亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        真菌RNA沉默研究進展

        2014-04-29 00:00:00陳銳朱珠蘭青闊趙新王永
        天津農(nóng)業(yè)科學 2014年5期

        摘 要:阻抑(Quelling)與減數(shù)分裂沉默(Meiotic silencing by unpaired DNA, MSUD)等真菌RNA沉默(RNA silencing)現(xiàn)象的研究拓展了我們當前對基因表達調(diào)控的認知。隨著測序信息量的爆炸性增長與功能研究的不斷深入,真菌RNA沉默展示出的復雜與多樣為真核生物研究提供了全新的視角。本文就當前真菌RNA沉默及相關(guān)小分子RNA(Small RNA, sRNA)的研究現(xiàn)狀做一簡要概述。

        關(guān)鍵詞:真菌;RNA沉默;小分子RNA;進展

        中圖分類號:R519 文獻標識碼:A DOI編碼:10.3969/j.issn.1006-6500.2014.05.002

        近年來,以MicroRNA(miRNA)、Small interference RNA(siRNA)以及PIWI interaction RNA(piRNA)為代表的小分子RNA(Small RNA, sRNA)研究引發(fā)了生命科學界的廣泛關(guān)注,作為真核生物中普遍存在的、內(nèi)源保守的基因表達調(diào)控機制,其不僅為基因功能研究提供了強有力的工具,而且在分子診斷與治療方面具備巨大潛力。目前,動植物中的sRNA研究比較深入,其生源途徑與調(diào)控機制相對透徹,而真菌sRNA相對動植物更加復雜與多樣,筆者就真菌sRNA及其相關(guān)調(diào)控機制的研究進展做一簡要概述。

        1 RNA沉默發(fā)現(xiàn)歷程

        最早的RNA沉默現(xiàn)象是1990年由Napoli等[1]在牽?;ㄞD(zhuǎn)基因研究中發(fā)現(xiàn)的共抑制(Co-suppression),后被稱為轉(zhuǎn)錄后基因沉默(Post-transcriptional gene silencing, PTGS)。1992年,真菌中也發(fā)現(xiàn)了類似的現(xiàn)象,Romano等[2]向粗糙脈孢霉(Neurospora crassa)野生型菌株中轉(zhuǎn)化一種類胡蘿卜素合成基因albino,結(jié)果使內(nèi)源固有的albino基因表達受到抑制,其mRNA水平明顯降低并產(chǎn)生一些失色表型的轉(zhuǎn)化子,此現(xiàn)象被稱為阻抑(Quelling)。隨后線蟲中也出現(xiàn)相關(guān)報道[3]。直到1998年,F(xiàn)ire等[4]通過深入細致的試驗證明,雙鏈RNA(double strand RNA, dsRNA)相對正負單鏈RNA是更加高效觸發(fā)特異性基因沉默的關(guān)鍵因子,并稱之為RNA干擾(RNA interfering, RNAi)。這些現(xiàn)象的發(fā)現(xiàn)都是由于外源轉(zhuǎn)入基因與內(nèi)源固有基因存在序列同源性,從而誘發(fā)的特異性基因沉默現(xiàn)象。后續(xù)的研究證明它們都是由sRNA介導的,發(fā)生在轉(zhuǎn)錄或轉(zhuǎn)錄后層面上的基因表達調(diào)控事件,這些類似的基因沉默現(xiàn)象可統(tǒng)稱為RNA沉默(RNA Silencing)[5]。

        2 RNA沉默典型機制

        基于廣泛的研究結(jié)果[6-7],RNA沉默典型機制可概括為:由多種途徑產(chǎn)生的dsRNA,被具有RNaseⅢ結(jié)構(gòu)域的Dicer酶剪切加工,生成雙鏈互補的小分子RNA二聚體(Duplex),隨后duplex與AGO蛋白結(jié)合形成RNA沉默復合體(RNA-induced silencing complex, RISC),在去除非功能鏈(Star strand)之后RISC被激活,由功能鏈基于序列互補識別靶標基因轉(zhuǎn)錄本,并指引RISC沉默靶標基因表達(圖1)。其中,dsRNA可由多種方式產(chǎn)生,例如基因組編碼的miRNA單鏈前體形成的發(fā)卡環(huán)結(jié)構(gòu)的頸部可被識別為dsRNA,也可由不同轉(zhuǎn)錄本部分互補產(chǎn)生,或由某些單鏈RNA被特異識別并擴增產(chǎn)生。最新的研究發(fā)現(xiàn),小鼠與真菌中均存在著不依賴Dicer酶的sRNA生成途徑[8-9],充分說明sRNA生成機制比當前了解的更加多元。

        3 真菌阻抑現(xiàn)象研究

        粗糙脈孢霉中發(fā)現(xiàn)的阻抑現(xiàn)象是真菌中首次、真核生物第二例RNA沉默現(xiàn)象。阻抑作為自發(fā)可逆過程,其效率和穩(wěn)定性與外源插入基因的數(shù)量呈正比,對應同源序列長度一般不低于130 nt并與啟動子區(qū)無關(guān)[10-11]。目前,與阻抑研究相關(guān)的主要基因包括:qde-1、qde-2、qde-3、dcl-1、dcl-2、rpa-1和qip。

        Cogoni等[12]基于穩(wěn)定的阻抑菌株,利用紫外誘變篩選法從10萬個轉(zhuǎn)化子中篩出15個阻抑缺陷型突變株(Quelling Deficient, QDE),歸屬三類遺傳互補群:qde-1,qde-2和qde-3。后續(xù)的基因克隆與功能鑒定研究發(fā)現(xiàn),qde-1編碼一個RNA依賴的RNA聚合酶(RNA-dependent RNA polymerase, RdRP),其催化核心的晶體結(jié)構(gòu)與真核生物的DNA依賴的RNA聚合酶(DNA-dependent RNA polymerase, DdRP)相似,但與病毒編碼的明顯不同[13-15]。RdRP廣泛存在于植物與真菌中,并在擬南芥與線蟲中是RNA沉默發(fā)生的必需元件[16-17]。在粗糙脈孢霉中過表達QDE-1能顯著提高阻抑效率[18-19],并且外源基因插入位點處發(fā)現(xiàn)存在QDE-1富集[20-21],均說明其在阻抑前期發(fā)揮的重要功能,但QDE-1與二級sRNA的產(chǎn)生與擴增無關(guān)[22]。qde-2編碼AGO蛋白,其突變能抑制單鏈sRNA生成并破壞阻抑進程。線蟲中qde-2的同源基因rde-1是dsRNA介導基因沉默的必需元件[23]。AGO蛋白作為RISC的重要組成成分,充分說明阻抑與RNAi、PTGS是從同一個古老機制進化而來的、有著密切關(guān)聯(lián)的RNA沉默現(xiàn)象[24-25]。qde-3編碼一個RecQ DNA解螺旋酶(DNA helicase),與人類的Werner/Bloom綜合癥蛋白同源[26]。DNA解螺旋酶是DNA修復過程中的重要元件,水稻中的qde-3同源基因OsRecQ1與DNA損傷修復密切關(guān)聯(lián)[27],并參與反向重復序列觸發(fā)的RNA沉默過程。小鼠中的rRecQ-1同源基因與piRNA結(jié)合復合物相關(guān)[28]。但目前qde-3在阻抑中的具體功能尚不清楚,也未發(fā)現(xiàn)阻抑與DNA復制之間的關(guān)聯(lián)[29-30]。

        粗糙脈孢霉中存在兩個Dicer酶基因,它們均可以ATP依賴的模式將dsRNA加工成25 nt大小的sRNA。dcl-1與dcl-2雙突變株能夠阻止dsRNA轉(zhuǎn)變sRNA并徹底切斷阻抑進程,而dcl單突變株只能產(chǎn)生一定比例的阻抑效果,說明dcl-1與dcl-2功能上存在疊加。比較而言,dcl-2突變株中sRNA減少顯著,可視為dsRNA加工的主效酶[31]。rpa-1編碼一種與QDE-1互作的單鏈DNA結(jié)合蛋白,與復制蛋白A(Replication Protein A)的最大亞基同源。因其看家基因?qū)傩允沟媚壳吧袩o法進行功能研究,但已知復制蛋白A在DNA復制、修復和重組過程中發(fā)揮重要功能[21]。qip編碼一個與QDE-2互作的核酸外切酶,其功能與非功能鏈的去除有關(guān),破壞qip能夠?qū)е耫uplex聚集和并顯著降低阻抑效率[32]。果蠅中也存在類似功能的酶(C3PO)[33]。

        在阻抑發(fā)生機制的研究中發(fā)現(xiàn),完全阻抑的菌株中能夠檢測到外源插入基因的轉(zhuǎn)錄本,但在阻抑恢復株中卻未發(fā)現(xiàn),說明插入外源基因的轉(zhuǎn)錄產(chǎn)物(aberrant RNA, aRNA)應是觸發(fā)阻抑的起始物。在粗糙脈孢霉中由aRNA產(chǎn)生dsRNA的過程已被證實需要QDE-1和QDE-3的參與,而過表達一個反向重復序列可以繞開QDE1與QDE3,但需要QDE-2與DCL產(chǎn)生高效基因沉默[18],說明dsRNA是阻抑必要的中間產(chǎn)物,QDE-1和QDE-3在dsRNA形成之前發(fā)揮功能。此外,有證據(jù)表明阻抑過程中能夠特異生成一類25 nt大小的sRNA,也需要QDE1與QDE3[34]。RPA1可能幫助QDE-1與QDE-3識別轉(zhuǎn)基因插入位點并與單鏈DNA結(jié)合,QIP已被證實在剔除非功能鏈過程中發(fā)揮作用。綜上所述,阻抑過程大體可概括為:轉(zhuǎn)基因插入位點被特異識別后,QDE-1與QDE-3在RPA1的幫助下共同作用產(chǎn)生aRNA與dsRNA,Dicer酶將dsRNA加工生成duplex后與QDE-2形成RISC,QIP與QDE-2剪切并移除非功能鏈后RISC被激活,最終由功能鏈指引RISC調(diào)控同源基因轉(zhuǎn)錄本(圖2)。

        4 真菌減數(shù)分裂沉默

        非配對DNA介導的減數(shù)分裂沉默(Meiotic silencing by unpaired DNA, MSUD)是粗糙脈孢霉中發(fā)現(xiàn)的與阻抑類似的另一種基因沉默現(xiàn)象,其發(fā)生在第一次減數(shù)分裂前期的同源染色體配對階段,一段未配對的DNA能夠引發(fā)所有同源序列沉默,包括配對和非配對的同源基因[35]。類似的現(xiàn)象在動物細胞的生殖階段也有被發(fā)現(xiàn)[36]。MSUD最早是在研究asm-1基因與減數(shù)分裂反式感應現(xiàn)象(Meiotic trans-sensing)時發(fā)現(xiàn)的,asm-1編碼一種與雌性器官發(fā)育和囊孢子成熟有關(guān)的高豐度核蛋白[37]。目前已知的與MSUD相關(guān)的重要基因有:sad-1、sad-2、sms-2和sms-3。

        sad-1(Suppressor of ascus dominance-1)是通過紫外突變篩選發(fā)現(xiàn)的一個qde-1同源基因,其編碼蛋白與胞內(nèi)RdRP高度一致,多種方式破壞sad-1均能抑制MSUD的發(fā)生[38]。sad-2是與sad-1互作的另一個關(guān)鍵元件[39],其突變也能導致MSUD失效[40]。sms-2(Suppressor of meiotic silencing-2)與sms-3是通過反向遺傳學研究發(fā)現(xiàn)的,并已被試驗證實是MSUD發(fā)生必需的元件[41]。sms-2編碼AGO蛋白,sms-3既是dcl-1,需要指出的是,MSUD只需要dcl-1而不需要dcl-2[42-43]。SAD-1、SAD-2、SMS-2和SMS-3被證明共同定位于核周區(qū),由此說明MSUD核心機制發(fā)生的位置。

        與阻抑類似,MSUD也被證實是發(fā)生在轉(zhuǎn)錄之后,并且其效率與未配對區(qū)域的大小和同源性成正比[44]。MSUD的大致模型可概括為:在減數(shù)分裂期間一段未配對的DNA被識別并轉(zhuǎn)錄產(chǎn)生aRNA,SAD-2輔助SAD-1將其加工成dsRNA,再由SMS-3加工形成duplex后與SMS-2形成RISC,終使同源基因沉默(圖2)。MSUD與阻抑都需要相似或相同的元件,說明粗糙脈孢霉中存在兩套關(guān)聯(lián)的RNA沉默通路。

        5 真菌RNA沉默的潛在功能

        目前已知RNA沉默在動植物發(fā)育調(diào)控、染色體隔離以及阻止病毒或轉(zhuǎn)座子嵌入基因組等方面發(fā)揮重要作用[45-48]。真菌RNA沉默的功能很可能也與抑制轉(zhuǎn)座子的表達與擴張有關(guān)。一方面,阻抑能夠識別并抑制外源插入基因表達;另一方面,轉(zhuǎn)座子的復制會產(chǎn)生未配對的DNA從而激發(fā)MSUD;此外,LINE1-like轉(zhuǎn)座子TAD的轉(zhuǎn)錄水平和拷貝數(shù)在qde-2突變體中顯著提高,其轉(zhuǎn)錄本在dcl雙突中也發(fā)現(xiàn)上調(diào)等證據(jù)也支持此觀點[49]。

        RNA沉默在動植物和裂殖酵母中與異染色質(zhì)形成與DNA甲基化相關(guān)[50-51],但目前粗糙脈孢霉中尚未發(fā)現(xiàn)關(guān)聯(lián),說明真菌RNA沉默可能并不在轉(zhuǎn)錄水平調(diào)控靶基因[52]。雖然阻抑產(chǎn)生sRNA的過程與組蛋白甲基化無關(guān),但突變組蛋白甲基化酶基因dim-5會使外源插入基因的拷貝易于丟失,從而降低阻抑效率并提高阻抑恢復的頻率[53]。

        脊椎動物中,dsRNA能夠觸發(fā)一種保守的宿主防御機制:抗病毒干擾素響應(Antiviral Interferon Response),粗糙脈孢霉與栗色枯萎菌中也存在類似現(xiàn)象[54-55]。粗糙脈孢霉全基因組芯片分析顯示,dsRNA大約能激活60個基因的表達,包括qde-2和dcl-2等RNA沉默元件以及抗病毒干擾素響應基因的同源物[56]。但粗糙脈孢霉并不編碼已知哺乳動物dsRNA感受器基因,說明其激活途徑應有別于哺乳動物。

        6 DNA損傷誘導qiRNA表達

        粗糙脈孢霉中DNA損傷試劑處理能夠誘發(fā)一類常態(tài)低豐度的21 nt大小sRNA高效表達,稱為qiRNA(QDE-2 interaction small RNA)。qiRNA具有較強的5’端尿嘧啶與3’端腺嘌呤偏好,其產(chǎn)生并不依賴QDE-2,但需要QDE-1,QDE-3和Dicer酶。qiRNA匹配高度重復的rDNA位點,包括正負鏈的轉(zhuǎn)錄與非轉(zhuǎn)錄區(qū),并非rRNA的非特異降解產(chǎn)物[22]。最新的研究結(jié)果顯示,水稻DNA損傷也能誘導qiRNA的產(chǎn)生[57]。

        DNA損傷試劑能夠顯著提高qde-2的mRNA和蛋白水平,在DNA修復能力喪失的突變株中,不需要損傷試劑也能提高QDE-2表達。鑒于dsRNA能夠誘導QDE-2和dcl-2表達,推測DNA損傷很可能是通過誘發(fā)內(nèi)源dsRNA的產(chǎn)生從而提高QDE-2表達。早有報道指出,DNA損傷能夠誘導幾百到2 kb的aRNA表達,在dcl雙突中發(fā)現(xiàn)較長的qiRNA前體聚集,說明qiRNA應來源于aRNA。QDE-1最近被證明同時兼?zhèn)銻dRP與DdRP的功能,并且RNA聚合酶Ⅰ、Ⅱ、Ⅲ型的有效抑制子(Thiolutin)并不能阻止aRNA的產(chǎn)生,均說明DNA損傷誘導的aRNA與dsRNA是由QDE-1產(chǎn)生。

        阻抑產(chǎn)生特異sRNA與DNA損傷誘導qiRNA表達過程都依賴一些相同元件(QDE-1、QDE-2、QDE-3和Dicer酶)產(chǎn)生aRNA、dsRNA以及特異sRNA;其次,它們的生源位置都與重復位點有關(guān):誘發(fā)阻抑的外源插入基因會產(chǎn)生重復位點,并存在高頻重組和重排;qiRNA來源的rDNA區(qū)域正是野生型粗糙脈孢霉中唯一的高度串聯(lián)重復位點。qde-1、qde-2和qde-3突變株中rDNA基因拷貝數(shù)均有減少,說明阻抑可能在維護rDNA位點完整性和穩(wěn)定性上發(fā)揮功能;而qiRNA正來源于rDNA區(qū)域,其生成途徑被破壞的突變株均提高了DNA損傷的敏感性。這些共有特征與相關(guān)之處說明,阻抑與DNA損傷修復在機制通路上應是密切偶聯(lián)的。

        7 milRNA與disiRNA

        動物、植物、病毒和綠藻中普遍存在的miRNA一直被認定不存在于真菌中[58-60],最近的研究表明粗糙脈孢霉中存在miRNA的類似物milRNA(miRNA-like RNA)及多種生成途徑[9]。這些milRNA與動植物miRNA存在很多相似之處:5’端尿嘧啶偏好、高度特異的發(fā)卡環(huán)前體、多數(shù)依賴Dicer酶生成、像動物miRNA一樣通過不完美互補沉默內(nèi)源基因、發(fā)卡環(huán)前體的雙臂匹配不均衡等。

        milRNA現(xiàn)已被試驗證實的至少存在4條生成途徑,但與qiRNA和阻抑sRNA不同,milRNA的產(chǎn)生并不需要QDE-1和QDE-3。第一條途徑徹底依賴Dicer酶加工前體轉(zhuǎn)錄本(pri-miRNA)產(chǎn)生前體雙鏈(pre-miRNA),其成熟過程需要QDE-2和QIP參與,但不需要QDE-2的催化活性。第二條途徑徹底不需要Dicer酶,QDE-2的催化活性取代了Dicer酶加工pre-miRNA并去除非功能鏈,但需要未知的核酸酶進一步剪切和熟化。小鼠的miR451最近也被證實是不需要Dicer而依賴AGO生成的[61-62]。此途徑暗示某些缺乏Dicer但編碼AGO類似蛋白的真細菌和古細菌中也可能存在miRNA。第三條途徑與植物類似,只需要Dicer酶來完成milRNA加工與成熟[60]。第四條途徑部分依賴Dicer,還需要未知的核酸酶參與。粗糙脈孢霉編碼的酵母線粒體核糖體蛋白(Mitochondrial Ribosomal Protein L3, MRPL3)同源基因可能是milRNA生源途徑中的關(guān)鍵酶。其包含RNAseⅢ型結(jié)構(gòu)域和dsRNA識別區(qū),雖然序列相似性與動植物Dicer或Drosha不高,但功能敲除試驗導致第一和第四條途徑產(chǎn)生的milRNA顯著減少,并且體外剪切活性降低。

        報告基因試驗顯示,milRNA能像動物miRNA一樣主要通過抑制翻譯調(diào)節(jié)內(nèi)源基因表達[9]。milRNA預測的靶標轉(zhuǎn)錄本在dcl和qde-2突變株中上調(diào),并與QDE-2存在特異結(jié)合。但與動植物中不同,粗糙脈孢霉中milRNA在續(xù)保生長發(fā)育過程中并非致命角色,破壞其關(guān)鍵元件并不致死。

        對粗糙脈孢霉QDE-2關(guān)聯(lián)sRNA的研究中發(fā)現(xiàn),一類長度約22 nt、功能未知、由全新途徑產(chǎn)生的sRNA被稱為disiRNA(Dicer-independent small interfering RNA)[9]。disiRNA的生成不依賴QDE-1、QDE-2和QDE-3,表達水平在dcl雙突中無明顯變化,也不受AGO或其他RNA沉默元件突變的影響,有別于動物中的piRNA。目前粗糙脈孢霉中發(fā)現(xiàn)的disiRNA大約來自于50個非重復位點,包括基因編碼區(qū)和基因間區(qū),位點之間無明顯共有基序。disiRNA的5’端偏好尿嘧啶、平均匹配正負鏈DNA,約80%的disiRNA發(fā)生位點同時存在正義和反義EST數(shù)據(jù)覆蓋,暗示其可能是由天然轉(zhuǎn)錄本互補形成的dsRNA產(chǎn)生。

        8 RNA沉默與病毒防御

        RNA沉默在動植物中作為抗病毒防御機制早被發(fā)現(xiàn)[46, 63],最近在真菌中也被認定同樣保守存在。板栗疫病菌(Cryphonectria paracitica)與構(gòu)巢曲霉菌(Aspergillus nidulans)具備良好的低毒力病毒侵染系統(tǒng),是真菌抗病毒防御機制方面研究較為深入的模式絲狀真菌。

        板栗疫病菌編碼的4個AGO類似蛋白(Argonaute-like proteins, AGL)中,只有AGL2與病毒防御響應相關(guān)[64]。板栗疫病菌dcl基因與粗糙脈孢霉同源,dcl-1或dcl-2單突變與野生型無明顯表型差異,但dcl-2單突與dcl雙突對病毒侵染十分敏感[65]。病毒侵染或過表達發(fā)卡環(huán)RNA均能顯著提高dcl-2與agl-2的表達,Dicer已被證實在真菌抗病毒防御機制中發(fā)揮重要功能,但dcl2無法在agl2突變株中誘導表達,暗示AGL2在激活RNA沉默途徑中發(fā)揮重要功能。

        RNA沉默既能抑制病毒復制又可以促進病毒重組,從而產(chǎn)生病毒RNA基因組來源的特異RNA,稱為vsRNA(Virus-derived Small Interfering RNAs)或DI-RNA(Defective Interfering RNA)[55, 64]。vsRNA發(fā)現(xiàn)存在于野生型板栗疫病菌中,但在dcl2和agl2變體中缺失。盡管具體機制尚不清楚,但RNA沉默在真菌中的確能夠抑制病毒RNA的聚集,并導致異源病毒RNA載體的不穩(wěn)定與刪除。另一方面,病毒編碼的RNA沉默抑制子能夠有效抑制RNA沉默組分。低毒力病毒CHV1(Cryphonectria hypovirus 1)編碼的P29蛋白酶,與馬鈴薯Y病毒編碼的RNA沉默抑制子HC-pro同源,其能夠抑制發(fā)卡環(huán)、病毒和農(nóng)桿菌誘導的RNA沉默,也能抑制煙草中GFP報告基因沉默的系統(tǒng)性擴散[66-68]。

        構(gòu)巢曲霉編碼一個Dicer、一個AGO和兩個RdRP基因,轉(zhuǎn)入反向重復序列能引起強烈的RNA沉默,但dsRNA觸發(fā)RNA沉默的過程并不需要RdRP[69-70]。目前已發(fā)現(xiàn)曲霉病毒1816能夠抑制反向重復序列觸發(fā)的RNA沉默。另外,曲霉病毒341來源的sRNA在一個AGO突變的構(gòu)巢曲霉中高水平富集,再次驗證RNA沉默機制扮演的病毒防御角色。

        9 其他真菌RNA沉默研究

        卷枝毛霉(Mucor circinelloides)屬分支結(jié)合菌,與粗糙脈孢霉親緣關(guān)系較遠,其編碼兩個Dicer酶與兩個RdRP,轉(zhuǎn)化自復制質(zhì)粒和表達反向重復序列均引發(fā)RNA沉默。與粗糙脈孢霉不同,卷枝毛霉中RNA沉默能產(chǎn)生21 nt和25 nt兩類sRNA,同時存在二級sRNA與反義RNA,說明存在sRNA復制步驟[71-72]。DCL-2是轉(zhuǎn)基因沉默和sRNA產(chǎn)生的關(guān)鍵因素,RdRP1對轉(zhuǎn)基因誘導的基因沉默至關(guān)重要[73]?;趕RNA高通量測序,卷枝毛霉中發(fā)現(xiàn)來源于外顯子區(qū)域的四類sRNA,被稱為ex-siRNA(exonic-siRNAs),其調(diào)控許多蛋白編碼基因的mRNA水平。最大類的ex-siRNA需要DCL2和RdRP1產(chǎn)生;第二類依賴DCL2和RdRP2;第三類同時需要RdRP1與RdRP2;第四類同時需要DCL1與DCL2,其中DCL1為主效酶。除ex-siRNA之外,卷枝毛霉中還存在一些Dicer依賴的內(nèi)源sRNA,匹配轉(zhuǎn)座子和重復序列,但未發(fā)現(xiàn)milRNA[73]。卷枝毛霉中的sRNA深度分析進一步說明了絲狀真菌sRNA產(chǎn)生途徑的多元性。

        真菌中RdRP、AGO以及DCL等RNA沉默元件的整體統(tǒng)計分析顯示,關(guān)鍵基因的數(shù)量豐缺差異顯著,例如黑粉菌(Ustilago maydis)中缺失全部元件,而根霉(Rhizopus oryzae)存在5個RdRP[74-75]。雖然真菌種群間變異程度較大,但目前RNA沉默機制已被證實廣泛存在于子囊(Ascomycota)、擔子(Basidiomycota)和結(jié)合菌(Zygomycota)中,包括:裂褶菌(Schizophyllum commune)[76-77]、葉霉菌(Cladosporium fulvum)[78]、新型隱球菌(Cryptococcus neoformans)[79]、稻瘟病菌(Magnaporthe oryzae)[80-81]、煙曲霉(Aspergillus fumigatus)[82-83]、黃曲霉(Aspergillus flavus)[84]、禾谷鐮刀菌(Fusarium graminearum)[84]、蘋果黑星病菌(Venturia inaequalis)[85]、黃瓜炭疽病菌(Colletotrichum lagenarium)[86]、灰蓋鬼傘(Coprinus cinereus)[87-88]、長喙殼菌(Ophiostoma)[89]、米曲霉(Aspergillus oryzae)[90]、稻平臍蠕孢(Bipolaris oryzae)[91]、灰葡萄孢菌(Botrytis cinerea)[92]、頂頭孢霉(Acremonium chrysogenum)[93]、產(chǎn)黃青霉(Penicillium chrysogenum)[94]、可可叢枝病菌(Moniliophthora perniciosa)[95]和輪枝鐮刀菌(Fusarium verticillioides)[96]等。

        10 展 望

        粗糙脈孢霉中阻抑與MSUD現(xiàn)象的發(fā)現(xiàn)開啟了真菌RNA沉默機制研究的大門,目前發(fā)現(xiàn)的qiRNA、milRNA、disiRNA、vsRNA等多種sRNA生源途徑以及相關(guān)通路元件,充分展示了真菌世界中RNA沉默的復雜與多樣。作為生命科學領(lǐng)域的研究熱點,真菌為真核生物RNA沉默研究提供了高效平臺與優(yōu)良的模式系統(tǒng),有助于探究其進化起源與功能機制。雖然目前還有很多具體環(huán)節(jié)尚不清楚,如:轉(zhuǎn)入的外源基因如何被識別、內(nèi)源dsRNA的形成過程、dsRNA應答信號傳導途徑、促進病毒重組的機制等,但我們有理由相信,隨著相關(guān)通路研究的不斷深入與基因組信息的爆炸性增長,真菌RNA沉默研究將不斷拓展并全面更新我們當前對真核生物RNA調(diào)控的理解與認知。

        參考文獻:

        [1] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans [J]. The Plant Cell Online, 1990, 2(4): 279-289.

        [2] Romano N, Macino G. Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences [J]. Molecular Microbiology, 1992, 6(22): 3 343-3 353.

        [3] Guo S, Kemphues K J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell, 1995, 81(4): 611-620.

        [4] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature, 1998, 391(6 669): 806-811.

        [5] Ghildiyal M, Zamore P D. Small silencing RNAs: An expanding universe [J]. Nature Reviews Genetics, 2009, 10(2): 94-108.

        [6] Jinek M, Doudna J A. A three-dimensional view of the molecular machinery of RNA interference [J]. Nature, 2008, 457(7 228): 405-412.

        [7] Siomi H, Siomi M C. On the road to reading the RNA-interference code [J]. Nature, 2009, 457(7 228): 396-404.

        [8] Thomson T, Lin H. The biogenesis and function PIWI proteins and piRNAs: Progress and prospect [J]. Annual Review of Rell and Developmental Biology, 2009, 25:355.

        [9] Lee H C, Li L, Gu W, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi [J]. Molecular Cell, 2010, 38(6): 803-814.

        [10] Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes [J]. Antonie Van Leeuwenhoek, 1994, 65(3): 205-209.

        [11] Cogoni C, Macino G. Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi [J]. Trends in Plant Science, 1997, 2(11): 438-443.

        [12] Cogoni C, Macino G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa [J]. Proceedings of the National Academy of Sciences, 1997, 94(19): 10 233-10 238.

        [13] Cogoni C, Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase [J]. Nature, 1999, 399(6 732): 166-169.

        [14]Laurila M R, Salgado P S, Makeyev E V, et al. Gene silencing pathway RNA-dependent RNA polymerase of Neurospora crassa: Yeast expression and crystallization of selenomethionated QDE-1 protein [J]. Journal of Structural Biology, 2005, 149(1): 111-115.

        [15]Salgado P S, Koivunen M R, Makeyev E V, et al. The structure of an RNAi polymerase links RNA silencing and transcription [J]. Plos Biology, 2006, 4(12): 434.

        [16]Dalmay T, Hamilton A, Rudd S, et al. An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus [J]. Cell, 2000, 101(5): 543-553.

        [17]Smardon A, Spoerke J M, Stacey S C, et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans [J]. Current Biology, 2000, 10(4): 169-178.

        [18]Goldoni M, Azzalin G, Macino G, et al. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa [J]. Fungal Genetics and Biology, 2004, 41(11): 1 016-1 024.

        [19]Ziv C, Yarden O. Gene silencing for functional analysis: Assessing RNAi as a tool for manipulation of gene expression [C]// Molecular and Cell Biology Methods for Fungi. Berlin, Germany: Springer, 2010: 77-100.

        [20]Fulci V, Macino G. Quelling: Post-transcriptional gene silencing guided by small RNAs in Neurospora crassa [J]. Current Opinion in Microbiology, 2007, 10(2): 199-203.

        [21]Nolan T, Cecere G, Mancone C, et al. The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A [J]. Nucleic Acids Research, 2008, 36(2): 532-538.

        [22]Lee H-C, Chang S-S, Choudhary S, et al. qiRNA is a new type of small interfering RNA induced by DNA damage [J]. Nature, 2009, 459(7 244): 274-277.

        [23]Catalanotto C, Azzalin G, Macino G, et al. Transcription: Gene silencing in worms and fungi [J]. Nature, 2000, 404(6 775): 245-245.

        [24]Fagard M, Boutet S, Morel J-B, et al. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals [J]. Proceedings of the National Academy of Sciences, 2000, 97(21): 11 650-11 654.

        [25]Song J-J, Smith S K, Hannon G J, et al. Crystal structure of Argonaute and its implications for RISC slicer activity [J]. Science Signaling, 2004, 305(5 689): 1434.

        [26]Cogoni C, Macino G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase [J]. Science, 1999, 286(5 448): 2 342-2 344.

        [27]Chen H, Samadder P P, Tanaka Y, et al. OsRecQ1, a QDE-3 homologue in rice, is required for RNA silencing induced by particle bombardment for inverted repeat DNA, but not for double-stranded RNA [J]. The Plant Journal, 2008, 56(2): 274-286.

        [28]Lau N C, Seto A G, Kim J, et al. Characterization of the piRNA complex from rat testes [J]. Science Signaling, 2006, 313(5 785): 363.

        [29]Pickford A, Braccini L, Macino G, et al. The QDE-3 homologue RecQ-2 co-operates with QDE-3 in DNA repair in Neurospora crassa [J]. Current Genetics, 2003, 42(4): 220-227.

        [30]Kato A, Akamatsu Y, Sakuraba Y, et al. The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair [J]. Current Genetics, 2004, 45(1): 37-44.

        [31]Catalanotto C, Pallotta M, ReFalo P, et al. Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa [J]. Molecular and Cellular Biology, 2004, 24(6): 2 536-2 545.

        [32]Maiti M, Lee H-C, Liu Y. QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands [J]. Genes Development, 2007, 21(5): 590-600.

        [33]Liu Y, Ye X, Jiang F, et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation [J]. Science, 2009, 325(5941): 750-753.

        [34]Catalanotto C, Azzalin G, Macino G, et al. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora [J]. Genes Development, 2002, 16(7): 790-795.

        [35]Shiu P K, Raju N B, Zickler D, et al. Meiotic silencing by unpaired DNA [J]. Cell, 2001, 107(7): 905-916.

        [36]Turner J M, Mahadevaiah S K, Fernandez-Capetillo O, et al. Silencing of unsynapsed meiotic chromosomes in the mouse [J]. Nature Genetics, 2004, 37(1): 41-47.

        [37]Aramayo R, Metzenberg R L. Meiotic transvection in fungi [J]. Cell, 1996, 86(1): 103-113.

        [38]Shiu P K, Metzenberg R L. Meiotic silencing by unpaired DNA: Properties, regulation and suppression [J]. Genetics, 2002, 161(4): 1 483-1 495.

        [39]Bardiya N, Alexander W G, Perdue T D, et al. Characterization of interactions between and among components of the meiotic silencing by unpaired DNA machinery in Neurospora crassa using bimolecular fluorescence complementation [J]. Genetics, 2008, 178(1): 593-596.

        [40]Shiu P K, Zickler D, Raju N B, et al. SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RNA-directed RNA polymerase [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2 243-2 248.

        [41]Galagan J E, Calvo S E, Borkovich K A, et al. The genome sequence of the filamentous fungus Neurospora crassa [J]. Nature, 2003, 422(6 934): 859-868.

        [42]Kelly W G, Aramayo R. Meiotic silencing and the epigenetics of sex [J]. Chromosome Research, 2007, 15(5): 633-651.

        [43]Alexander W G, Raju N B, Xiao H, et al. DCL-1 colocalizes with other components of the MSUD machinery and is required for silencing [J]. Fungal Genetics and Biology, 2008, 45(5): 719-727.

        [44]Lee D W, Seong K-Y, Pratt R J, et al. Properties of unpaired DNA required for efficient silencing in Neurospora crassa [J]. Genetics, 2004, 167(1): 131-150.

        [45]Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.

        [46]Ding S-W, Voinnet O. Antiviral immunity directed by small RNAs [J]. Cell, 2007, 130(3): 413-426.

        [47]Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals [J]. Nature Reviews Molecular Cell Biology, 2009, 10(2): 126-139.

        [48]Moazed D. Small RNAs in transcriptional gene silencing and genome defence [J]. Nature, 2009, 457(7 228): 413-420.

        [49]Nolan T, Braccini L, Azzalin G, et al. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa [J]. Nucleic Acids Research, 2005, 33(5): 1 564-1 573.

        [50]Chan S W-L, Zilberman D, Xie Z, et al. RNA silencing genes control de novo DNA methylation [J]. Science, 2004, 303(5 662): 1 336-1 336.

        [51]Chinnusamy V, Zhu J-K. RNA-directed DNA methylation and demethylation in plants [J]. Science in China Series C: Life Sciences, 2009, 52(4): 331-343.

        [52]Freitag M, Lee D W, Kothe G O, et al. DNA methylation is independent of RNA interference in Neurospora [J]. Science, 2004, 304(5 679): 1 939-1 939.

        [53]Chicas A, Forrest E C, Sepich S, et al. Small interfering RNAs that trigger posttranscriptional gene silencing are not required for the histone H3 Lys9 methylation necessary for transgenic tandem repeat stabilization in Neurospora crassa [J]. Molecular and Cellular Biology, 2005, 25(9): 3 793-3 801.

        [54]Zhang X, Nuss D L. A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus [J]. Proceedings of the National Academy of Sciences, 2008, 105(43): 16 749-16 754.

        [55]Zhang X, Segers G C, Sun Q, et al. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway [J]. Journal of Virology, 2008, 82(6): 2 613-2 619.

        [56]Choudhary S, Lee H-C, Maiti M, et al. A double-stranded-RNA response program important for RNA interference efficiency [J]. Molecular and Cellular Biology, 2007, 27(11): 3 995-4 005.

        [57]Chen H, Kobayashi K, Miyao A, et al. Both OsRecQ1 and OsRDR1 are required for the production of small RNA in response to DNA-damage in rice [J]. Plos One, 2013, 8(1): 55 252.

        [58]Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs [J]. Cell, 2009, 136(4): 642-655.

        [59]Molnár A, Schwach F, Studholme D J, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii [J]. Nature, 2007, 447(7 148): 1 126-1 129.

        [60]Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants [J]. Annu Rev Plant Biol, 2006, 57:19-53.

        [61]Cifuentes D, Xue H, Taylor D W, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity [J]. Science, 2010, 328(5986): 1 694-1 698.

        [62]Cheloufi S, Dos Santos C O, Chong M M, et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis [J]. Nature, 2010, 465(7 298): 584-589.

        [63]Li F, Ding S-W. Virus counterdefense: Diverse strategies for evading the RNA-silencing immunity [J]. Annual Review of Microbiology, 2006, 60:503.

        [64]Sun Q, Choi G H, Nuss D L. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination [J]. Proceedings of the National Academy of Sciences, 2009, 106(42): 17 927-17 932.

        [65]Segers G C, Zhang X, Deng F, et al. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi [J]. Proceedings of the National Academy of Sciences, 2007, 104(31): 12 902-12 906.

        [66]Choi G H, Pawlyk D M, Nuss D L. The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro [J]. Virology, 1991, 183(2): 747-752.

        [67]Suzuki N, Maruyama K, Moriyama M, et al. Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission [J]. Journal of Virology, 2003, 77(21): 11 697-11 707.

        [68]Segers G C, van Wezel R, Zhang X, et al. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system [J]. Eukaryotic Cell, 2006, 5(6): 896-904.

        [69]Hammond T M, Keller N P. RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases [J]. Genetics, 2005, 169(2): 607-617.

        [70]Hammond T, Bok J, Andrewski M, et al. RNA silencing gene truncation in the filamentous fungus Aspergillus nidulans [J]. Eukaryotic Cell, 2008, 7(2): 339-349.

        [71]Nicolás F E, Torres-Martínez S, Ruiz-Vázquez R M. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes [J]. The EMBO Journal, 2003, 22(15): 3 983-3 991.

        [72]de Haro J P, Calo S, Cervantes M, et al. A single dicer gene is required for efficient gene silencing associated with two classes of small antisense RNAs in Mucor circinelloides [J]. Eukaryotic Cell, 2009, 8(10): 1 486-1 497.

        [73]Nicolas F E, Moxon S, de Haro J P, et al. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides [J]. Nucleic Acids Research, 2010, 38(16): 5 535-5 541.

        [74]Nakayashiki H. RNA silencing in fungi: Mechanisms and applications [J]. FEBS Letters, 2005, 579(26): 5 950-5 957.

        [75]Nakayashiki H, Kadotani N, Mayama S. Evolution and diversification of RNA silencing proteins in fungi [J]. Journal of Molecular Evolution, 2006, 63(1): 127-135.

        [76]Schuurs T A, Schaeffer E A, Wessels J G. Homology-dependent silencing of the SC3 gene in Schizophyllum commune [J]. Genetics, 1997, 147(2): 589-596.

        [77]de Jong J F, Deelstra H J, Wsten H A, et al. RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune [J]. Applied and Environmental Microbiology, 2006, 72(2): 1 267-1 269.

        [78]Hamada W, Spanu P. Co-suppression of the hydrophobin gene HCf-1 is correlated with antisense RNA biosynthesis in Cladosporium fulvum [J]. Molecular and General Genetics MGG, 1998, 259(6): 630-638.

        [79]Liu H, Cottrell T R, Pierini L M, et al. RNA interference in the pathogenic fungus Cryptococcus neoformans [J]. Genetics, 2002, 160(2): 463-470.

        [80]Kadotani N, Nakayashiki H, Tosa Y, et al. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae [J]. Molecular Plant-Microbe Interactions, 2003, 16(9): 769-776.

        [81]Nguyen Q B, Kadotani N, Kasahara S, et al. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system [J]. Molecular Microbiology, 2008, 68(6): 1 348-1 365.

        [82]Mouyna I, Henry C, Doering T L, et al. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus [J]. FEMS Microbiology Letters, 2004, 237(2): 317-324.

        [83]Henry C, Mouyna I, Latgé J-P. Testing the efficacy of RNA interference constructs in Aspergillus fumigatus [J]. Current Genetics, 2007, 51(4): 277-284.

        [84]McDonald T, Brown D, Keller N P, et al. RNA silencing of mycotoxin production in Aspergillus and Fusarium species [J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 539-545.

        [85]Fitzgerald A, van Kan J A, Plummer K M. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats [J]. Fungal Genetics and Biology, 2004, 41(10): 963-971.

        [86]Nakayashiki H, Hanada S, Quoc N B, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi [J]. Fungal Genetics and Biology, 2005, 42(4): 275-283.

        [87]Namekawa S H, Iwabata K, Sugawara H, et al. Knockdown of LIM15/DMC1 in the mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing [J]. Microbiology, 2005, 151(11): 3 669-3 678.

        [88]Costa A M, Mills P R, Bailey A M, et al. Oligonucleotide sequences forming short self-complimentary hairpins can expedite the down-regulation of Coprinopsis cinerea genes [J]. Journal of Microbiological Methods, 2008, 75(2): 205-208.

        [89]Tanguay P, Bozza S, Breuil C. Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae [J]. Fungal Genetics and Biology, 2006, 43(12): 804-812.

        [90]Yamada O, Ikeda R, Ohkita Y, et al. Gene silencing by RNA interference in the koji mold Aspergillus oryzae [J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(1): 138-144.

        [91]Moriwaki A, Ueno M, Arase S, et al. RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae [J]. FEMS Microbiology Letters, 2007, 269(1): 85-89.

        [92]Patel R, Van Kan J, Bailey A, et al. RNA-mediated gene silencing of superoxide dismutase (bcsod1) in Botrytis cinerea [J]. Phytopathology, 2008, 98(12): 1 334-1 339.

        [93]Ullán R V, Godio R P, Teijeira F, et al. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using β-lactam genes expression [J]. Journal of Microbiological Methods, 2008, 75(2): 209-218.

        [94]Janus D, Hoff B, Kück U. Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum [J]. Microbiology, 2009, 155(12): 3 946-3 956.

        [95]Caribé dos Santos A, Sena J, Santos S, et al. dsRNA-induced gene silencing in Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao [J]. Fungal Genetics and Biology, 2009, 46(11): 825-836.

        [96]Tinoco M L, Dias B B, Dall'Astta R C, et al. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA [J]. BMC Biology, 2010, 8(1): 27.

        国产亚洲日本精品无码| 亚洲天堂男人的av天堂| 夜晚黄色福利国产精品| 亚洲字幕av一区二区三区四区| 好大好硬好爽免费视频| 黄 色 成 年 人 网 站免费| 国产精品高湖呻呤久久av| 国产精品美女自在线观看| 中文字幕亚洲一区二区不下| 50岁退休熟女露脸高潮| 免费超爽大片黄| 久久少妇呻吟视频久久久| 91九色免费视频网站| 亚洲日韩精品无码专区网站| 丝袜美女污污免费观看的网站| 国产成人自拍视频视频| 日韩在线 | 中文| 秋霞午夜无码鲁丝片午夜精品| 亚洲一区二区三区在线观看播放| 国产我不卡在线观看免费| 国产精品久免费的黄网站| 国产999精品久久久久久| 日本精品久久久久中文字幕1| 午夜精品久久99蜜桃| 国产日产精品一区二区三区四区的特点| 91久久精品国产91久久| 精品日产一区2区三区| 久久久精品国产亚洲av网深田 | 狠狠噜狠狠狠狠丁香五月| 精品欧美一区二区在线观看| 中文字幕人妻少妇美臀| 极品尤物精品在线观看| a级大胆欧美人体大胆666| 一区五码在线| 全部亚洲国产一区二区| 国产伦精品一区二区三区妓女| 国产精品开放小视频| 日日麻批视频免费播放器| 久久婷婷五月综合97色直播| 免费无码国产v片在线观看| 抖射在线免费观看视频网站|