亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        G-四聯(lián)體的小分子配體的研究進(jìn)展

        2014-04-03 08:25:18鮑偉偉
        關(guān)鍵詞:端粒酶端粒蒽醌

        鮑偉偉

        (溫州大學(xué),浙江 溫州 310015)

        Davies[1]于 1962年首次提出G-四聯(lián)體。G-四聯(lián)體是由富G序列在一定濃度的Na+、K+條件下所形成一種DNA二級(jí)結(jié)構(gòu)[2-4]。G-四聯(lián)體結(jié)構(gòu)具有多態(tài)性,主要是因?yàn)殒湹臄?shù)量、鏈的結(jié)構(gòu)、鏈的取向以及環(huán)的結(jié)構(gòu)形態(tài)等存在著多樣性。G-四聯(lián)體的基本單元是4個(gè)鳥(niǎo)嘌呤通 過(guò)氫鍵圍繞形成平面得到G-四分體,其中的氫鍵包括Hoogste en (N1-O6)(N2-N7)和Watson-Crick,而 G-四分體之間通過(guò)π-π堆積得到G-四聯(lián)體。G-四聯(lián)體主要有平行結(jié)構(gòu)和反平行結(jié)構(gòu),主要受到鳥(niǎo)嘌呤中的堿基和糖之間的syn和anti這2種糖苷鍵的影響。E Gavathiotis等對(duì)于平行的G-四聯(lián)體帶 有anti糖苷鍵的闡述非常明白[5]。其中最影響拓?fù)浣Y(jié)構(gòu)的應(yīng)當(dāng)是一條鏈中帶有對(duì)角環(huán)、側(cè)邊環(huán)以及螺旋槳環(huán)等多種環(huán)形結(jié)構(gòu)的G-四聯(lián)體,因?yàn)檫@樣形成的結(jié)構(gòu)中存在著4種形態(tài)的溝槽,比如對(duì)角環(huán)和對(duì)角環(huán)所形成的簡(jiǎn)單環(huán),但存在螺旋槳環(huán)就會(huì)很復(fù)雜。

        在20世紀(jì)80年代初期,只有生物物理學(xué)家對(duì)其感興趣,而到80年代末期時(shí),位于端粒末端的富G序列 能夠形成G-四聯(lián)體結(jié)構(gòu)的這個(gè)事實(shí)[6-7]以及在1991年時(shí)Zahl er[8]與其同伴證實(shí)了經(jīng)K+穩(wěn)定G-四聯(lián)體結(jié)構(gòu)具有限制端粒酶活性的功能后,G-四聯(lián)體就成為了抑制端粒酶的靶點(diǎn)[9-10]。隨著對(duì)G-四聯(lián)體研究的不斷深入,大量事實(shí)證實(shí)G-四聯(lián)體確實(shí)存在于活的生物體中[11-14]并且發(fā)揮著重要的生物性作用[15]。在真核細(xì)胞的基因組中,有很多關(guān)鍵的富G區(qū)域有望形成G-四聯(lián)體,像端粒[16]、免疫球蛋白開(kāi)關(guān)區(qū)域[17]、致癌基因啟動(dòng)子區(qū)域[18]以及核糖體DNA[19]。G-四聯(lián)體與小分子配體結(jié)合時(shí)能夠發(fā)揮重要作用,如限制端粒酶的活性[20],干擾端粒的活性,影響端粒的維持[21-22],進(jìn)一步影響細(xì)胞的生長(zhǎng)與增殖[23],甚至影響癌細(xì)胞的發(fā) 生與發(fā)展。

        本文綜述了藥物及其衍生物作為G-四聯(lián)體的配體以及顯 示其優(yōu)越的抗腫瘤活性。

        1 蒽醌類化合物

        蒽醌類化合物廣泛存在于蓼科、豆科等眾多的植物中。早期因其對(duì)腫瘤細(xì)胞具有毒性而作為DNA嵌入劑。分子模擬研究表明蒽醌類化合物可能可以通過(guò)嵌插 模式與G-四聯(lián)體相互作用[24],Sun等[25]于1997首先提出G-四聯(lián)體的配體BSU-1051,且抑制端粒酶活性的50%的有效濃度(teIIC50)為23μM。隨后大量報(bào)道經(jīng)取代反應(yīng)得到蒽醌類衍生物,其中包括1,4-, 1,5-, 1,8-, 2,6-,和2,7-等,其中的側(cè)鏈變化趨勢(shì)是氨基到特異性氨基酸官能團(tuán),并且考察了側(cè)鏈的大小和長(zhǎng)度之間的關(guān)系以及活性[26-30]。

        近年來(lái),研究者發(fā)現(xiàn)經(jīng)肽基取代的蒽醌類衍生物對(duì)G-四聯(lián)體表現(xiàn)出極為卓越的選擇性。他們通過(guò)加入疏水性殘基苯丙氨酸到賴氨酸側(cè)鏈的2,6 或者 2,7上,表現(xiàn)出的選擇性要遠(yuǎn)遠(yuǎn)大于雙鏈DNA,并且賴氨酸被苯丙氨酸所取代的蒽醌類衍生物能夠在更低的濃度下使得細(xì)胞凋亡[31]。

        2 喹叨啉類衍生物

        喹叨啉于1977年第一次從南非的一種 植株中提取出來(lái)[32],它具有許多優(yōu)良的性質(zhì),包括抗菌、抗瘧疾、抗炎癥等。SYUIQ-5是一種廣為研究的喹叨啉類衍生物,一系列的抗癌研究表明SYUIQ-5具有抑制端粒酶的活性,可縮短端粒的長(zhǎng)度,誘導(dǎo)細(xì)胞的衰老和生長(zhǎng)的停止。另外,這種化合物能夠和c-myc啟動(dòng)子區(qū)域上的G-四聯(lián)體相互結(jié)合并且在細(xì)胞的增殖和衰老的過(guò)程中占據(jù)重要作用[33]。

        雙取代以及11號(hào)位上取代的喹叨啉衍生物都表現(xiàn)為使得G-四聯(lián)體更為穩(wěn)定,以及端粒酶抑制作用,但是它們對(duì)G-四聯(lián)體的選擇性與雙鏈DNA相比卻顯得差強(qiáng)人意。不過(guò)11位取代的喹叨啉衍生物表現(xiàn)出了更強(qiáng)的端粒酶活性,其中喹叨啉telIC50>138μM;11位取代衍生物telIC50= 0.44~12.3μM[34]。另外5-N-甲基化喹叨啉因?yàn)檎姾芍行呐cG-四聯(lián)體的負(fù)離子通道之間的相互作用,提高了其與反平行G-四聯(lián)體結(jié)構(gòu)之間的選擇性以及穩(wěn)定性[35]。

        Jixun Dai等[36]通過(guò)了解溶液中的喹叨啉與G-四聯(lián)體(2∶1)復(fù)合物的結(jié)構(gòu),表明藥物能夠誘導(dǎo)側(cè)翼序列形成一個(gè)新的綁定位點(diǎn),并且強(qiáng)調(diào)了堆垛相互作用以及靜電相互作用間的重要性。他們首先強(qiáng)調(diào)了藥物的形狀以及2個(gè)側(cè)翼堿基在決定藥物綁定特異性方面的 重要作用。

        3 小檗堿類衍生物

        小檗堿是從中藥黃連中提取出來(lái)的一種藥物,在中 醫(yī)中主要是用來(lái)醫(yī)治濕熱癥。在早期,小檗堿因?yàn)槠浔旧硎且环N抗生素使得其不是一種良好的抗腫瘤藥品,后來(lái)因獲得了一種混合小檗堿的新藥,使其成為 了抗腫瘤藥物[37],引起了廣泛關(guān)注。小檗堿能夠抑制各種腫瘤細(xì)胞的生長(zhǎng)[38-39],其中包括乳腺癌細(xì)胞[40]、胰腺癌細(xì)胞[41]以及胃癌細(xì)胞[42-43]。后來(lái),Tsuruo和其同伴發(fā)現(xiàn)小檗堿能夠抑制端粒酶的活性并且限制端粒的延長(zhǎng),同時(shí)也報(bào)道能夠和G-四聯(lián)體相互作用。Zhang等[44]發(fā)現(xiàn)9-取代小檗堿衍生物對(duì)G-四聯(lián)體結(jié)構(gòu)具有超強(qiáng)的相互結(jié)合能力并且能夠抑制端粒酶的活性。為了開(kāi)發(fā)更具活性的端粒酶抑制劑,研究者開(kāi)發(fā)了一系列的9-N-取代小檗堿衍生物,研究證實(shí)這些衍生物都能夠誘導(dǎo)并且穩(wěn)定c-myc上啟動(dòng)子區(qū)域平行G-四聯(lián)體,還能夠抑制c-myc表達(dá)[45]。

        4 卟啉類衍生物及其相關(guān)的類似物

        眾所周知的卟啉是紅細(xì)胞中的色素— —亞鐵血紅素?;衔颰MPyP4是最具代 表性的陽(yáng)離子卟啉類化合物。Hurley課題組對(duì)此進(jìn)行了深入而廣泛的研究[46-56]。TMPyP4對(duì)G-四聯(lián)體表現(xiàn)出較強(qiáng)的相互作用(ΔT1/2= 17℃),能夠有效抑制端粒酶的活性(IC50=6μM)。但問(wèn)題是其對(duì)于平行以及反平行的G-四聯(lián)體缺乏明顯的選擇性[57-58],甚至它對(duì)所有的核酸都具有選擇性(包括單鏈、雙鏈、三鏈以及四鏈)[59]。Parkinson等[60]報(bào)道了端粒G-四聯(lián)體與TMPyP4復(fù)合物的X單晶衍射結(jié)構(gòu),表明TMPyP4不直接與G-四分體相互結(jié)合。

        盡管TMPyP4表現(xiàn)出來(lái)的選擇性不盡人意, 但是研究者們對(duì)其的熱情卻不見(jiàn)消退,如Gerald等通過(guò)ITC、CD以及ESI-MS等方法來(lái)考察卟啉經(jīng)N-甲基-4-吡啶基取代的取代數(shù)目(如 5-N-甲基-4-吡啶基卟啉)、有效性以及取代后的結(jié)合能的大小,KTMPyP4,KP(5,15)> KP(5,10,15)> KP(5,10),KP(5),其中認(rèn)為P(5,15)和G-四聯(lián)體采用的是嵌插模式,而P(5,10,15)和G-四聯(lián)體采用的是底端堆垛模式[61]。

        5 展望

        自然界本身存在的藥物對(duì)新藥物的發(fā)現(xiàn)以及發(fā)展是一筆巨大寶貴的財(cái)富。其多態(tài) 性和結(jié)構(gòu)的復(fù)雜性,使其成為抗腫瘤藥物選更具選擇性,通過(guò)對(duì)G-四聯(lián)體的結(jié)構(gòu)特征以及功能的深入了解,我們期望在未來(lái)尋找到更多更好更具針對(duì)性的配體。

        [1] Gellert M, Lipsett M N, Davies D R.Helix formation by guanylic acid[J].Proc Natl Acad Sci U S A, 1962, 48(12): 2013.

        [2] Ambrus A, Chen D, Dai J, et al.Human tel omeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution[J].Nucleic Acids Res., 2006, 34(9): 2723-2735.

        [3] Lim K W, Ng V C M, Martín-Pintado N, et a l.Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity[J].Nucleic Acids Res., 2013, 41(22): 10556-10562.

        [4] Wang C, Jia G, Li Y, et al.Na+/K+switch of enantioselectivity in G-quadruplex DNA-based catalysis[J].Chemical Communications, 2013, 49(95): 11161-11163.

        [5] Gavathiotis E, Searle M S.Structure of th e parallel-stranded DNA quadruplexd (TTAGGGT) 4 containing the human telomeric repeat: evidence for A-tetrad formation from NMR and molecular dynamics simulations[J].Organic & Biomolecular Chemistry, 2003(10): 1650-1656.

        [6] Oka Y, Thomas C.The cohering telomeres of Oxytricha[J].Nucleic Acids Res., 1987, 15(21): 8877-8898.

        [7] Williamson J R, Raghuraman M, Cech T R.Mo novalent cation-induced structure of telomeric DNA: the G-quartet model[J].Cell, 1989, 59(5): 871-880.

        [8] Zahler A M, Williamson J R, Cech T R, et a l.Inhibition of telomerase by G-quartet DMA structures[J].Nature, 1991, 350(6320): 718-720.

        [9] Sen D, Gilbert W.Formation of parallel fo ur-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis[J].1988, 334: 364-366.

        [10] Kang C, Zhang X, Ratliff R, et al.Crysta l structure of four-stranded Oxytricha telomeric DNA[J].Nature, 1992, 356(6365): 126-131.

        [11] Verma A, Yadav V K, Basundra R, et al.Ev idence of genome-wide G4 DNA-mediated gene expression in human cancer cells[J].Nucleic Acids Res., 2009, 37(13): 4194-4204.

        [12] Paeschke K, Simonsson T, Postberg J, et a l.Telomere endbinding proteins control the formation of G-quadruplex DNA structures in vivo[J].Nature Structural & Molecular Biology, 2005, 12(10): 847-854.

        [13] Lipps H J, Rhodes D.G-quadruplex structu res: evidence and function[J].Trends in Cell Biology, 2009, 19(8): 414-422.

        [14] Tauchi T, Shin-Ya K, Sashida G, et al.Te lomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia[J].Oncogene, 2006, 25(42): 5719-5725.

        [15] Cairns D, Anderson R J, Perry P J, et al.Design of telomerase inhibitors for the treatment of cancer[J].Current Pharmaceutical Design, 2002, 8(27): 2491-2504.

        [16] Parkinson G N, Lee M P H, Neidle S.Cryst al structure of parallel quadruplexes from human telomeric DNA[J].Nature, 2002, 417(6891): 876-880.

        [17] Rezler E M, Seenisamy J, Bashyam S, et al.Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure[J].J Am Chem Soc., 2005, 127(26): 9439-9447.

        [18] Balasubramanian S, Hurley L H, Neidle S.Targeting G-quadruplexes in gene promoters: a novel anticancer strategy[J].Nature Reviews Drug Discovery, 2011, 10(4): 261-275.

        [19] Han H, Bennett R J, Hurley L H.Inhibitio n of unwinding of G-quadruplex structures by Sgs1 helicase in the presence of N, N'-bis [2-(1-piperidino) ethyl]-3, 4, 9, 10-perylenetetracarboxylic diimide, a G-quadruplexinteractive ligand[J].Biochemistry, 2000, 39(31): 9311-9316.

        [20] Cuesta J, Read M A, Neidle S.The design of G-quadruplex ligands as telomerase inhibitors[J].Mini reviews in medicinal chemistry, 2003, 3(1): 11-21.

        [21] Deng R, Li W, Guan Z, et al.Acetylcholin esterase expression mediated by c-Jun-NH2-terminal kinase pathway during anticancer drug-induced apoptosis[J].Oncogene, 2006, 25(53): 7070-7077.

        [22] Tauchi T, Shin-Ya K, Sashida G, et al.Ac tivity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways[J].Oncogene, 2003, 22(34): 5338-5347.

        [23] Riou J, Guittat L, Mailliet P, et al.Cel l senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands[J].Proceedings of the National Academy of Sciences, 2002, 99(5): 2672-2677.

        [24] Tanious F A, Jenkins T C, Neidle S, et al.Substituent position dictates the intercalative DNA-binding mode for anthracene-9,10-dione antitumor drugs[J].Biochemistry, 1992, 31(46): 11632-11640.

        [25] Sun D, Thompson B, Cathers B E, et al.In hibition of human telomerase by a G-quadruplex-interactive compound[J].J Med Chem., 1997, 40(14): 2113-2116.

        [26] Perry P J, Gowan S M, Reszka A P, et al.1, 4-and 2, 6-disubstituted amidoanthracene-9, 10-dione derivatives as inhibitors of human telomerase[J].J Med Chem., 1998, 41(17): 3253-3260.

        [27] Perry P J, Reszka A P, Wood A A, et al.H uman telomerase inhibition by regioisomeric disubstituted amidoanthracene-9, 10-diones[J].J Med Chem., 1998, 41(24): 4873-4884.

        [28] Huang H-S, Chen I-B, Huang K-F, et al.Sy nthesis and human telomerase inhibition of a series of regioisomeric disubstituted amidoanthraquinones[J].Chemical & pharmaceutical bulletin, 2007, 55(2): 284-292.

        [29] Huang H-S, Huang K-F, Li C-L, et al.Synt hesis, human telomerase inhibition and anti-proliferative studies of a series of 2,7-bis-substituted amido-anthraquinone derivatives[J].Bioorg Med Chem., 2008, 16(14): 6976-6986.

        [30] Zagotto G, Sissi C, Lucatello L, et al.A minoacyl Anthraquinone Conjugates as Telomerase Inhibitors: Synthesis, Biophysical and Biological Evaluation[J].J Med Chem., 2008, 51(18): 5566-5574.

        [31] Zagotto G, Ricci A, Vasquez E, et al.Tunin g G-quadruplex vs double-stranded DNA recognition in regioisomeric lysylpeptidyl-anthraquinone conjugates[J].Bioconjug Chem., 2011, 22(10): 2126-2135.

        [32] Dwuma‐Badu D, Ayim J S, Fiagbe N I, et al.Constituents of West African medicinal plants XX: Quindoline from Cryptolepis sanguinolenta[J].Journal of pharmaceutical sciences, 1978, 67(3): 433-434.

        [33] Ou T-M, Lin J, Lu Y-J, et al.Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex[J].J Med Chem., 2011, 54(16): 5671-5679.

        [34] Caprio V, Guyen B, Opoku-Boahen Y, et al.A novel inhibitor of human telomerase derived from 10-indolo [3, 2-] quinoline[J].Bioorg Med Chem Lett., 2000, 10(18): 2063-2066.

        [35] Lu Y-J, Ou T-M, Tan J-H, et al.5-N-Methylat ed quindoline derivatives as telomeric G-quadruplex stabilizing ligands: effects of 5-N positive charge on quadruplex binding affinity and cell proliferation[J].J Med Chem., 2008, 51(20): 6381-6392.

        [36] Dai J, Carver M, Hurley L H, et al.Solution Structure of a 2∶1 Quindoline-c-MYC G-Quadruplex: Insights into G-Quadruplex-Interactive Small Molecule Drug Design[J].J Am Chem Soc., 2011, 133(44): 17673-17680.

        [37] Hoshi A, Ikekawa T, Ikeda Y, et al.Antitumo r activity of berberrubine derivatives[J].Gann= Gan, 1976, 67(2): 321.

        [38] Sun Y, Xun K, Wang Y, et al.A systematic re view of the anticancer properties of berberine, a natural product from Chinese herbs[J].Anti-cancer drugs, 2009, 20(9): 757-769.

        [39] Tang J, Feng Y, Tsao S, et al.Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations[J].Journal of ethnopharmacology, 2009, 126(1): 5-17.

        [40] Kim J, Yu J-H, Ko E, et al.The alkaloid Ber berine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest[J].Phytomedicine, 2010, 17(6): 436-440.

        [41] Pinto-Garcia L, Efferth T, Torres A, et al.Berberine inhibits cell growth and mediates caspase-independent cell death in human pancreatic cancer cells[J].Planta medica, 2010, 76(11): 1155-1161.

        [42] Auyeung K K-W, Ko J K-S.Coptis chinensis in hibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation[J].International journal of molecular medicine, 2009, 24(4): 571-577.

        [43] Tang F, Wang D, Duan C, et al.Berberine inh ibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567[J].Journal of Biological Chemistry, 2009, 284(40): 27456-27466.

        [44] Zhang W-J, Ou T-M, Lu Y-J, et al.9-Substitu ted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA[J].Bioorg Med Chem., 2007, 15(16): 5493-5501.

        [45] Ma Y, Ou T-M, Hou J-Q, et al.9-N-Substitute d berberine derivatives: Stabilization of G-quadruplex DNA and downregulation of oncogene c-myc[J].Bioorg Med Chem., 2008, 16(16): 7582-7591.

        [46] Sun D, Guo K, Rusche J J, et al.Facilitatio n of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents[J].Nucleic Acids Res., 2005, 33(18): 6070-6080.

        [47] Siddiqui-Jain A, Grand C L, Bearss D J, et a l.Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription[J].Proceedings of the National Academy of Sciences, 2002, 99(18): 11593-11598.

        [48] Dexheimer T S, Sun D, Hurley L H.Deconvolut ing the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter[J].J Am Chem Soc., 2006, 128(16): 5404-5415.

        [49] Guo K, Pourpak A, Beetz-Rogers K, et al.For mation of Pseudosymmetrical G-Quadruplex and i-Motif Structures in the Proximal Promoter Region of the RET Oncogene[J].J Am Chem Soc., 2007, 129(33): 10220-10228.

        [50] Han F X, Wheelhouse R T, Hurley L H.Interac tions of TMPyP4 and TMPyP2 with Quadruplex DNA.Structural Basis for the Differential Effects on Telomerase Inhibition[J].J Am Chem Soc., 1999, 121(15): 3561-3570.

        [51] Izbicka E, Wheelhouse R T, Raymond E, et al.Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells[J].Cancer Research, 1999, 59(3): 639-644.

        [52] Shi D-F, Wheelhouse R T, Sun D, et al.Quadr uplexinteractive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase[J].J Med Chem., 2001, 44(26): 4509-4523.

        [53] Kim M-Y, Gleason-Guzman M, Izbicka E, et al.The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures[J].Cancer Research, 2003, 63(12): 3247-3256.

        [54] Yang D, Hurley L H.Structure of the biologi cally relevant G-quadruplex in the c-MYC promoter[J].Nucleosides, Nucleotides, and Nucleic Acids, 2006, 25(8): 951-968.

        [55] Liu W, Sun D, Hurley L H.Binding of G-quadr uplexinteractive agents to distinct G-quadruplexes induces different biological effects in MiaPaCa cells[J].Nucleosides, Nucleotides, and Nucleic Acids, 2005, 24(10-12): 1801-1815.

        [56] Freyer M W, Buscaglia R, Kaplan K, et al.Bi ophysical Studies of the c-MYC NHE III1 Promoter: Model Quadruplex Interactions with a Cationic Porphyrin[J].Biophysical Journal, 2007, 92(6): 2007-2015.

        [57] Wheelhouse R T, Sun D, Han H, et al.Cationi c porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl) porphine with quadruplex DNA[J].J Am Chem Soc., 1998, 120(13): 3261-3262.

        [58] Anantha N V, Azam M, Sheardy R D.Porphyrin binding to quadruplexed T4G4[J].Biochemistry, 1998, 37(9): 2709-2714.

        [59] Hershman S G, Chen Q, Lee J Y, et al.Genomi c distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae[J].Nucleic Acids Res., 2008, 36(1): 144-156.

        [60] Parkinson G N, Ghosh R, Neidle S.Structural basis for binding of porphyrin to human telomeres[J].Biochemistry, 2007, 46(9): 2390-2397.

        [61] Rowland G B, Barnett K, Dupont J I, et al.T he effect of pyridyl substituents on the thermodynamics of porphyrin binding to G-quadruplex DNA[J].Bioorg Med Chem., 2013, 21(23): 7515-7522.

        猜你喜歡
        端粒酶端粒蒽醌
        端粒蛋白復(fù)合物shelterin的結(jié)構(gòu)及功能研究進(jìn)展
        大孔吸附樹(shù)脂純化決明子總蒽醌工藝
        中成藥(2018年10期)2018-10-26 03:41:32
        超聲輔助雙水相提取大黃中蒽醌類成分
        大黃總蒽醌提取物對(duì)腦缺血再灌注損傷的保護(hù)作用及其機(jī)制
        中成藥(2018年4期)2018-04-26 07:12:34
        封閉端粒酶活性基因治療對(duì)瘢痕疙瘩成纖維細(xì)胞的影響
        抑癌基因P53新解讀:可保護(hù)端粒
        健康管理(2016年2期)2016-05-30 21:36:03
        40—65歲是健身黃金期
        鹽酸阿霉素與人端粒DNA相互作用的電化學(xué)研究
        端粒酶逆轉(zhuǎn)錄酶與轉(zhuǎn)錄激活蛋白-1在喉癌組織中的表達(dá)及相關(guān)性研究
        新健胃包芯片中大黃總蒽醌類成分提取因素的優(yōu)化
        亚洲av日韩片在线观看| 99久久超碰中文字幕伊人| 国产精品嫩草影院av| 国产中文aⅴ在线| 免费看男女啪啪的视频网站 | 亚洲在线一区二区三区四区| av在线不卡一区二区| 亚洲av无码无限在线观看| 亚洲熟伦熟女新五十路熟妇| 中文字幕无码免费久久9一区9 | 国产麻传媒精品国产av| 无码不卡高清毛片免费| 一区二区久久精品66国产精品| 亚洲综合第一页中文字幕| 国产好大好硬好爽免费不卡| 五月中文字幕| 久久久人妻丰满熟妇av蜜臀| 麻豆国产一区二区三区四区| 亚洲日韩欧洲无码av夜夜摸| 中文人妻AV高清一区二区| 偷拍视频这里只有精品| 免费人成在线观看网站| 国产免费一区二区三区在线视频 | 亚洲乱亚洲乱妇无码麻豆| 最新亚洲人成无码网www电影| 国产美女亚洲精品一区| 九九久久精品国产免费av| 高清不卡一区二区三区| 99国产精品久久久蜜芽| 亚洲高清精品一区二区| 久久婷婷五月综合色丁香| 亚洲日韩∨a无码中文字幕| 亚洲av福利天堂在线观看| 中文字幕精品亚洲字幕| 国产人妻久久精品二区三区老狼| 大陆一级毛片免费播放| 日本午夜a级理论片在线播放| 中文精品久久久久人妻不卡| 亚洲熟妇无码av不卡在线播放 | 亚洲欧美中文字幕5发布| 国产成人午夜精品免费视频|