方開(kāi)星等
摘 要 依據(jù)擬南芥6個(gè)蔗糖合酶基因序列搜索木薯基因組數(shù)據(jù)庫(kù),獲得了6個(gè)木薯蔗糖合酶基因亞型。 將6個(gè)木薯蔗糖合酶基因亞型的外顯子-內(nèi)含子結(jié)構(gòu)進(jìn)行分析,結(jié)合其它物種蔗糖合酶基因的氨基酸序列構(gòu)建進(jìn)化樹(shù),將木薯蔗糖合酶基因可分為三類,分別為 SuSy1/SuSy4,SuSy2/SuSy3和SuSy5/SuSy6。以木薯KU50的功能葉和5個(gè)不同時(shí)期塊根的RNA為模板,利用RT-PCR的方法對(duì)蔗糖合酶基因家族進(jìn)行表達(dá)分析,確定了SuSy1和SuSy4高表達(dá)的亞型,克隆并獲得了SuSy1和SuSy4基因的編碼區(qū)序列,對(duì)獲得的序列進(jìn)行同源性和功能結(jié)構(gòu)域分析表明,2條序列的氨基酸同源性為97%,并且有相同的功能結(jié)構(gòu)域。
關(guān)鍵詞 木薯;蔗糖合酶;RT-PCR;基因克隆
中圖分類號(hào) TS231 文獻(xiàn)標(biāo)識(shí)碼 A
Abstract According to the six subunit sequences of sucrose synthase gene in Arabidopsis, six sucrose synthase genes were identified in cassava by searching the cassava genome database. The exon-intron structures of the six sucrose synthases in cassava were analyzed and the evolutiontree was then constructed based on the sucrose synthase protein sequences from various species which divided the sucrose synthase genes into three subgroups: SuSy1/SuSy4, SuSy2/SuSy3, and SuSy5/SuSy6, respectively. Expression analysis of six different SuSy subunits through RT-PCR in cassava KU50 function leave and roots of five different periods, the result showed that SuSy1 and SuSy4 were high expression subunits. And then, the full-length CDS of SuSy1 and SuSy4 were cloned and the homology and functional domain were analysis, the results showed that the homology between two sequences were 97% and two sequences had the same functional domain.
Key words Cassava; Sucrose synthase; Prokaryotic expression; Gene cloning
doi 10.3969/j.issn.1000-2561.2014.10.010
植物蔗糖合成酶(Sucrose Synthase;SuSy E.C.2.4.4.13)是由分子量約為83~100 ku的亞基構(gòu)成的四聚體[1],是植物淀粉代謝的關(guān)鍵酶之一,催化以下可逆反應(yīng):果糖+UDPG←→蔗糖+UDP。SuSy主要在植物體內(nèi)有2種存在形式,大部分以可溶狀態(tài)存在于細(xì)胞質(zhì)中,不溶性的SuSy則附著在細(xì)胞膜上。
自1955年Cardini[2]等首次在小麥胚芽中發(fā)現(xiàn)以來(lái),目前國(guó)內(nèi)外研究者已經(jīng)成功地將SuSy基因從馬鈴薯[3]、玉米[4]、甜菜[5]、胡蘿卜[6]和甘蔗[7]等作物中克隆出來(lái)。Zrenner[8]的研究結(jié)果表明,在馬鈴薯塊莖中反義表達(dá)SuSy,淀粉累積受到抑制,總干重下降,可溶性蛋白減少,產(chǎn)量下降。Baroja-Femandez E[9]在馬鈴薯中過(guò)表達(dá)SuS4,發(fā)現(xiàn)馬鈴薯塊莖中蔗糖合酶的酶活提高,ADPG和UDPG含量提高,淀粉含量增加,馬鈴薯干重也比野生型的多。在番茄中反義表達(dá)SuSy,蔗糖合酶活性明顯下降,蔗糖卸載能力降低,植株生長(zhǎng)率減慢,座果數(shù)減少,成熟后每株的結(jié)果數(shù)下降[10]。說(shuō)明SuSy參與調(diào)控蔗糖的輸入,影響植株的生長(zhǎng)發(fā)育。Chourey等[11]在玉米中研究發(fā)現(xiàn),有3個(gè)基因編碼SuSy基因,Shl突變可使SuSy酶活性急劇下降,使胚乳細(xì)胞發(fā)育受阻,淀粉含量下降。這些結(jié)果均表明SuSy能夠影響庫(kù)容并參與淀粉的合成。
木薯是熱帶、亞熱帶地區(qū)一種重要的高淀粉作物[12]。木薯塊根的化學(xué)成分、淀粉含量及特征對(duì)于全球熱帶地區(qū)的食物、生物能源與工業(yè)原料生產(chǎn)都具有重要意義[13]。迄今為止,對(duì)木薯淀粉生物合成途徑及相關(guān)酶基因的研究少數(shù)報(bào)道,而有關(guān)木薯蔗糖合酶的研究未見(jiàn)報(bào)道。本文對(duì)木薯基因組數(shù)據(jù)庫(kù)搜索,挖掘潛在的木薯SuSy亞型,并通過(guò)表達(dá)差異分析篩選出高表達(dá)的亞型,可為進(jìn)一步研究木薯SuSy的功能及調(diào)控奠定基礎(chǔ)。
1 材料與方法
1.1 材料
1.1.1 植物材料 利用高淀粉木薯品種KU50進(jìn)行木薯蔗糖合酶基因家族成員的表達(dá)分析。木薯品種KU50分別取出芽后70、120、180、240、280 d的塊根和180 d的功能葉為研究材料。每次采樣選取3株長(zhǎng)勢(shì)相近的木薯植株,取3株相同的組織部位混勻后迅速放入液氮罐速凍,回實(shí)驗(yàn)室后置于-80 ℃冰箱保存或馬上進(jìn)行RNA提取。
1.1.2 菌株和試劑 大腸桿菌菌株DH5α為作者所在實(shí)驗(yàn)室保存。RNA plant Plus植物RNA提取試劑購(gòu)自天根生化科技,Prime STAR HS DNA Polymerase和反轉(zhuǎn)錄試劑盒[FasT Quant RT Kit(With gDNase)]購(gòu)自寶生物,普通瓊脂糖凝膠DNA片段回收試劑盒(Gel Extraction Kit)購(gòu)自O(shè)MEGA公司,其他藥品試劑均為進(jìn)口或國(guó)產(chǎn)分析純。
1.2 方法
3 討論與結(jié)論
蔗糖合酶是植物中一個(gè)重要的代謝酶。能夠?qū)⒐夂献饔卯a(chǎn)生的蔗糖分解成合成淀粉的底物,從而影響庫(kù)容大小。自從1955年在小麥中發(fā)現(xiàn)以來(lái),已在45個(gè)物種中發(fā)現(xiàn)80多個(gè)SuSy成員。在擬南芥和水稻中均有6個(gè)蔗糖合酶基因亞型。通過(guò)對(duì)木薯基因組進(jìn)行Blast,在木薯中確定了6個(gè)木薯蔗糖合酶成員。已知SuSy家族可分為雙子葉SuSyA族、雙子葉SuSyl族、單子葉族、NG(New Group)族四個(gè)亞族,通過(guò)進(jìn)化樹(shù)分析可以把木薯SuSy基因家族分為雙子葉SuSyA族、雙子葉SuSyl族、NG(New Group)族三個(gè)亞族,其中SuSy1和SuSy4與楊樹(shù)的SuSy1同源性高,它們屬于SuSyl族;SuSy2和SuSy3與蓖麻蔗糖合酶2和楊樹(shù)SuSy3同源性高,屬于雙子葉SuSyA族;SuSy5和SuSy6和擬南芥SuSy6同源性高,屬于NG(New Group)族。
通過(guò)對(duì)木薯蔗糖合酶基因家族的內(nèi)含子-外顯子結(jié)構(gòu)進(jìn)行分析可知,蔗糖合酶6個(gè)亞基可能是由3個(gè)基因進(jìn)化而來(lái),其中木薯SuSy1和SuSy4是由同一個(gè)基因進(jìn)化而來(lái);SuSy 2和SuSy3 ,SuSy5和SuSy6分別是由另外一個(gè)基因進(jìn)化而來(lái)。原始基因通過(guò)突變改變?cè)瓉?lái)的堿基或者通過(guò)插入和缺失基因片段從而進(jìn)化成另外一個(gè)基因。木薯SuSy1和SuSy4編碼的開(kāi)放閱讀框長(zhǎng)度及氨基酸個(gè)數(shù)一樣,它們之間的差異是由個(gè)別堿基突變而導(dǎo)致氨基酸的變異,而木薯SuSy3是通過(guò)缺失外顯子和5′UTR與SuSy2區(qū)別開(kāi)來(lái)。
不同植物具有不同數(shù)目的蔗糖合酶基因,而且表達(dá)也各異。如玉米中存在3個(gè)SuSy[14],SH1能夠在幼苗和胚乳中表達(dá);SuS1在 幼苗、胚、根、莖和葉中表達(dá)[15-16];SuS3在胚乳、胚珠、根和幼芽中表達(dá)。胡蘿卜中有2個(gè)SuSy基因,一個(gè)在花中特異表達(dá),另一個(gè)在莖、根、花和成熟的種子中表達(dá)[17]。另外在擬南芥、水稻、菜豆、梨、胡蘿卜、玉米、馬鈴薯、番茄、甜菜和甘蔗中都有蔗糖合酶基因家族表達(dá)分析的報(bào)道[18-23]。本研究中對(duì)木薯SuSy基因家族的6個(gè)不同亞型在不同組織和部位進(jìn)行表達(dá)分析,結(jié)果表明,木薯SuSy基因家族的基因表達(dá)同其他物種一樣存在特異性,SuSy1,SuSy3和SuSy4在180 d時(shí),功能葉和不同時(shí)期的塊根中均有表達(dá),且SuSy1和SuSy4的表達(dá)量明顯高于其他亞型的表達(dá),這說(shuō)明SuSy1和SuSy4可能在功能葉和塊根的蔗糖分解過(guò)程中起到主要作用;在功能葉和塊根中蔗糖合酶均有表達(dá),說(shuō)明蔗糖的分解代謝在功能葉和塊根中同時(shí)存在,因此蔗糖合酶在“源”和“庫(kù)”器官中均起到重要作用。
參考文獻(xiàn)
[1] Moriguchi T, Yamaki S. Purification and characterization of sucrose synthase from peach(Prunuspirsica)fruit[J]. Plant Cell Physiol, 1988, 29: 1 361-1 366.
[2] Cardini C E, Leloir L F, Chiriboga J. The bio-synthesis of sucrose[J]. J Biol Chem, 1955, 241: 149-155.
[3] Salanoubat M, Billiard G. Molecular cloning and sequencing of sucrose synthase cDNA from potato: preliminary characterization of sucrose synthase mRNA distribution[J]. Gene, 1987, 60: 47-56.
[4] McCarty D R, Shaw J R, Hannah L C. The cloning genetic mapping and expression of the constitutive sucrose synthase locus of maize[J]. Proceed National Academy Sci USA, 1986, 88: 9 099-9 103.
[5] Hesse H, Willmitzer L. Expression analysis of a sucrose synthase gene from sugar beet(Beta vulgaris L.)[J]. Plant Mol Biol, 1996, 30: 863-872.
[6] Sebkova V, Unger C, Hardegger M. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota[J]. Plant Physiology, 1955, 108: 75-83.
[7] Lingle S E, Dyer j M. Cloning and expression of sucrose synthase cDNA from sugarcane[J]. Plant Physiology, 2001, 158: 129-131.
[8] Zrenner R, Salanoubat M, Willmitzer L, et al. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants(Solariumtuberosum L.)[J]. Plant J, 1995, 7: 97-107.
[9] Baroja-Femandez E, Munoz F J, Montero M, et al. Enhancing sucrose synthase activity in transgenic potato(Solarium tuberosum L.)tubers results in increased levels of starch, ADP-glucose and UDP-glucose and total yield[J]. Plant Cell Physiol, 2009, 50(9): 1 651-1 662.
[10] D'Aoust M A, Yelle S, Quoc B N. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit[J]. Plant Cell, 1999, 11: 2 407-2 418.
[11] Chourey P S, Taliercio E W, Carlson J. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis[J]. Mol Gen Genet, 1998, 259(1): 88-96.
[12] Jansson C, Westerbergh A, Zhang J M, et al. Cassava, a potential biofuel crop in(the)People's Republic of China[J]. Applied Energy, 2009, 86: s95-s99.
[13] 楊麗英, Sriroth K, Piyachomkwan K, 等. 泰國(guó)木薯淀粉特性研究[J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003, 25(增刊): 110-114.
[14] Medberry S L, Olszewski N E. Identification of cis-elements involved in commelina yellow mottle virus promoter activity[J]. Plant J, 1993, 3: 619-626.
[15] Wu B, Pan R Q, Lu R, et al. Deletion analysis and functional studies of the promoter from commelina yellow mottle virus[J].Acta Microbiologica sinica, 1999, 39: 15-21.
[16] Yuan Z Q, Jia Y T, Wu J H, et al. Comparison of three phloem-specific promoters in transgenic tobacco plants[J]. J Agriculurual Biotechnology, 2002, 10(1): 6-9.
[17] Bostwick D E, Dannenhoffer J M, Skaggs M I, et al. Pumpkin phloem lectin genes are specifically Expressed in companion cells[J]. Plant cell, 1992, 4: 1 539-1 548.
[18] Graham M W, Craig S, Waterhouse P M. Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plant[J].Plant Mol Biol, 1997, 33(4): 729-735.
[19] Tornero P, Conejero V, Vera P. Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development[J]. Plant J, 1996, 9: 639-648.
[20] Brears T, Walker E, Coruzzi G A. Promoter sequence involved in cell-specific expression of the pea glutamine synthase GS3A gene in organs of transgenic tobacco and alfafa[J]. Plant J, 1991, 1: 235-244.
[21] Jiang H, Qin H M, Yu H M, et al. Cloning and function of the phloem protein gene promoter from cucubita maxima[J]. J Agriculural Biotechnology, 1997, 7(1): 63-68.
[22] Jiang H, Qin H M, Tian Y C. Cloning of a promoter fragment of bark storage protein gene form populous deltoids and its function in transgenic tobacco plants[J]. Scientia silvae sinicae, 1999, 35(5): 46-50.
[23] Torres-Schumann S, Ringli C, Heierli D, et al. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression[J]. Plant J, 1996, 9: 283-296.