左長(zhǎng)清 汪宗桂 鐘月春 盧旱云 戴忠 吳鐵 崔燎
1.廣東醫(yī)學(xué)院藥理學(xué)教研室,廣東東莞523808;2.廣東醫(yī)學(xué)院生物化學(xué)教研室,廣東東莞523808
重組人BMP-2誘導(dǎo)C3H10T1/2間質(zhì)干細(xì)胞定向成骨分化早期基因表達(dá)譜分析
左長(zhǎng)清1汪宗桂2鐘月春1盧旱云1戴忠1吳鐵1崔燎1
1.廣東醫(yī)學(xué)院藥理學(xué)教研室,廣東東莞523808;2.廣東醫(yī)學(xué)院生物化學(xué)教研室,廣東東莞523808
目的研究間質(zhì)干細(xì)胞早期定向成骨分化基因表達(dá)譜,為研究基因?qū)υ缙诔晒嵌ㄏ蚍只{(diào)控機(jī)制提供實(shí)驗(yàn)基礎(chǔ)。方法分別提取重組人骨形成蛋白2(rhBMP.2)誘導(dǎo)組和對(duì)照組C3H10T1/2細(xì)胞總RNA,進(jìn)行擴(kuò)增標(biāo)記后,與ArraySTAR小鼠基因芯片雜交,應(yīng)用生物信息學(xué)軟件GeneSpring和GATHER對(duì)基因芯片數(shù)據(jù)進(jìn)行分析。應(yīng)用STRING在線軟件對(duì)差異表達(dá)基因構(gòu)建蛋白互作網(wǎng)絡(luò)并進(jìn)行網(wǎng)絡(luò)分析。結(jié)果C3H10T1/2早期成骨分化中,主要富集發(fā)育、器官形成等分子功能本體以及細(xì)胞因子.細(xì)胞因子受體作用信號(hào)通路。成骨分化1 d和4 d均上調(diào)表達(dá)基因42個(gè),下調(diào)表達(dá)基因45個(gè)。網(wǎng)絡(luò)分析研究表明:Egfr、Cxcl12等信號(hào)分子參與調(diào)控rhBMP.2誘導(dǎo)成骨分化。結(jié)論篩選的差異表達(dá)基因和信號(hào)分子對(duì)早期成骨分化調(diào)控具有重要作用,為進(jìn)一步全面解析早期成骨定向分化提供實(shí)驗(yàn)基礎(chǔ)。
早期成骨分化;基因表達(dá)譜;間質(zhì)干細(xì)胞;生物信息學(xué)
成骨細(xì)胞主要由骨髓間質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)分化而來(lái),在其發(fā)育分化的整個(gè)過(guò)程中,不同的基因嚴(yán)格按照特定的時(shí)間順序開(kāi)啟和關(guān)閉,表現(xiàn)為與分化的階段相一致,支持并且控制著成骨細(xì)胞的分化與成熟。因此,骨髓間質(zhì)干細(xì)胞定向成骨分化調(diào)控研究在國(guó)內(nèi)外受到高度重視,促進(jìn)間質(zhì)干細(xì)胞成骨定向分化與成熟,將是治療骨質(zhì)疏松癥的新的有效方法和手段。但是,目前關(guān)于間質(zhì)干細(xì)胞早期成骨定向分化方面的調(diào)控機(jī)制尚未完全闡明。本實(shí)驗(yàn)室采用重組人骨形成蛋白2(rhBMP.2)誘導(dǎo)小鼠間質(zhì)干細(xì)胞C3H10T1/2定向成骨分化細(xì)胞模型,采用小鼠全基因組芯片篩選鑒定差異表達(dá)基因譜并進(jìn)行生物信息學(xué)分析,探討rhBMP.2成骨分化調(diào)控的差異表達(dá)基因集,并進(jìn)一步通過(guò)網(wǎng)絡(luò)生物學(xué)分析,為探討間質(zhì)干細(xì)胞早期成骨定向分化提供實(shí)驗(yàn)依據(jù)。
1.1 材料
小鼠間質(zhì)干細(xì)胞C3H10T1/2購(gòu)自中國(guó)科學(xué)院上海細(xì)胞庫(kù)。rhBMP.2(R&D systems),ArraySTAR mouse lncRNA microarray(8×60 K,上??党缮?,芯片包含31423條蛋白編碼mRNA和25376條lncRNA,本文僅分析編碼蛋白mRNA表達(dá)變化)。BCIP/NBT堿性磷酸酶染色試劑盒(Sigma)。
1.2 實(shí)驗(yàn)方法
1.2.1 堿性磷酸酶染色鑒定早期成骨定向分化C3H10T1/ 2接種于6孔板中,細(xì)胞生長(zhǎng)至約90%融合,rhBMP.2誘導(dǎo)組加入含200 ng/mL rhBMP.2培養(yǎng)基,對(duì)照組加入不含rhBMP.2的培養(yǎng)基,每2~3天更換一次培養(yǎng)基。當(dāng)成骨誘導(dǎo)分化7 d后,rhBMP.2誘導(dǎo)組、對(duì)照組的單層細(xì)胞用PBS清洗2次,然后用體積分?jǐn)?shù)為0.7乙醇室溫固定15 min,BCIP/NBT避光染色30 min,用蒸餾水漂洗細(xì)胞3次,倒置顯微鏡下觀察并拍照記錄。
1.2.2 C3H10T1/2早期成骨定向分化基因芯片檢測(cè)及其生物信息學(xué)分析C3H10T1/2成骨定向分化1 d和4 d后,rhBMP.2誘導(dǎo)組、對(duì)照組采用TRIzol提取總RNA,按照說(shuō)明擴(kuò)增、標(biāo)記熒光、純化、與芯片雜交、洗脫。用Agilent Scanner G2505C掃描每張芯片的的信號(hào)強(qiáng)度,應(yīng)用Agilent Feature Extraction軟件(version 11.0.1.1)分析芯片圖像文件,用GeneSpring GX v11.5.1軟件(Agilent)進(jìn)行數(shù)據(jù)處理分析,根據(jù)基因表達(dá)水平篩選出差異2倍以上的基因并采用GATHER軟件[1](http://gather.genome.duke.edu/)進(jìn)行生物信息學(xué)分析富集基因本體(gene ontology,GO)和生物通路。
1.2.3 差異表達(dá)基因蛋白互作網(wǎng)絡(luò)分析STRING (http://string.db.org/)軟件[2]從各種資源中整合了已知的和預(yù)測(cè)的蛋白質(zhì)相互作用(包括直接和間接作用)來(lái)生成網(wǎng)絡(luò),其數(shù)據(jù)來(lái)自于基因組、高通量實(shí)驗(yàn)、共表達(dá)、已有知識(shí)4種資源。本研究采用此數(shù)據(jù)庫(kù)資源對(duì)上述差異表達(dá)基因進(jìn)行蛋白互作網(wǎng)絡(luò)構(gòu)建。
2.1 間質(zhì)干細(xì)胞C3H10T1/2成骨分化鑒定
間質(zhì)干細(xì)胞C3H10T1/2經(jīng)rhBMP.2成骨誘導(dǎo)分化7 d后,堿性磷酸酶染色顯示:rhBMP.2誘導(dǎo)組呈藍(lán)紫色(圖1),這表明rhBMP.2能誘導(dǎo)C3H10T1/2間質(zhì)干細(xì)胞定向成骨分化。此細(xì)胞模型可用于后續(xù)實(shí)驗(yàn)研究。
圖1 C3H10T1/2間質(zhì)干細(xì)胞成骨誘導(dǎo)7 d堿性磷酸酶染色(100×)
2.2 C3H10T1/2基因表達(dá)譜生物信息學(xué)分析
通過(guò)對(duì)C3H10T1/2成骨分化1 d和4 d芯片結(jié)果進(jìn)行分析,篩選出兩個(gè)時(shí)間點(diǎn)表達(dá)均升高2倍以上的基因42個(gè);表達(dá)均降低2倍以上的基因45個(gè)(表1)。采用生物軟件進(jìn)行分子功能基因本體和通路分析發(fā)現(xiàn),顯著性差異分子功能本體為發(fā)育、器官形成等,并與細(xì)胞因子.細(xì)胞因子受體作用通路相關(guān)。
表1 C3H10T1/2細(xì)胞成骨分化早期差異表達(dá)基因集
2.3 一致性差異表達(dá)基因編碼蛋白相互作用網(wǎng)絡(luò)分析
采用STRING網(wǎng)絡(luò)資源對(duì)差異表達(dá)基因編碼蛋白進(jìn)行網(wǎng)絡(luò)分析,構(gòu)建了部分基因的基因表達(dá)調(diào)控與蛋白互作網(wǎng)絡(luò),通過(guò)對(duì)網(wǎng)絡(luò)進(jìn)行分析(圖2),發(fā)現(xiàn)經(jīng)rhBMP.2誘導(dǎo)后差異表達(dá)的Egfr、Cxcl12等信號(hào)分子處于蛋白網(wǎng)絡(luò)重要交叉點(diǎn),可能與信號(hào)通路交談?dòng)嘘P(guān),說(shuō)明在rhBMP.2誘導(dǎo)C3H10T1/2間質(zhì)干細(xì)胞早期成骨分化過(guò)程中,Egfr、Cxcl12等信號(hào)分子參與調(diào)控BMP.2信號(hào)。
間質(zhì)干細(xì)胞成骨分化是一個(gè)多基因參與的,多步驟的復(fù)雜的生物過(guò)程。機(jī)體一些重要的轉(zhuǎn)錄因子如Runx2、Dlx2等[3.4]以及眾多的信號(hào)通路在成骨分化起到非常重要調(diào)控作用[5]。但是,關(guān)于BMP.2誘導(dǎo)間質(zhì)干細(xì)胞早期成骨定向分化相關(guān)調(diào)控機(jī)制以及不同信號(hào)間的交談分子,目前尚未完全闡明。
基因芯片技術(shù)提供了一個(gè)用于同時(shí)研究一個(gè)細(xì)胞或組織全基因組表達(dá)的較好平臺(tái)。本研究對(duì)rhBMP.2誘導(dǎo)C3H10T1/2成骨分化1 d和4 d后的基因表達(dá)譜進(jìn)行分析,提取了rhBMP.2誘導(dǎo)后差異表達(dá)的基因共87個(gè),其中上調(diào)基因42個(gè),下調(diào)基因45個(gè)。通過(guò)文獻(xiàn)分析發(fā)現(xiàn),多個(gè)基因已經(jīng)報(bào)道與成骨分化緊密相關(guān),它們?cè)诔晒嵌ㄏ?、分化、轉(zhuǎn)分化過(guò)程中發(fā)揮著重要作用,如Frizzled家族成員FZD9[6]、同源蛋白家族基因Dlx2[7]、轉(zhuǎn)錄因子ID4[8]、細(xì)胞外基質(zhì)相關(guān)基因Ecm1[9]等。其他差異基因,將成為筆者研究BMP.2成骨信號(hào)的重要切入點(diǎn)。同時(shí),進(jìn)行分子功能相關(guān)基因本體分析發(fā)現(xiàn),在早期成骨分化過(guò)程,富集得分最高的為發(fā)育、器官形成、細(xì)胞因子.細(xì)胞因子受體作用相關(guān)信號(hào),這可能與BMP.2誘導(dǎo)成骨分化密切相關(guān)。
復(fù)雜網(wǎng)絡(luò)理論作為一門(mén)新興學(xué)科,為系統(tǒng)水平上研究生物網(wǎng)絡(luò)提供了新的理論依據(jù)和平臺(tái)。2000年Jeong等[10]在《Nature》上第一次發(fā)表利用復(fù)雜網(wǎng)絡(luò)理論研究代謝網(wǎng)絡(luò)的拓?fù)涮匦缘恼撐?,自此以后,利用?fù)雜網(wǎng)絡(luò)理論研究各種生物網(wǎng)絡(luò)迅速發(fā)展[11.12],主要集中在探索活細(xì)胞中所有分子的行為和它們之間的相互作用,以及從局部到整體,生物體如何形成了極其復(fù)雜的動(dòng)力學(xué)機(jī)制。蛋白.蛋白互作網(wǎng)絡(luò)和轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)是生物信息調(diào)控的主要實(shí)現(xiàn)方式,在整個(gè)生命過(guò)程中有著非常重要的作用,是決定細(xì)胞命運(yùn)的關(guān)鍵因素。通過(guò)對(duì)差異基因構(gòu)建蛋白互作和轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò),本研究發(fā)現(xiàn)EGFR、CXCL12等信號(hào)分子在rhBMP.2誘導(dǎo)間質(zhì)干細(xì)胞早期成骨分化網(wǎng)絡(luò)中處于非常重要的網(wǎng)絡(luò)節(jié)點(diǎn)。研究表明,EGFR信號(hào)參與骨原始細(xì)胞群維持,成骨分化平衡調(diào)控[13],并與前體成骨細(xì)胞活性和增殖緊密相關(guān)[14]。最近的研究也表明,CXCL12/ CXCR4信號(hào)參與骨形成和骨吸收的調(diào)控[15],在BMP.9誘導(dǎo)的間質(zhì)干細(xì)胞成骨分化的早期和中期,CXCL12/ CXCR4信號(hào)軸也發(fā)揮重要作用[16]。本研究提示EGFR、CXCL12信號(hào)可能與BMP.2信號(hào)“交談”,參與調(diào)控BMP.2信號(hào),因此進(jìn)一步探索這些分子在成骨分化平衡調(diào)控中的作用機(jī)制,具有重要的意義。同時(shí),趨化因子(C.C模體)配體成員CCL2、CCL7等在網(wǎng)絡(luò)中也處于非常重要交叉節(jié)點(diǎn),是否參與BMP.2信號(hào)調(diào)控成骨分化,筆者正在研究中。
綜上所述,本研究通過(guò)對(duì)C3H10T1/2成骨分化早期基因表達(dá)譜進(jìn)行分析,找到了一些受rhBMP.2調(diào)控表達(dá)的基因,這將是BMP.2成骨信號(hào)研究的重要切入點(diǎn)。同時(shí),通過(guò)網(wǎng)絡(luò)生物學(xué)分析發(fā)現(xiàn),EGFR、CXCL12等可能參與BMP.2信號(hào)調(diào)控,控制著間質(zhì)干細(xì)胞骨向分化。
圖2 STRING顯示成骨早期部分差異基因蛋白互作網(wǎng)絡(luò)圖
[1]Chang JT,Nevins JR.GATHER:a systems approach to interpreting genomic signatures[J].Bioinformatics,2006,22 (23):2926.2933.
[2]Franceschini A,Szklarczyk D,F(xiàn)rankild S,et al.STRING v9.1:protein.protein interaction networks,with increased coverage and integration[J].Nucleic Acids Res,2013,41 (Database issue):808.815.
[3]Karsenty G.Minireview:transcriptional control of osteoblast differentiation[J].Endocrinology,2001,142(7):2731.2733.
[4]Lian JB,Stein GS,Javed A,et al.Networks and hubs for the transcriptional control of osteoblastogenesis[J].Rev Endocr Metab Disord,2006,7(1.2):1.16.
[5]Zuo C,Huang Y,Bajis R,et al.Osteoblastogenesis regulation signals in bone remodeling[J].Osteoporos Int,2012,23(6):1653.1663.
[6]Albers J,Schulze J,Beil FT,et al.Control of bone formation by the serpentine receptor Frizzled.9[J].J Cell Biol,2011,192(6):1057.1072.
[7]Harris SE,Guo D,Harris MA,et al.Transcriptional regulation of BMP.2 activated genes in osteoblasts using gene expression microarray analysis:role of Dlx2 and Dlx5 transcription factors[J].Front Biosci,2003,8:1249.1265.
[8]Tokuzawa Y,Yagi K,Yamashita Y,et al.Id4,a new candidate gene for senile osteoporosis,acts as a molecular switch promoting osteoblast differentiation[J].PLoS Genet,2010,6(7):1001019.
[9]Mongiat M,F(xiàn)u J,Oldershaw R,et al.Perlecan protein core interacts with extracellular matrix protein 1(ECM1),a glycoprotein involved in bone formation and angiogenesis[J]. J Biol Chem,2003,278(19):17491.17499.
[10]Jeong H,Tombor B,Albert R,et al.The large.scale organizationofmetabolicnetworks[J].Nature,2000,407(6804):651.654.
[11]Barabasi AL,Oltvai ZN.Network biology:understanding the cell's functional organization[J].Nat Rev Genet,2004,5(2):101.113.
[12]Rual JF,Venkatesan K,Hao T,et al.Towards a proteome. scale map of the human protein.protein interaction network[J].Nature,2005,437(7062):1173.1178.
[13]Zhu J,Shimizu E,Zhang X,et al.EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix[J].J Cell Biochem,2011,112(7):1749.1760.
[14]Chandra A,Lan S,Zhu J,et al.Epidermal growth factor receptor(EGFR)signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2(EGR2)expression[J].J Biol Chem,2013,288 (28):20488.20498.
[15]Shahnazari M,Chu V,Wronski TJ,et al.CXCL12/CXCR4 signaling in the osteoblast regulates the mesenchymal stem cell and osteoclast lineage populations[J]. FASEB J,2013,27(9):3505.3513.
[16]Liu C,Weng Y,Yuan T,et al.CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9.induced osteogenic differentiation of mesenchymal stem cells[J].Int J Med Sci,2013,10(9):1181.1192.
Identification and analysis of gene expression profiles for early osteoblastic differentiation on C3H10T1/2 mesenchymal stem cells induced by rhBMP-2
ZUO Changqing1WANG Zonggui2ZHONG Yuechun1LU Hanyun1DAI Zhong1WU Tie1CUI Liao1l.Department of Pharmocology,Guangdong Medical College,Guangdong Province,Dongguan523808,China; 2.Department of Biochemistry,Guangdong Medical College,Guangdong Province,Dongguan523808,China
Objective To investigate the gene expression profiles associated with early osteoblastic differentiation on mesenchymal stem cells,and to provide an experimental basis for the study of gene regulation mechanism for early osteoblastic differentiation.Methods The total RNA was extracted from C3H10T1/2 mesenchymal stem cells between control and rhBMP.2 osteoblastic differentiation group,and then cRNA was labeled with fluorescence labels and hybridized with ArraySTAR mouse genechip.The gene expression profiles were analyzed with bioinformatics software GeneSpring and GATHER.The protein interaction network of differentially expressed genes was constructed and analyzed by online software STRING.Results The molecular function gene ontology(GO)including development and organogenesis and cytokine.cytokine receptor interaction signaling pathway were mainly enriched during C3H10T1/2 early osteogenic differentiation.A total of 42 differentially expressed genes were upregulated and 45 genes were downregulated from rhBMP.2 induced osteoblast 1 and 4 days.Protein network analysis showed that Egfr,Cxcl12 were very important signaling molecules which involved in rhBMP.2 induced osteoblast.Conclusion The screening differentially expressed genes and signaling molecules have an important role for regulation of early osteoblastic differentiation and provide further experimental basis for comprehensive analysis of early osteoblastic differentiation.
Early osteoblastic differentiation;Gene expression profiles;Mesenchymal stem cells;Bioinformatics
R966;R963;R336;R329
A
1673-7210(2014)02(a)-0025-04
2013.11.28本文編輯:程銘)
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào)81101357);廣東省中醫(yī)藥局課題(編號(hào)20112145);廣東省東莞市高等院??蒲袡C(jī)構(gòu)科技項(xiàng)目(編號(hào)2011108102029);廣東省湛江市科技攻關(guān)項(xiàng)目(編號(hào)2010C3104003)。
左長(zhǎng)清(1977.),男,博士;研究方向:干細(xì)胞成骨成脂分化調(diào)控,生物信息學(xué)。
中國(guó)醫(yī)藥導(dǎo)報(bào)2014年4期