王菊宅
代數(shù)知識(shí)是在算術(shù)知識(shí)的基礎(chǔ)上發(fā)展起來(lái)的,其特點(diǎn)是用字母表示數(shù),使數(shù)的概念及其運(yùn)算法則抽象化和公式化。初中一年級(jí)剛接觸代數(shù)時(shí),學(xué)生要經(jīng)歷由算術(shù)到代數(shù)的過(guò)渡,這里的主要標(biāo)志是由數(shù)過(guò)渡到字母表示數(shù),這是在小學(xué)的數(shù)的概念的基礎(chǔ)上更高一個(gè)層次上的抽象。字母是代表數(shù)的,但它不代表某個(gè)具體的數(shù),這種一般與特殊的關(guān)系正是初一學(xué)生學(xué)習(xí)的困難所在。
為了克服初一新生對(duì)這一轉(zhuǎn)化而引發(fā)的學(xué)習(xí)障礙,教學(xué)中要特別重視“代數(shù)初步知識(shí)”這一章的教學(xué)。它是承小學(xué)知識(shí)之前,啟初中知識(shí)之后,開(kāi)宗明義,搞好中小學(xué)數(shù)學(xué)銜接的重要環(huán)節(jié)。數(shù)學(xué)中要把握全章主體內(nèi)容的深度,從小學(xué)學(xué)過(guò)的用字母表示數(shù)的知識(shí)入手,盡量用一些字母表示數(shù)的實(shí)例,自然而然地引出代數(shù)式的概念。再講述如何列代數(shù)式表示常見(jiàn)的數(shù)量關(guān)系,以及代數(shù)式的一些初步應(yīng)用知識(shí)。要注意始終以小學(xué)所接觸過(guò)的代數(shù)知識(shí)(小學(xué)沒(méi)有用“代數(shù)”的提法)為基礎(chǔ),對(duì)其進(jìn)行較為系統(tǒng)的歸納與復(fù)習(xí),并適當(dāng)加強(qiáng)提高。使學(xué)生感到升入初一就像在小學(xué)升級(jí)那樣自然,從而減小升學(xué)感覺(jué)的負(fù)效應(yīng)。
初一代數(shù)的第一堂課,一般不講課本知識(shí),而是對(duì)學(xué)生初學(xué)代數(shù)給予一定的描述、指導(dǎo)。目的是在總體上給學(xué)生一個(gè)認(rèn)識(shí),使其粗略了解中學(xué)數(shù)學(xué)的一些情況。如介紹:(1)數(shù)學(xué)的特點(diǎn)。(2)初中數(shù)學(xué)學(xué)習(xí)的特點(diǎn)。(3)初中數(shù)學(xué)學(xué)習(xí)展望。(4)中學(xué)數(shù)學(xué)各環(huán)節(jié)的學(xué)習(xí)方法,包括預(yù)習(xí)、聽(tīng)講、復(fù)習(xí)、作業(yè)和考核等。(5)注意觀察、記憶、想象、思維等智力因素與數(shù)學(xué)學(xué)習(xí)的關(guān)系。(6)動(dòng)機(jī)、意志、性格、興趣、情感等非智力因素與數(shù)學(xué)學(xué)習(xí)的聯(lián)系。
學(xué)生對(duì)于數(shù)的概念,在小學(xué)數(shù)學(xué)中雖已有過(guò)兩次擴(kuò)展,一次是引進(jìn)數(shù)0,一次是引進(jìn)分?jǐn)?shù)(指正分?jǐn)?shù))。但學(xué)生對(duì)數(shù)的概念為什么需要擴(kuò)展,體會(huì)不深。而到了初一要引進(jìn)的新數(shù)———負(fù)數(shù),與學(xué)生日常生活上的聯(lián)系表面上看不很密切。他們習(xí)慣于“升高”、“下降”的這種說(shuō)法,而現(xiàn)在要把“下降5米”說(shuō)成“升高負(fù)5米”是很不習(xí)慣的,為什么要這樣說(shuō),一時(shí)更不易理解。所以使學(xué)生認(rèn)識(shí)引進(jìn)負(fù)數(shù)的必要是初一數(shù)學(xué)中首先遇到的一個(gè)難點(diǎn)。
我們?cè)谡揭胴?fù)數(shù)這一概念前,先把小學(xué)數(shù)學(xué)中的數(shù)的知識(shí)作一次系統(tǒng)的整理,使學(xué)生注意到數(shù)的概念是為解決實(shí)際問(wèn)題的需要而逐漸發(fā)展的,也是由原有的數(shù)集與解決實(shí)際問(wèn)題的矛盾而引發(fā)新數(shù)集的擴(kuò)展。即自然數(shù)集添進(jìn)數(shù)0→擴(kuò)大自然數(shù)集(非負(fù)整數(shù)集)添進(jìn)正分?jǐn)?shù)→算術(shù)數(shù)集(非負(fù)有理數(shù)集)添進(jìn)負(fù)整數(shù)、負(fù)分?jǐn)?shù)→有理數(shù)集……。這樣就為數(shù)系的再一次擴(kuò)充作好準(zhǔn)備。
這樣,逐步引進(jìn)正、負(fù)數(shù)的概念,將會(huì)有助于學(xué)生體會(huì)引進(jìn)新數(shù)的必要性。從而在心理產(chǎn)生認(rèn)同,進(jìn)而順利地把數(shù)的范疇從小學(xué)的算術(shù)數(shù)擴(kuò)展到初一的有理數(shù),使學(xué)生不至產(chǎn)生巨大的跳躍感。
初一的四則運(yùn)算是源于小學(xué)數(shù)學(xué)的非負(fù)有理數(shù)運(yùn)算而發(fā)展到有理數(shù)的運(yùn)算,不僅要計(jì)算絕對(duì)值,還要首先確定運(yùn)算符號(hào),這一點(diǎn)學(xué)生開(kāi)始很不適應(yīng)。在負(fù)數(shù)的“參算”下往往出現(xiàn)計(jì)算上的錯(cuò)誤,有理數(shù)的混合運(yùn)算結(jié)果的準(zhǔn)確率較低,所以,特別需要加強(qiáng)練習(xí)。
另外,對(duì)于運(yùn)算結(jié)果來(lái)說(shuō),計(jì)算的結(jié)果也不再像小學(xué)那樣唯一了。如|a|,其結(jié)果就應(yīng)分三種情況討論。這一變化,對(duì)于初一學(xué)生來(lái)說(shuō)是比較難接受的,代數(shù)式的運(yùn)算對(duì)他們而言是個(gè)全新的問(wèn)題,要正確解決這一難點(diǎn),必須非常注重,要使學(xué)生在正確理解有理數(shù)概念的基礎(chǔ)上,掌握有理數(shù)的運(yùn)算法則。對(duì)運(yùn)算法則理解越深,運(yùn)算才能掌握得越好。但是,初一學(xué)生的數(shù)學(xué)基礎(chǔ)尚
不能透徹理解這些運(yùn)算法則,所以在處理上要注意設(shè)置適當(dāng)?shù)奶荻?,逐步加深。有理?shù)的四則運(yùn)算最終要?dú)w結(jié)為非負(fù)數(shù)的運(yùn)算,因此“絕對(duì)值”概念應(yīng)該是我們教學(xué)中必須抓住的關(guān)鍵點(diǎn)。而定義絕對(duì)值又要用到“互為相反數(shù)”的概念,“數(shù)軸”又是講授這兩個(gè)概念的基礎(chǔ),一定要注意數(shù)形結(jié)合,加強(qiáng)直觀性,不能急于求成。學(xué)生正確掌握、熟練運(yùn)用絕對(duì)值這一概念,是要有一個(gè)過(guò)程的。在結(jié)合實(shí)例利用數(shù)軸來(lái)說(shuō)明絕對(duì)值概念后,還得在練習(xí)中逐步加深認(rèn)識(shí)、進(jìn)行鞏固。
學(xué)生在小學(xué)做習(xí)題,滿足于只是進(jìn)行計(jì)算。而到初一,為了使其能正確理解運(yùn)算法則,盡量避免計(jì)算中的錯(cuò)誤,就不能只是滿足于得出一個(gè)正確答案,應(yīng)該要求學(xué)生每做一步都要想想根據(jù)什么,要靈活運(yùn)用所學(xué)知識(shí),以求達(dá)到良好的教學(xué)效果。這樣,不但可以培養(yǎng)學(xué)生的運(yùn)算思維能力,也可使學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
進(jìn)入初中的學(xué)生,這個(gè)年齡段學(xué)生的思維正由形象思維向抽象思維過(guò)渡。思維的不穩(wěn)定性以及思維模式的尚未形成,決定了列方程解應(yīng)用題的學(xué)習(xí)將是初一學(xué)生面臨的一個(gè)難度非常大的坎。列方程解應(yīng)用題的教學(xué)往往是費(fèi)力不小,效果不佳。因?yàn)閷W(xué)生解題時(shí)只習(xí)慣小學(xué)的思維套用公式,屬定勢(shì)思維,不善于分析、轉(zhuǎn)化和作進(jìn)一步的深入思考,思路狹窄、呆滯,題目稍有變化就束手無(wú)策。
這頭一個(gè)方面是主要的,解決了它,另兩個(gè)方面就都好解決了。所以,小學(xué)數(shù)學(xué)第八冊(cè)列方程解應(yīng)用題教學(xué)時(shí),一要使學(xué)生掌握算術(shù)法和代數(shù)法的異同點(diǎn),并講清列方程解應(yīng)用題的思路;二要有針對(duì)性地讓學(xué)生加強(qiáng)把實(shí)際中的數(shù)量關(guān)系改寫(xiě)成代數(shù)式的訓(xùn)練,這樣對(duì)小學(xué)生逆向思維有好處,使較復(fù)雜的應(yīng)用題化難為易。初一講授列方程解應(yīng)用題教學(xué)時(shí),要重視知識(shí)發(fā)生過(guò)程。因?yàn)閿?shù)學(xué)本身就是一種思維活動(dòng),教學(xué)中要使學(xué)生盡可能參與進(jìn)去,從而形成和發(fā)展具有思維特點(diǎn)的智力結(jié)構(gòu)。
總之,學(xué)生在小學(xué)數(shù)學(xué)中接觸的都是較為直觀、簡(jiǎn)單的基礎(chǔ)知識(shí),而升入初一后,要學(xué)的知識(shí)在抽象性、嚴(yán)密性上都有一個(gè)飛躍,作為初一數(shù)學(xué)教師,認(rèn)真分析研究有關(guān)問(wèn)題,對(duì)搞好中小學(xué)數(shù)學(xué)課堂教學(xué)的銜接和提高教學(xué)質(zhì)量有很大的現(xiàn)實(shí)意義