亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        骨保護(hù)素/核因子-κB受體活化因子配體/核因子-κB受體活化因子信號(hào)通路與骨質(zhì)疏松的研究進(jìn)展①

        2014-01-25 06:24:15李盛村鮑捷王靜王國(guó)祥
        關(guān)鍵詞:骨細(xì)胞成骨細(xì)胞骨質(zhì)疏松癥

        李盛村,鮑捷,王靜,王國(guó)祥

        骨保護(hù)素/核因子-κB受體活化因子配體/核因子-κB受體活化因子信號(hào)通路與骨質(zhì)疏松的研究進(jìn)展①

        李盛村,鮑捷,王靜,王國(guó)祥

        運(yùn)動(dòng)對(duì)骨質(zhì)疏松癥有積極作用,但其治療的分子生物學(xué)機(jī)制仍未清楚。骨保護(hù)素/核因子-κB受體活化因子配體/核因子-κB受體活化因子(OPG/RANKL/RANK)信號(hào)通路的發(fā)現(xiàn),有助于骨質(zhì)疏松癥的治療。機(jī)械應(yīng)力可以調(diào)節(jié)OPG/RANKL/RANK信號(hào)通路,參與預(yù)防和治療骨質(zhì)疏松進(jìn)程。本文就應(yīng)力敏感信號(hào)通路OPG/RANKL/RANK與骨質(zhì)疏松的關(guān)系進(jìn)行綜述。

        骨質(zhì)疏松癥;應(yīng)力;骨保護(hù)素;核因子-κB受體活化因子配體;核因子-κB受體活化因子;信號(hào)通路;綜述

        [本文著錄格式]李盛村,鮑捷,王靜,等.骨保護(hù)素/核因子-κB受體活化因子配體/核因子-κB受體活化因子信號(hào)通路與骨質(zhì)疏松的研究進(jìn)展[J].中國(guó)康復(fù)理論與實(shí)踐,2014,20(3):250-252.

        骨質(zhì)疏松癥(osteoporosis)是一種骨代謝障礙疾病,它以骨量減少、骨脆性增加和骨折風(fēng)險(xiǎn)增加為主要特征。骨質(zhì)疏松癥好發(fā)于絕經(jīng)后婦女和老年人群[1]。正常骨組織中新骨與舊骨更替而保持動(dòng)態(tài)平衡[2]。骨吸收異常增加或骨形成異常減少,均是骨質(zhì)疏松發(fā)生的生理學(xué)基礎(chǔ)。

        適宜運(yùn)動(dòng)是骨質(zhì)疏松癥的有效療法,然而有關(guān)其治療的分子生物學(xué)機(jī)制尚未清楚。近年來(lái)的研究發(fā)現(xiàn),骨保護(hù)素/核因子-κB受體活化因子配體/核因子-κB受體活化因子(OPG/ RANKL/RANK)信號(hào)通路與骨質(zhì)疏松的發(fā)生和治療有密切聯(lián)系[3],而運(yùn)動(dòng)應(yīng)力可以調(diào)節(jié)OPG/RANKL/RANK信號(hào)通路。因此,綜合分析應(yīng)力刺激和OPG/RANKL/RANK信號(hào)通路的關(guān)系以及兩者對(duì)骨質(zhì)疏松的影響,可以為骨質(zhì)疏松的治療提供新的線索[4]。

        1 OPG/RANKL/RANK信號(hào)通路

        骨保護(hù)素(osteoprotegerin,OPG)是Simonet在給新生大鼠腸cDNA測(cè)序時(shí)發(fā)現(xiàn)的,包含5個(gè)外顯子,其N端D1~D4區(qū)富含半胱氨酸,結(jié)構(gòu)與腫瘤壞死因子受體2(tumor necrosis factor receptor 2,TNFR2)和CD40有高度的保守性,為發(fā)揮生理功能所必需[5]。OPG可抑制破骨細(xì)胞活性,也被稱為骨保護(hù)蛋白或護(hù)骨素[6]。OPG前體是包含401個(gè)氨基酸的糖蛋白,去除21個(gè)信號(hào)肽后,形成含380個(gè)氨基酸的成熟OPG蛋白[7]。OPG基因敲除小鼠出現(xiàn)嚴(yán)重的骨質(zhì)疏松癥,骨皮質(zhì)和骨小梁均減少;而過度表達(dá)OPG的轉(zhuǎn)基因小鼠則出現(xiàn)嚴(yán)重的骨硬化癥[8]??梢奜PG在骨代謝中起重要作用。

        人核因子-κB(NF-κB)受體活化因子(receptor activator of NF-κB,RANK)是Ⅰ型跨膜糖蛋白,其cDNA由616個(gè)密碼子編碼而成,屬于TNF超家族成員[9]。RANK編碼基因組成包含29個(gè)氨基酸信號(hào)肽、細(xì)胞外編碼區(qū)183個(gè)氨基酸、跨膜區(qū)21個(gè)氨基酸和細(xì)胞質(zhì)區(qū)383個(gè)氨基酸[10]。RANK蛋白和其他TNF超家族成員一樣,以三聚體形式實(shí)現(xiàn)對(duì)細(xì)胞外信號(hào)進(jìn)行接收和轉(zhuǎn)導(dǎo)[11]。

        人NF-κB受體活化因子配體(receptor activator of NF-κB ligand,RANKL)是由317個(gè)氨基酸構(gòu)成的Ⅱ型跨膜蛋白,在基質(zhì)/成骨細(xì)胞、軟骨細(xì)胞和淋巴細(xì)胞中廣泛表達(dá)[12]。骨中的RANKL可結(jié)合破骨細(xì)胞表面受體RANK,激活破骨細(xì)胞?;罨钠乒羌?xì)胞分泌大量H+、Cl-等離子進(jìn)入骨陷窩,從而溶解骨質(zhì)[13]。

        在骨組織中,多種因素均可以通過調(diào)節(jié)OPG/RANKL之間的比例而影響骨的生理和病理[14]。成骨/基質(zhì)細(xì)胞分泌RANKL與破骨細(xì)胞表面的RNAK結(jié)合,導(dǎo)致骨吸收增強(qiáng)[15];成骨細(xì)胞分泌OPG可以結(jié)合RANKL,阻礙RANKL與RANK結(jié)合,從而抑制破骨細(xì)胞活性[16]。如果RANKL過度表達(dá)或OPG異常降低,骨吸收大于骨形成,最終發(fā)生以骨量和骨密度減少為特征的骨質(zhì)疏松癥[7,17]。

        2 骨質(zhì)疏松與OPG/RANKL/RANK信號(hào)通路

        2.1 OPG/RANKL/RANK信號(hào)通路與骨質(zhì)疏松發(fā)生

        研究發(fā)現(xiàn),可溶性RANKL過量表達(dá)的大鼠,骨骼組織中出現(xiàn)類似絕經(jīng)后骨質(zhì)疏松癥狀,包括骨吸收增加、骨密度減少和骨骼脆性增加[18]。Bashir等發(fā)現(xiàn),骨質(zhì)疏松模型大鼠骨組織中RANKL表達(dá)升高,而采用雌激素和雷洛昔芬(raloxifene)治療12個(gè)月后,骨密度增加,同時(shí)RANKL降低[19]。由此可知,RANKL的異常增加和骨質(zhì)疏松發(fā)生密切相關(guān),而雌激素或適宜應(yīng)力刺激均可以降低骨組織中RANKL水平,起到延緩骨質(zhì)疏松進(jìn)程的作用。

        有研究發(fā)現(xiàn),OPG基因敲除大鼠產(chǎn)生骨質(zhì)疏松癥狀[20],這與缺乏OPG而不能阻止RANKL和RANK的結(jié)合有關(guān)。程少丹等通過非頻密繁殖法獲得OPG-/-小鼠,發(fā)現(xiàn)與同齡野生型小鼠比較,OPG基因缺失小鼠骨密度、股骨承受最大載荷、股骨剛度、腰椎椎體骨小梁數(shù)目和腰椎椎體骨小梁厚度均顯著下降[21],證實(shí)與大鼠一樣,OPG基因缺失的小鼠也產(chǎn)生骨質(zhì)疏松初期癥狀。Bergstrm等將112名絕經(jīng)后婦女隨機(jī)分為對(duì)照組和運(yùn)動(dòng)組,分別在實(shí)驗(yàn)初期和1年運(yùn)動(dòng)訓(xùn)練結(jié)束后檢測(cè)血清OPG、RANKL水平,發(fā)現(xiàn)與對(duì)照組相比,運(yùn)動(dòng)組OPG明顯增加,但RANKL水平變化不顯著[22]。

        2.2 OPG/RANKL/RANK信號(hào)通路與骨質(zhì)疏松治療

        OPG/RANKL/RANK信號(hào)通路的發(fā)現(xiàn)為闡明骨質(zhì)疏松癥的分子機(jī)制奠定了基礎(chǔ),也可能為骨質(zhì)疏松的靶向治療提供理論依據(jù)[23]。OPG被認(rèn)為是RANKL的天然拮抗劑,在一期臨床試驗(yàn)中發(fā)現(xiàn),OPG可以降低尿中80%的骨吸收標(biāo)志物urinary NTx[24]。West等發(fā)現(xiàn),OPG感應(yīng)運(yùn)動(dòng)應(yīng)力刺激而抑制骨吸收;然而隨著時(shí)間的延長(zhǎng),特異性O(shè)PG抗體也增加,從而削弱其長(zhǎng)期治療效果[25]。董潔瓊發(fā)現(xiàn),大鼠切除卵巢后,成骨細(xì)胞和骨髓基質(zhì)細(xì)胞OPG蛋白和mRNA表達(dá)降低;運(yùn)動(dòng)3個(gè)月后,成骨細(xì)胞和骨髓基質(zhì)細(xì)胞OPG蛋白和mRNA表達(dá)升高[26]。

        RANKL在骨質(zhì)疏松患者骨組織中異常升高,研究特異性RANKL抑制劑對(duì)骨質(zhì)疏松治療有重要意義。目前,正在開發(fā)的Denosumab(AMG162)單克隆抗體[27],可通過結(jié)合RANKL,抑制破骨細(xì)胞活性[28]。Lewiecki等對(duì)絕經(jīng)后骨質(zhì)疏松婦女每6個(gè)月皮下注射Denosumab 60 mg,可以增加她們的骨密度,減少骨吸收標(biāo)志物[29]。

        3 應(yīng)力調(diào)節(jié)OPG/RANKL/RANK信號(hào)通路

        以往認(rèn)為,通過運(yùn)動(dòng)改善絕經(jīng)后婦女雌激素的分泌,可改善骨質(zhì)疏松患者骨密度[30-32]。值得注意的是,不同的運(yùn)動(dòng)方式改變骨密度有明顯的部位特異性,即受力越集中的骨骼,骨密度越高[33-34]。房冬梅等對(duì)105名不同專項(xiàng)女子運(yùn)動(dòng)員7個(gè)部位的骨密度進(jìn)行檢測(cè),發(fā)現(xiàn)舉重運(yùn)動(dòng)員整體承受應(yīng)力最大,各部位骨密度絕對(duì)值都高于其他運(yùn)動(dòng)員組;自行車運(yùn)動(dòng)員前臂骨密度較高,腰椎骨密度較低[35]。此外,網(wǎng)球運(yùn)動(dòng)員持拍手的骨密度高于非持拍手,劃船運(yùn)動(dòng)員脊椎骨密度高于舞蹈和徑賽運(yùn)動(dòng)員[36]。這種應(yīng)力引起的骨密度改變不僅僅是激素的全身性效應(yīng),也存在力對(duì)局部骨組織的直接效應(yīng)。

        大量研究表明,OPG/RANKL/RANK信號(hào)通路是力學(xué)敏感通路[37]。Kaneuji等發(fā)現(xiàn),對(duì)大鼠骨祖細(xì)胞施加持續(xù)3D機(jī)械應(yīng)力,骨祖細(xì)胞OPG基因表達(dá)增加[38]。Hou等應(yīng)用不同振幅機(jī)械力(40 Hz,30 min/d)刺激成骨細(xì)胞3 d以上,發(fā)現(xiàn)成骨細(xì)胞表達(dá)OPG蛋白增加,RANKL蛋白表達(dá)減少;在mRNA轉(zhuǎn)錄水平,OPG mRNA表達(dá)增強(qiáng)比RANKL表達(dá)降低幅度更加明顯[39]。Li等探索不同方式的流體剪切力對(duì)骨細(xì)胞的影響,發(fā)現(xiàn)OPG mRNA表達(dá)隨頻率加快和持續(xù)時(shí)間延長(zhǎng)及應(yīng)力刺激強(qiáng)度加大而下降[40]。Yamamoto等采用自制的靜水壓力裝置模擬牙齒咬合力,對(duì)下頜骨來(lái)源的成骨細(xì)胞施加壓力,發(fā)現(xiàn)RANKL/OPG比例上升,其中RANKL mRNA和蛋白都上調(diào)[41]。Sanchez等采用3D加力方式研究高強(qiáng)度外力(1 MPa和1.6 MPa)對(duì)成骨細(xì)胞基因表達(dá)的影響,發(fā)現(xiàn)成骨細(xì)胞受大強(qiáng)度應(yīng)力刺激后,OPG mRNA表達(dá)下降,而RANKL mRNA表達(dá)沒有發(fā)生明顯變化,RANKL/OPG比例上升[42]。

        雖然上述研究結(jié)果之間還存在一定分歧,特別是應(yīng)力刺激對(duì)RANKL的影響還不一致,但大部分研究表明,適宜的中等強(qiáng)度應(yīng)力刺激引起RANKL/OPG比值下降,有利于骨骼發(fā)展;而大強(qiáng)度應(yīng)力刺激引起RANKL/OPG比值升高,不利骨骼發(fā)展。此外,有研究認(rèn)為雌激素對(duì)骨骼發(fā)揮的作用,可能也與OPG/RANKL/RANK信號(hào)通路有關(guān)[43-44]。通過適宜應(yīng)力刺激調(diào)節(jié)或直接靶向干預(yù)OPG、RANKL有望成為治療骨質(zhì)疏松的新方法。深入研究骨質(zhì)疏松和OPG/RANKL/RANK的關(guān)系,對(duì)預(yù)防和治療骨質(zhì)疏松癥有重要意義。

        [1]孔祥鶴,牛銀波,李宇華,等.OPG/RANK/RANKL系統(tǒng)與骨質(zhì)疏松研究最新進(jìn)展[J].生命科學(xué)研究,2011,15(1):80-85.

        [2]Wright HL,Mccarthy HS,Middleton J,et al.RANK,RANKL and osteoprotegerin in bone biology and disease[J].Curr Rev Musculoskelet Med,2009,2(1):56-64.

        [3]Nakamura M,Udagawa N.Osteoporosis and RANKL signal[J].Clin Calcium,2011,21(8):1149-1155.

        [4]Boyce BF,Xing L.Functions of RANKL/RANK/OPG in bone modeling and remodeling[J].Arch Biochem Biophys,2008,473(2):139-146.

        [5]Yamaguchi M.RANK/RANKL/OPG during orthodontic tooth movement[J].Orthod Craniofac Res,2009,12(2):113-119.

        [6]Harada S,Takahashi N.Control of bone resorption by RANKL-RANK system[J].Clin Calcium,2011,21(8):1121-1130.

        [7]Narducci P,Bareggi R,Nicolin V.Receptor activator for nuclear factor kappa B ligand(RANKL)as an osteoimmune key regulator in bone physiology and pathology[J].Acta Histochemica,2011,113(2):73-81.

        [8]Dempster DW,Lambing CL,Kostenuik PJ,et al.Role of RANK ligand and denosumab,a targeted RANK ligand inhibitor,in bone health and osteoporosis:a review of preclinical and clinical data[J].Clin Ther, 2012,34(3):521-536.

        [9]Coluzzi F,Di Bussolo E,Mandatori I,et al.Bone metastatic disease: taking aim at new therapeutic targets[J].Curr Med Chem,2011,18 (20):3093-3115.

        [10]Anastasia P,Ioannis P,Kelly M,et al.High levels of synovial fluid osteoprotegerin(OPG)and increased serum ratio of receptor activator of nuclear factor-κB ligand(RANKL)to OPG correlate with disease severity in patients with primary knee osteoarbritis[J].Clin Biochem, 2008,41(9):746-749.

        [11]Sadahiro K,Masae O,Yukino C,et al.IL-27 suppresses RANKL expression in CD4+T cells in part through STAT3[J].Immunol Lett,2011, 38(1):47-53.

        [12]Ryser MD,Qu Y,Komarova SV.Osteoprotegerin in bone metastases: mathematical solution to the puzzle[J].PLoS Comput Biol,2012,8 (10):e1002703.

        [13]Roux S.New treatment targets in osteoporosis[J].Joint Bone Spine, 2010,77(3):222-228.

        [14]Burkiewicz JS,Scarpace SL,Bruce SP.Denosumab in osteoporosis and oncology[J].Ann Pharmacother,2009,43(9):1445-1455.

        [15]Huang YL,Liu YW,Huang YJ,et al.A special ingredient(VtR)containing oligostilbenes isolated from vitis thunbergii prevents bone loss in ovariectomized mice:in vitro and in vivo study[J].Evid Based ComplementAlternat Med,2013,2013:409421.

        [16]Malliga DE,Wagner D,Fahrleitner PA.The role of osteoprotegerin (OPG)receptor activator for nuclear factor kappaB ligand(RANKL)in cardiovascular pathology-a review[J].Wien Med Wochenschr,2011, 161(23-24):565-570.

        [17]Tat SK,Pelletier JP,Velasco CR,et al.New perspective in osteoarthritis:the OPG and RANKL system as a potential therapeutic target[J]. Keio J Med,2009,58(1):29-40.

        [18]Enomoto T,Furuya Y,Tomimori Y,et al.Establishment of a new murine model of hypercalcemia with anorexia by overexpression of soluble receptor activator of NF-κB ligand using an adenovirus vector[J].J Bone Miner Metab,2011,29(4):414-412.

        [19]Bashir A,Mak YT,Sankaralingam S,et al.Changes in RANKL/OPG/ RANK gene expression in peripheral mononuclear cells following treatment with estrogen or raloxifene[J].Steroids,2005,70(13):847-855.

        [20]Furuya Y,Inagaki A,Khan M,et al.Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factorκB ligand(RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity[J].J Biol Chem,2013,288(8):5562-5571.

        [21]程少丹,王擁軍,唐德志,等.OPG基因敲除小鼠骨質(zhì)疏松情況的研究[J].中國(guó)骨質(zhì)疏松雜志,2008,14(1):16-19.

        [22]Bergstrm I,Parini P,Gustafsson SA,et al.Physical training increases osteoprotegerin in postmenopausal women[J].J Bone Miner Metab, 2012,30(2):202-207.

        [23]Miller PD.Anti-resorptives in the management of osteoporosis[J]. Best Pract Res Clin Endocrinol Metab,2008,22(5):849-868.

        [24]Gallagher JC,Sai AJ.Molecular biology of bone remodeling:implications for new therapeutic targets for osteoporosis[J].Maturitas,2010, 65(4):301-307.

        [25]West SL,Scheid JL,Souza MJ,et al.The effect of exercise and estrogen on osteoprotegerin in premenopausal women[J].Bone,2009,44 (1):137-144.

        [26]董潔瓊.運(yùn)動(dòng)對(duì)去卵巢骨質(zhì)疏松大鼠OPG,RANKL表達(dá)的影響[D].上海:上海體育學(xué)院,2011.

        [27]Wensel TM,Iranikhah MM,Wilborn TW,et al.Effects of denosumab on bone mineral density and bone turnover in postmenopausal women[J].Pharmacotherapy,2011,31(5):510-523.

        [28]Orcel P.Advances treatment of osteoporosis:new molecules,new strategies[J].BullAcad Natl Med,2010,194(8):1516-1518.

        [29]Lewiecki EM.Treatment of osteoporosis with denosumab[J].Maturitas,2010,66(2):182-186.

        [30]Blahos J.Current and future options for treatment of osteoporosis[J]. Vnitr Lek,2011,57(11):888-890.

        [31]Rudic JS,Poropat G,Krstic MN,et al.Hormone replacement for osteoporosis in women with primary biliary cirrhosis[J].Cochrane Database Syst Rev,2011,(12):CD009146.

        [32]Duggan ST,McKeage K.Bazedoxifene:a review of its use in the treatment of postmenopausal osteoporosis[J].Drugs,2011,71(16):2193-2212.

        [33]李世昌,季瀏,劉體偉,等.不同方式運(yùn)動(dòng)對(duì)去卵巢大鼠骨密度、骨生物力學(xué)及代謝指標(biāo)的影響[J].體育學(xué)刊,2012,19(2):132-137.

        [34]Iwamoto J.Effect of exercise on developing bone mass and cortical bone geometry[J].Clin Calcium,2011,21(9):1323-1328.

        [35]房冬悔.生長(zhǎng)期骨量與不同沖擊力運(yùn)動(dòng)的關(guān)系[J].中國(guó)組織工程研究與臨床康復(fù),2007,11(36):7248-7251.

        [36]樓紅侃,成羿,黃良夫.運(yùn)動(dòng)對(duì)骨質(zhì)疏松的影響和機(jī)制[J].浙江臨床醫(yī)學(xué),2008,10(8):1009-1011.

        [37]Zhang Y,Paul EM,Sathyendra V,et al.Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone[J].PLoS One,2011,6(8):e23516.

        [38]Kaneuji T,Ariyoshi W,Okinaga T,et al.Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts[J].Biochem Biophys Res Commun,2011,408(1):103-109.

        [39]Hou WW,Zhu ZL,Zhou Y,et al.Involvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of osteoblasts[J].J Orthop Sci,2011,16(5):598-605.

        [40]Li J,Rose E,Frances D,et al.Effect of oscillating fluid flow stimulation on osteocyte mRNA expression[J].J Biomech,2012,45(2):247-251.

        [41]Yamamoto K,Yamamoto T,Ichioka H,et al.Effects of mechanical stress on cytokine production in mandible-derived osteoblasts[J].Oral Dis,2011,17(7):712-719.

        [42]Sanchez C,Gabay O,Salvat C,et al.Mechanical loading highly increase IL-6 production and decrease OPG expression by osteoblasts[J]. Osteoarthritis Cartilage,2009,17(4):473-481.

        [43]Jules J,Ashley JW,Feng X.Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis[J].Expert Opin Ther Targets,2010,14(9):923-934.

        [44]Frenkel B,Hong A,Baniwal SK,et al.Regulation of adult bone turnover by sex steroids[J].J Cell Physiol,2010,224(2):305-310.

        Stress Sensitive Signal Pathway Osteoprotegerin/ReceptorActivator of Nuclear Factor-κB ligand/ReceptorActivator of Nuclear Factor-κB and Osteoporosis(review)

        LI Sheng-cun,BAO Jie,WANG Jing,et al.School of Physical Education of Soochow University,Suzhou 215021,Jiangsu,China

        Exercise is benefic for osteoporosis,without clear molecular biology mechanism.The osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB(OPG/RANKL/RANK)signal pathway contributes to osteoporosis,which can be mediated by mechanical force.Research progress on osteoporosis and the stress sensitive signal pathway OPG/RANKL/RANK were reviewed in this paper.

        osteoporosis;stress;osteoprotegerin;receptor activator of nuclear factor-κB ligand;receptor activator of nuclear factor-κB; signal pathway;review

        R681

        A

        1006-9771(2014)03-0250-03

        2013-09-02

        2013-11-01)

        江蘇省2012年度普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(No.CXZZ12_0787)。

        蘇州大學(xué)體育學(xué)院,江蘇蘇州市215021。作者簡(jiǎn)介:李盛村(1985-),男,漢族,浙江溫州市人,博士研究生,主要研究方向:運(yùn)動(dòng)醫(yī)學(xué)。通訊作者:王國(guó)祥,男,教授,博士生導(dǎo)師。

        10.3969/j.issn.1006-9771.2014.03.013

        猜你喜歡
        骨細(xì)胞成骨細(xì)胞骨質(zhì)疏松癥
        機(jī)械應(yīng)力下骨細(xì)胞行為變化的研究進(jìn)展
        健康老齡化十年,聚焦骨質(zhì)疏松癥
        調(diào)節(jié)破骨細(xì)胞功能的相關(guān)信號(hào)分子的研究進(jìn)展
        骨質(zhì)疏松癥為何偏愛女性
        骨細(xì)胞在正畸牙移動(dòng)骨重塑中作用的研究進(jìn)展
        淫羊藿次苷Ⅱ通過p38MAPK調(diào)控成骨細(xì)胞護(hù)骨素表達(dá)的體外研究
        土家傳統(tǒng)藥刺老苞總皂苷對(duì)2O2誘導(dǎo)的MC3T3-E1成骨細(xì)胞損傷改善
        Bim在激素誘導(dǎo)成骨細(xì)胞凋亡中的表達(dá)及意義
        從治未病悟糖尿病性骨質(zhì)疏松癥的防治
        滋肝補(bǔ)腎法治療肝腎虧虛型骨質(zhì)疏松癥40例
        亚洲精品国产品国语在线app| 粗大的内捧猛烈进出少妇| 国内精品卡一卡二卡三 | 亚洲精品一区二区三区麻豆| 俺去俺来也在线www色官网| 国产成人亚洲综合一区| 国产一品二品三品精品久久| 极品粉嫩小仙女高潮喷水网站| 大又大粗又爽又黄少妇毛片| 97成人精品| 亚洲精品一区二区三区蜜臀| 国产精品久久久三级18| 少妇愉情理伦片丰满丰满午夜| 无码日韩人妻AV一区免费| 操老熟妇老女人一区二区| av在线免费观看蜜桃| 中文字幕一区二区三区日韩精品| 国产麻豆一精品一AV一免费软件| 成人av在线免费播放| 婷婷精品国产亚洲av麻豆不片| 午夜精品一区二区三区的区别| 日本手机在线| 亚州中文字幕乱码中文字幕| 久久精品国产99国产精偷| 亚洲精品无码国模| 国产成人丝袜在线无码| 国产性虐视频在线观看| 粗大猛烈进出白浆视频| 五月天综合网站| 偷拍美女一区二区三区视频| 美女黄频视频免费国产大全| 一区二区三区日韩蜜桃| 色五月丁香五月综合五月| 久久99国产乱子伦精品免费| 成人免费视频自偷自拍| 在线视频国产91自拍| 久久久无码中文字幕久...| 无码少妇一级AV便在线观看 | 国产成人无码一区二区三区| 国产无遮挡又黄又爽在线视频 | 青青草在线成人免费视频|