統(tǒng)即采用懸浮污泥法,包括好氧、厭氧、攪拌室,依賴于PN-ANAMMOX和硝化反硝化耦合作用來處理食品加工廢水[48]。通過控制DO和SRT實現(xiàn)工藝調(diào)控。德國TERRANA系統(tǒng)與復合固定膜活性污泥法原理相似,起初在SBR和分體式活性污泥工藝中都添加膨潤土載體,用于AnAOB附著和改善沉降性能,并且膨潤土還可為緩沖能力較弱的廢水補充堿度[44]。
3.1 過程擾動
目前,大約有100座運行或在建和規(guī)劃中的ANAMMOX工程,其中PN-ANAMMOX是一種較為成熟的工藝。但是復雜的微生物群落和短程硝化仍然不是始終處于受控狀態(tài)。文獻中很少有報道工程化設施運行過程中的問題、原因和對策。其中只有少數(shù)污水廠因為硬件問題 (鼓風機、混合設備、泵) 影響到工藝運行性能。眾所周知,DO濃度是最常用的控制參數(shù),DO傳感器故障會導致嚴重的后果,太高的曝氣強度如果沒有得到及時控制,將會導致硝酸鹽積累。因此,監(jiān)測氣量而不是DO濃度可能更可靠,尤其是當DO濃度較低時[51]。
溫度變化對工藝性能的影響比較小,只有當短時間內(nèi)高溫波動 (如一周內(nèi)升高8 ℃) 時會顯著影響性能。一些污水廠存在pH波動或沖擊現(xiàn)象,這會產(chǎn)生嚴重的負面影響。太高的pH (>8.0) 會導致AnAOB活性降低導致亞硝酸鹽積累,太低的pH (<6.8) 會抑制AOB。應在pH波動可以預見的情況下采取相應的調(diào)控措施。
對PN-ANAMMOX工藝性能影響較大的是進水總懸浮固體 (Total suspended solids, TSS)濃度,絕大多數(shù)污水廠都發(fā)生過由于進水TSS濃度太高或者波動帶來的性能下降。DEMON工藝SBR系統(tǒng)經(jīng)歷較高的進水TSS負荷會出現(xiàn)硝酸鹽積累,需要額外排泥,進而降低了反應器中的菌體濃度。進水TSS所含的抑制物 (例如硫化物) 還會帶來抑制影響??梢圆扇〉膶Σ甙ㄔ黾优拍嗔炕蛘咧皇堑绕浠謴汀R种朴绊憰掷m(xù)一段時間,但是實際工程中確定真正的抑制物比較困難[51]。
3.2 氮素積累
在PN-ANAMMOX工藝中,為了確保高性能和高處理量,應該避免氨氮、亞硝氮和硝氮的積累。尤其需控制氨 (或游離氨) 和亞硝酸鹽濃度,避免基質(zhì)抑制。在pH>7.6,溫度>35 ℃的條件下,只有在氨濃度達到200 mg/L以上(導致游離氨抑制) 時,氨抑制才會發(fā)生,避免氨抑制的對策主要有增加曝氣、減小進水流量或者減少排泥量等。目前,氨的長期負面影響在工程中還未見報道。相對而言,亞硝酸鹽和硝酸鹽積累通常更為重要。亞硝酸鹽積累通常是因為ANAMMOX菌群紊亂或者短程硝化產(chǎn)能過剩。尤其在啟動階段,亞硝酸鹽更應嚴格監(jiān)控,這是因為AOB生長比AnAOB快,會引起亞硝酸鹽濃度升高。AOB受到抑制后,反應器中DO濃度上升隨后導致AnAOB受擾,也會導致亞硝酸鹽濃度升高。可采取的對策包括停止曝氣和降低負荷 (通過減小進水流量) 等。在一定情況下,反應器停止 (僅維持必要的混合)一段時間去除亞硝酸鹽也是有必要的。控制pH和亞硝酸鹽濃度可以有效控制游離亞硝酸抑制。就抑制而言,硝酸鹽積累本身的影響并不很大,但是硝酸鹽濃度的升高意味著不同微生物生理群功能失衡并且NOB大量積累。NOB和硝酸鹽積累的主要原因是供氧過量,但檢測出的DO濃度未必會增加。對于硝酸鹽積累可以采取的對策包括減少空氣流量、降低DO設定點、降低鼓風機開機頻率或者減少運行時間(增加缺氧階段)、間歇曝氣 (改變開/關時間)等。在SBR系統(tǒng)中,除去絮狀污泥或者縮短沉淀時間也是主要的控制策略。
3.3 運行問題
除了機械故障和氮素積累,還有可能遇到發(fā)泡、結(jié)垢和固體持留、沉淀和分離等難題。這些因素對于反應器性能影響不大,添加消泡劑和灑水能有效處置泡沫。雖然沒有報道指出管道、泵、曝氣裝置結(jié)垢會直接影響性能,但持續(xù)沉積會引發(fā)嚴重的運行問題,傳感器壽命也會受到影響。特別是處理某些含高氨氮和磷酸鹽的廢水 (污泥消化液) 時需要定期清潔。另外,這對于生物膜系統(tǒng)和依賴密度分離的系統(tǒng)而言,生物膜或顆粒表面結(jié)垢可能會產(chǎn)生不利影響。
更為重要的是污泥持留、沉淀和固體分離等問題。正如上文所述,進水固體含量長期較高會引起運行問題。太多惰性固體積累會降低活性。尤其是調(diào)節(jié)池中的沉降性能不佳所導致的主反應器中TSS沖擊會引發(fā)嚴重的性能擾動。同樣,沉降性能差的SBR中會有菌體流失??刹扇〉膶Σ甙ㄔ黾映恋頃r間或添加絮凝劑。但相反的問題也會出現(xiàn),混合不足引起的污泥絮體或聚集體過大會導致污泥上浮,最終影響排泥。
3.4 溫室氣體排放
目前能源和成本效益以及可持續(xù)發(fā)展逐漸演變?yōu)槲鬯幚硇袠I(yè)的標桿。減少污水廠溫室氣體的排放是可持續(xù)發(fā)展的重要部分,也是目前ANAMMOX工程化應用中的一個實際問題。而氧化亞氮 (N2O) 作為反硝化的中間產(chǎn)物也是一定條件下AOB的副產(chǎn)物,是一種重要的溫室氣體,其溫室效應比CO2強300倍以上[56]。關于N2O從單級系統(tǒng)和兩級系統(tǒng)中的排放均有報道,奧地利Strass污水廠的DEMON工藝N2O的排放量為氮負荷的1.3%[57],在間歇曝氣和連續(xù)曝氣期間N2O的排放量分別為氮負荷的0.6%和0.4%[4]。而在荷蘭鹿特丹Dokhaven Sluisjesdijk污水處理廠的SHARON-ANAMMOX工藝,SHARON反應器N2O的排放量是氮負荷的1.7%,ANAMMOX反應器N2O的排放量是氮負荷的0.6%[58]。NAS工藝N2O的排放量則高達氮負荷的6.6%[48]。但是在AnAOB的代謝中,N2O既不是中間產(chǎn)物,也不是副產(chǎn)物[59]。N2O的排放是一個十分復雜的問題,可能涉及硝化、反硝化和化學反應,是由眾多因素共同作用的結(jié)果[60-61]。而且在實際工程中,N2O的排放具有高度動態(tài)性,準確的量化只能通過高頻隨機取樣或者連續(xù)在線監(jiān)測[48]。
本文總結(jié)了ANAMMOX工程要點,雖然所報道的工程的技術指標一般都能滿足設計要求,但作為一類發(fā)展不久的新型生物脫氮技術,ANAMMOX技術的工程化還遠未成熟。而且工業(yè)廢水和生活污水的成分往往非常復雜,這給ANAMMOX工程化推廣和穩(wěn)定運行帶來巨大挑戰(zhàn)。盡管在生產(chǎn)實踐中還殘留一些問題沒有解決,但這些是各種生物廢水處理技術的共同瓶頸。在接下來的1?2年內(nèi),全球范圍內(nèi)的工程化裝置將會超過100座,這展示了ANAMMOX工藝無與倫比的適用性。其在節(jié)能方面展現(xiàn)的潛力必將帶來巨大回報。因此今后的研究重點應集中于運行條件的優(yōu)化和水質(zhì)障礙因子的解決,尤其是工藝自動化控制系統(tǒng)的開發(fā)和特殊廢水對工藝性能影響的研究。
1) 由于基建和運營成本低,一體化系統(tǒng)無疑是今后ANAMMOX工程化應用的新寵。該系統(tǒng)不僅能有效避免因亞硝酸氮累積造成的抑制作用,還可防止NOB產(chǎn)生硝酸鹽,這是因為NOB對O2的親和力比AOB低,對亞硝酸鹽的親和力又比AnAOB低[62]?,F(xiàn)有研究稱,在處理高濃度含氨廢水時,可以通過增加游離氨(Free ammonia, FA) 來抑制亞硝酸氧化,提升總氮去除效率,但FA對NOB的抑制效果仍存疑[63-64],建議不要僅僅依賴FA來抑制亞硝酸氧化[65]。因此在今后的研究中,一體化系統(tǒng)的運行參數(shù)和操作條件優(yōu)化將成為重點。另外,如何有效控制N2O的排放將是一體化系統(tǒng)必須邁過的一道坎。
2) 需要探明ANAMMOX工程對廢水水質(zhì)的適用性,并提出應對之策。某些廢水成分對反應器性能的實際影響還鮮為人知,諸如廁所水、垃圾滲濾液、制藥、養(yǎng)殖、焦化、制革、食品加工等行業(yè)廢水通常含有一定濃度的抗生素、重金屬、無機鹽、硫化物和酚類等有毒物質(zhì)[21,66-68],很大程度上會影響AnAOB的活性,最終可能會導致運行失穩(wěn)。筆者課題組在ANAMMOX抑制方面做了大量研究,包括土霉素、銅 (Ⅱ)、鹽度、硫化物、苯酚對ANAMMOX工藝的抑制作用[67-71]。研究發(fā)現(xiàn),由于工作條件、實驗方法、污泥的物化特性和所涉及的微生物種群不同,抑制作用差異也很大,有的放矢地緩解和調(diào)控措施也有待開發(fā)。因為AnAOB對生長環(huán)境的要求較為嚴格,要想實現(xiàn)ANAMMOX工藝更廣的工程化應用,仍需進行大量關于AnAOB快速富集培養(yǎng)與抑制作用的研究。此外,營養(yǎng)物質(zhì)的缺乏也需引起重視。
3) 常溫或低溫ANAMMOX工藝和將該工藝應用于生活污水直接脫氮是重要的發(fā)展方向。此前,大部分文獻報道的自養(yǎng)脫氮系統(tǒng)運行溫度都在25 ℃以上,進水氨氮濃度高于100 mg/L[72-73]。近來,低溫ANAMMOX工藝的研究已經(jīng)取得了突破性的進展。實驗室規(guī)模25 ℃下正常運行的一體式反應器可以迅速 (10 d)適應低溫并在12 ℃下穩(wěn)定運行,300 d內(nèi)無亞硝酸鹽累積,氨氮去除率達90%以上[74]。筆者課題組的研究表明,實驗室規(guī)模35 ℃下運行的ANAMMOX反應器,可通過逐步降溫馴化、菌種流加或添加低溫保護劑 (甜菜堿) 等方法使得反應器在9.1 ℃時的NRR高達6.61 kg N/(m3·d)[75]。ANAMMOX工藝不僅可以應用到高濃度氨氮廢水,也有望應用于低氨氮的城市生活污水的處理,有望使污水處理廠達到能量平衡。中試 (4 m3,(19±1) ℃) 研究也已取得階段性的成功[76],但是實際工程中如何提高低溫下的菌體活性,實現(xiàn)低基質(zhì)濃度下的菌體擴增,高流速下的菌體持留等問題仍是有待突破的瓶頸。
REFERENCES
[1] Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol, 2002, 99(3): 295–306.
[2] Strous M, Heijnen JJ, Kuenen JG, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biot, 1998, 50(5): 589–596.
[3] Jetten M, Cirpus I, Kartal B, et al. 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Trans, 2005, 33(1): 119–123.
[4] Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ Sci Technol, 2009, 43(14): 5301–5306.
[5] van der Star WR, Abma WR, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res, 2007, 41(18): 4149–4163.
[6] Siegrist H, Salzgeber D, Eugster J, et al. using SBA-ANAMMOX process. Water Res, 2011, 45(1): 201–210.
[9] Shen LD, Hu AH, Jin RC, et al. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system. J Hazard Mater, 2012, 199-200: 193–199.
[10] Liang Z, Liu JX. Landfill leachate treatment with a novel process: Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system. J Hazard Mater, 2008, 151(1): 202–212.
[11] Liu J, Zuo JE, Yang Y, et al. An autotrophic nitrogen removal process: short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate. J Environ Sci, 2010, 22(5): 777–783.
[12] Ahn Y, Hwang I, Min K. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste. Water Sci Technol, 2004, 49(5–6): 145–153.
[13] Hwang I, Min K, Choi E, et al. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process. Water Sci Technol, 2005, 52(10-11): 487–494.
[14] Wyffels S, Boeckx P, Pynaert K, et al. Nitrogen removal from sludge reject water by a two-stage Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci Technol, 2008, 57(3): 383–388.
[7] Vlaeminck SE, Terada A, Smets BF, et al. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environ Sci Technol, 2009, 43(13): 5035–5041.
[8] Tang CJ, Zheng P, Chen TT, et al. Enhanced nitrogen removal from pharmaceutical wastewateroxygen-limited autotrophic nitrification denitrification process. Water Sci Technol, 2004, 49(5/6): 57–64.
[15] Hao XD, Heijnen JJ, van Loosdrecht M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng, 2002, 77(3): 266–277.
[16] Nielsen M, Bollmann A, Sliekers O, et al. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol Ecol, 2005, 51(2): 247–256.
[17] Jaroszynski LW, Oleszkiewicz JA. Autotrophic ammonium removal from reject water: partial nitrification and anammox in one-reactor versus two-reactor systems. Environ Technol, 2011, 32(3): 289–294.
[18] Veys P, Vandeweyer H, Audenaert W, et al. Performance analysis and optimization of autotrophic nitrogen removal in different reactor configurations: a modelling study. Environ Technol, 2010, 31(12): 1311–1324.
[19] Vazquez-Padin JR, Figueroa M, Fernández I, et al. Post-treatment of effluents from anaerobic digesters by the anammox process. Water Sci Technol, 2009, 60(5): 1135–1143.
[20] Lackner S, Terada A, Smets BF. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study. Water Res, 2008, 42(4): 1102–1112.
[21] van Dongen U, Jetten M, van Loosdrecht M. The SHARON?-Anammox?process for treatment of ammonium rich wastewater. Water Sci Technol, 2001, 44(1): 153–160.
[22] Sri Shalini S, Joseph K. Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process. Waste Manage, 2012, 32(12): 2385–2400.
[23] Ahn Y. Sustainable nitrogen elimination biotechnologies: a review. Process Biochem, 2006, 41(8): 1709–1721.
[24] Hippen A, Rosenwinkel K, Baumgarten G, et al. Aerobic deammonification: a new experience in the treatment of waste waters. Water Sci Technol, 1997, 35(10): 111–120.
[25] Helmer-Madhok C, Schmid M, Filipov E, et al. Deammonification in biofilm systems: population structure and function. Water Sci Technol, 2002, 46(1-2): 223–231.
[26] Liu ST, Horn H. Effects of biofilm geometry on deammonification biofilm performance: a simulation study. Bioresour Technol, 2012, 116: 252–258.
[27] Liu ST, Horn H, Müller E. A systematic insight into a single-stage deammonification process operated in granular sludge reactor with high‐loaded reject‐water: characterization and quantification of microbiological community. J Appl Microbiol, 2013, 114(2): 339–351.
[28] Sliekers AO, Derwort N, Gomez JL, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res, 2002, 36(10): 2475–2482.
[29] Sliekers AO, Third KA, Abma W, et al. CANON and Anammox in a gas-lift reactor. FEMS Microbiol Lett, 2003, 218(2): 339–344.
[30] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl Environ Microb, 1998, 64(11): 4500–4506.
[31] Vlaeminck SE, De Clippeleir H, Verstraete W. Microbial resource management of one-stage partial nitritation/anammox. Microb Biotechnol, 2012, 5(3): 433–448.
[32] Kalyuzhnyi S, Gladchenko M, Mulder A, et al. DEAMOX—new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res, 2006, 40(19): 3637–3645. [33] Kalyuzhnyi SV, Gladchenko MA, Kang H, et al. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents. Water Sci Technol, 2008, 57(3): 323–328.
[34] Trukhina AI, Gladchenko MA, Kaluzhnyi SV. Reactivation of biocatalysts after long-term storage and startup of the DEAMOX process. Appl Biochem Micro Biol, 2011, 47(7): 688–694. [35] Trukhina AI, Gladchenko MA, Kalyuzhnyi SV. Optimizations of sulphide and organic modifications of the DEAMOX process. Appl Biochem Micro Biol, 2011, 47(9): 841–845.
[36] Mas?oń A, Tomaszek JA. Anaerobic ammonium nitrogen oxidation in Deamox process. Environ Prot Eng, 2009, 35(2): 123–130.
[37] Furukawa K, Lieu P, Tokitoh H, et al. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Sci Technol, 2006, 53(6): 83–90.
[38] Langone M. Simultaneous partial nitritation, Anammox and denitrification (SNAD) process for treating ammonium-rich wastewaters [D]. Trento: University of Trento, 2013.
[39] Lan C, Kumar M, Wang C, et al. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour Technol, 2011, 102(9): 5514–5519.
[40] Keluskar R, Nerurkar A, Desai A. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresour Technol, 2013, 130: 390–397.
[41] Daverey A, Hung N, Dutta K, et al. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresour Technol, 2013, 141: 191–198.
[42] Daverey A, Su S, Huang Y, et al. Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor. Bioresour Technol, 2012, 113: 225–231.
[43] Chen HH, Liu ST, Yang FL, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour Technol, 2009, 100(4): 1548–1554.
[44] Lackner S, Gilbert EM, Vlaeminck SE, et al. Full-scale partial nitritation/anammox experiences–an application survey. Water Res, 2014, 55: 292–303.
[45] Rosenwinkel KH, Cornelius A. Deammonification in the moving‐bed process for the treatment of wastewater with high ammonia content. Chem Eng Technol, 2005, 28(1): 49–52.
[46] Abma WR, Driessen W, Haarhuis R, et al. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci Technol, 2010, 61(7): 1715–1722.
[47] Wett B. Development and implementation of a robust deammonification process. Water Sci Technol, 2007, 56(7): 81–88.
[48] Desloover J, De Clippeleir H, Boeckx P, et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res, 2011, 45(9): 2811–2821.
[49] Wett B. Solved upscaling problems for implementing deammonification of rejection water. Water Sci Technol, 2006, 53(12): 121–128.
[50] Wett B, Hell M, Nyhuis G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Sci Technol, 2010, 61(8): 1915–1922.
[51] Joss A, Derlon N, Cyprien C, et al. Combined nitritation–anammox: advances in understanding process stability. Environ Sci Technol, 2011, 45(22): 9735–9742.
[52] Siegrist H, Reithaar S, Koch G, et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Sci Technol, 1998, 38(8): 241–248.
[53] Schmid M, Walsh K, Webb R, et al. Candidatus“Scalindua brodae”, sp. nov., Candidatus“Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 2003, 26(4): 529–538.
[54] Szatkowska B, Cema G, Plaza E, et al. A one-stage system with partial nitritation and Anammox processes in the moving-bed biofilm reactor. Water Sci Technol, 2007, 55(8/9): 19–26.
[55] Ling D. Experience from commissioning of full-scale Deammon plant at Himmerfj?rden (Sweden) [C]. 2009.
[56] Hu ZY, Lotti T, van Loosdrecht M, et al. Nitrogen removal with the anaerobic ammonium oxidation process. Biotechnol Lett, 2013, 35(8): 1145–1154.
[57] Weissenbacher N, Takacs I, Murthy S, et al. Gaseous nitrogen and carbon emissions from a full-scale deammonification plant. Water Environ Res, 2010, 82(2): 169–175.
[58] Kampschreur MJ, van der Star WR, Wielders HA, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res, 2008, 42(3): 812–826.
[59] Kartal B, Maalcke WJ, de Almeida NM, et al. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130.
[60] Ahn JH, Kim S, Park H, et al. N2O emissions from activated sludge processes, 2008?2009: results of a national monitoring survey in the United States. Environ Sci Technol, 2010, 44(12): 4505–4511.
[61] Kampschreur MJ, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment. Water Res, 2009, 43(17): 4093–4103.
[62] Blackburne R, Yuan Z, Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res, 2008, 42(8): 2166–2176.
[63] Fux C, Lange K, Faessler A, et al. Nitrogen removal from digester supernatant via nitrite-SBR or SHARON? Water Sci Technol, 2003, 48(8): 9–18.
[64] Vadivelu VM, Keller J, Yuan Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Res, 2007, 41(4): 826–834.
[65] Xing BS, Qin TY, Chen SX, et al. Performance of the ANAMMOX process using multi-and single-fed upflow anaerobic sludge blanket reactors. Bioresour Technol, 2013, 149: 310–317.
[66] Jin RC, Yang GF, Yu JJ, et al. The inhibition of the anammox process: a review. Chem Eng J,2012, 197: 67–79.
[67] Yang G, Zhang QQ, Jin RC. Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress. Bioresour Technol, 2013, 129: 65–71.
[68] Yang GF, Jin RC. The joint inhibitory effects of phenol, copper (Ⅱ), oxytetracycline (OTC) and sulfide on Anammox activity. Bioresour Technol, 2012, 126: 187–192.
[69] Yang GF, Ni WM, Wu K, et al. The effect of Cu (Ⅱ) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process. Chem Eng J, 2013, 226: 39–45.
[70] Jin RC, Yang GF, Zhang QQ, et al. The effect of sulfide inhibition on the ANAMMOX process. Water Res, 2013, 47(3): 1459–1469.
[71] Ma C, Jin RC, Yang GF, et al. Impacts of transient salinity shock loads on Anammox process performance. Bioresour Technol, 2012, 112: 124–130.
[72] van Hulle SW, Vandeweyer HJ, Meesschaert BD, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J, 2010, 162(1): 1–20.
[73] Li J, Xiong BY, Zhang SD, et al. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible? J Environ Sci, 2005, 17(6): 1022–1024.
[74] Hu ZY, Lotti T, de Kreuk M, et al. Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microb, 2013, 79(8): 2807–2812.
[75] Jin RC, Ma C, Yu JJ. Performance of an Anammox UASB reactor at high load and low ambient temperature. Chem Eng J, 2013, 232: 17–25.
[76] Lotti T, Kleerebezem R, de Kreuk MK, et al. Pilot scale evaluation of Anammox based main-stream nitrogen removal from municipal wastewater//WEF/IWA Nutrient Removal and Recovery [C], 2013.
(本文責編 陳宏宇)
Application and obstacles of ANAMMOX process
Zhengzhe Zhang, Yuxin Ji, Hui Chen, Qiong Guo, Yuhuang Zhou, Conghui Wu, and Rencun Jin
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
Anaerobic ammonium oxidation (ANAMMOX), as its essential advantages of high efficiency and low cost, is a promising novel biological nitrogen elimination process with attractive application prospects. Over the past two decades, many processes based on the ANAMMOX reaction have been continuously studied and applied to practical engineering, with the perspective of reaching100 full-scale installations in operation worldwide by 2014. Our review summarizes various forms of ANAMMOX processes, including partial nitritation-ANAMMOX, completely autotrophic nitrogen removal over nitrite, oxygen limited autotrophic nitrification and denitrification, denitrifying ammonium oxidation, aerobicdeammonification, simultaneous partial nitrification, ANAMMOX and denitrification, single-stage nitrogen removal using ANAMMOX and partial nitritation. We also compare the operating conditions for one-stage and two-stage processes and summarize the obstacles and countermeasures in engineering application of ANAMMOX systems, such as moving bed biofilm reactor, sequencing batch reactor and granular sludge reactor. Finally, we discuss the future research and application direction, which should focus on the optimization of operating conditions and applicability of the process to the actual wastewater, especially on automated control and the impact of special wastewater composition on process performance.
ANAMMOX process, biological nitrogen removal from wastewater, engineering application, operational strategy
April 22, 2014; Accepted: July 11, 2014
Rencun Jin. Tel: +86-571-28865327; E-mail: jrczju@aliyun.com.cn
Supported by: National Natural Science Foundation of China (Nos. 51078121, 51278162), Science and Technology Development Program of Hangzhou (No. 20120433B20).
國家自然科學基金 (Nos. 51078121, 51278162),杭州市科技計劃項目 (No. 20120433B20) 資助。