亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        新基因功能驗證技術(shù)及其在微藻基因克隆中的適用性分析?

        2014-01-22 07:24:41楊官品林根妹
        關(guān)鍵詞:基因功能報告基因微藻

        楊官品,林根妹

        (中國海洋大學海洋生命學院,山東青島266003)

        新基因功能驗證技術(shù)及其在微藻基因克隆中的適用性分析?

        楊官品,林根妹

        (中國海洋大學海洋生命學院,山東青島266003)

        微藻是指1群真核、單細胞、行光合作用的生物。微藻種類多,分布廣泛,有關(guān)鍵生態(tài)學功能,也有水產(chǎn)、生物能源應(yīng)用價值。與模式生物和經(jīng)濟動植物一樣,新基因克隆是微藻生物學研究的主要內(nèi)容?;蚪M注釋、轉(zhuǎn)錄組分析和基因分離等依據(jù)序列和結(jié)構(gòu)同源性,是從已知到已知的過程;而新基因克隆需鎖定序列和驗證功能,其中,功能驗證是基因克隆的最重要內(nèi)容。已有的基因功能驗證方法有基因敲除、基因沉默、插入突變、基因組編輯等。多種微藻已有遺傳轉(zhuǎn)化技術(shù),有望直接采用模式生物和經(jīng)濟動植物的基因功能驗證技術(shù)克隆新基因。本文歸納了已有新基因功能驗證技術(shù),并分析了它們在微藻新基因克隆中的適用性,以促進微藻新基因克隆研究。

        微藻;全新基因;基因克隆;遺傳轉(zhuǎn)化

        第一代測序的強力推動[1]、第二代測序[2]的快速普及、第三代測序[3]和蛋白質(zhì)組學分析[4]的逐步興起,使人們能快速、低成本獲得海量DNA、RNA和蛋白質(zhì)序列,并基于這些序列解析眾多生物學過程和現(xiàn)象的生理、遺傳機制。但是,這些分子生物學研究的主流手段根植于“序列和結(jié)構(gòu)相似性”,對基因功能的認知實際上是“從已知到已知”的過程。不論是基因組測序,還是轉(zhuǎn)錄組、蛋白組分析,依據(jù)相似性注釋的基因只占一定比例且無法知曉這些基因的新功能;而在非模式生物中,可注釋基因比例經(jīng)常更低。同樣的情況還見于基因克隆和表達分析?;蚩寺〗?jīng)常是基于其他物種相同功能基因的同源性,與依據(jù)化學、物理性質(zhì)差異分離特定物質(zhì)的過程相似,依據(jù)基因間同源性分離基因。盡管常冠以新或全新基因克隆,但這樣的“克隆”只能說是分離,不是真正的克隆,更不是從頭克?。―enovo cloning),分離的基因也不是新(New)基因,更不是全新(Novel)基因?;蚩寺”仨毎ㄦi定基因序列和闡明基因功能2個環(huán)節(jié),實際上,兩者經(jīng)常是不可分的過程。即使在目前的技術(shù)背景下,鎖定新基因序列、闡明新基因功能仍十分困難。因此,從頭克隆一個基因并闡明其功能仍然是極其出彩的工作。直至今天,基因的從頭克隆仍能發(fā)表在頂級期刊上,例如動物育性基因[5]和性別決定基因[6]。試圖克隆選定物種的基因時,必須牢記不僅僅要鎖定基因序列,還要闡明其功能(包括已知基因的新功能);不只是基于相似性推知基因功能,而是用生物體系證明基因功能。

        微藻是指真核、單細胞(少數(shù)是細胞集合)、有光合作用能力、能自由生活的一群生物,種類多,分布廣,生物學特性復雜,研究基礎(chǔ)薄弱。基于結(jié)構(gòu)和序列相似性(同源性)分離微藻基因、注釋微藻基因組如火如荼,但從頭克隆微藻基因案例仍十分罕見。細菌、真菌、果蠅、線蟲、斑馬魚、小鼠、擬南芥、水稻等模式生物基因克隆成就斐然,相關(guān)研究方法和策略有望用于微藻基因克隆。本文歸納了已有的鎖定基因序列、闡明基因功能的方法,并分析了這些方法在微藻基因克隆中的適用性,期望藉此促進微藻新基因克隆研究。

        1 基因敲除(Gene knockout)

        基因敲除經(jīng)同源重組(Homologous recombination)插入阻斷目標基因表達,比較敲除前后表型差異闡明基因功能。基因敲除是闡明基因功能最有效方法之一[7]。目標基因可隨機選定,亦可依已有認知確定,或經(jīng)遺傳學分析鎖定?;蚯贸谢虼虬?、基因捕獲等不同表述。

        1.1基因打靶(Gene targeting)

        基因打靶指定點敲除或修飾選定基因的過程。動物基因打靶組合使用同源重組和胚胎干細胞培養(yǎng)技術(shù)。敲除載體包含正選擇標記(如新霉素抗性基因neo)和負選擇標記(如單純皰疹病毒胸腺嘧啶激酶基因HSV-tk、白喉毒素基因DTA)。載體進入胚胎干細胞,neo基因兩側(cè)與目標基因同源重組,新霉素篩選獲得抗性細胞(正選擇),再消除隨機整合(負選擇)[8]?;贑re/loxP重組酶系統(tǒng)的基因打靶,可實現(xiàn)時間和位置控制,避免敲除基因?qū)е屡咛ニ劳龆鵁o法觀察表型。核移植和體細胞克隆使體細胞基因打靶成為可能[9],但隨機整合率高,多基因同步打靶困難。

        哺乳動物基因打靶的正負篩選對植物也有效,如水稻waxy基因打靶[10]。擬南芥中可用綠色熒光蛋白表型觀察替代新霉素抗性篩選[11]。但植物隨機整合頻率高,基因打靶效率低。由于非同源末端連接途徑活躍,真菌同源重組效率也偏低。遺傳修飾關(guān)閉非同源末端連接途徑可提高粗糙脈孢菌、稻瘟病菌等基因打靶效率[12-13]。

        雖未明確使用基因打靶這一表述,但基因打靶在細菌中早有應(yīng)用。熟悉的大腸桿菌克隆系統(tǒng)的藍白斑篩選就是基因插入失活基因的例子。同源重組是細菌基因修飾的常用工具。例如,將特定基因側(cè)翼序列組合在基因修飾產(chǎn)物兩側(cè),經(jīng)同源重組可高效修飾大腸桿菌基因[14-15]。

        1.2基因捕獲(Gene trapping)

        基因捕獲載體攜帶的報告基因與整合位點上內(nèi)源基因融合,生成報告基因和內(nèi)源基因調(diào)控序列融合體。內(nèi)源基因突變使性狀改變,而報告基因的表達使追尋內(nèi)源基因成為可能。

        基因捕獲涉及的內(nèi)源基因表達調(diào)控序列包括啟動子和增強子。在將報告基因經(jīng)同源重組隨機植入基因組的過程中,若有內(nèi)源啟動子(Promoter)使報告基因表達,就能根據(jù)報告基因選出突變株;同時,報告基因表達引起啟動子控制基因的失活,從而依據(jù)表型變化可確定啟動子控制基因的功能。盡管基因的啟動子捕獲有隨機性,但短時間內(nèi)可大量敲除基因[16]。增強子(Enhancer)加強基因轉(zhuǎn)錄,且增強作用與它和基因的相對方向、位置無關(guān)。增強子可增強或阻遏幾千堿基對之遙基因轉(zhuǎn)錄,也可干涉異源啟動子功能。通過同源重組將啟動子和報告基因引入基因組,若增強子發(fā)揮功能,則報告基因表達強度會改變,且該增強子對應(yīng)基因決定的性狀會受影響。依據(jù)報告基因強弱和性狀差異,可證實基因功能。增強子基因捕獲已成功用于果蠅大規(guī)?;蚝Y選[17],在小鼠中也表現(xiàn)出獨特的優(yōu)勢[18]。報告基因lacZ高度靈敏且易檢測。經(jīng)逆轉(zhuǎn)錄病毒介導或其他途徑將lacZ報告基因構(gòu)建物隨機整合到小鼠胚胎干細胞基因組中,若報告基因按正確方向整合到某基因內(nèi)含子下游,無移碼突變,則產(chǎn)生具活性的β-半乳糖苷酶融合蛋白。若胚胎干細胞形成生殖細胞,則可產(chǎn)生雜合小鼠形成表型。該方法不僅可快速產(chǎn)生大量突變,而且lacZ基因表達位置和時間可反映內(nèi)源基因表達模式[19]。

        基因打靶可敲除任何基因,但耗時費力;而基因捕獲高效,但有隨機性。國際基因敲除小鼠聯(lián)盟(The international knockout mouse consortium,IKMC)致力于組合使用基因打靶和基因捕獲,開發(fā)出定向捕獲、條件性基因捕獲等方法,以達到覆蓋基因更多、打靶效率更高的效果[20]。

        目前,包括衣藻、三角褐指藻、微綠球藻等在內(nèi)的大量真核和原核微藻已經(jīng)建立起隨機整合甚至同源重組遺傳轉(zhuǎn)化體系[21-27]。集胞藻中功能基因敲除技術(shù)已較為成熟,已有同源重組成功案例。在上下游同源臂間插入抗性基因或報告基因構(gòu)建基因敲除或啟動子捕獲載體,轉(zhuǎn)入集胞藻細胞,可闡明選定基因功能[87-88]。在萊茵衣藻基因打靶嘗試中發(fā)現(xiàn),單鏈DNA可顯著降低隨機整合頻率,較雙鏈DNA同源重組效率高[28]。將編碼蛋白有博來霉素(Zeocin)抗性的ble基因作為選擇標記插入硝酸/亞硝酸還原酶基因,形成線狀構(gòu)建物可電穿孔轉(zhuǎn)入微綠球藻,敲除這2種酶基因[29],很多實驗室(包括筆者實驗室)正在重復驗證這一同源重組系統(tǒng)。但和高等植物類似,微藻中極有可能存在同源重組效率低的問題??梢云诖诓痪玫膶?,基因打靶和基因捕獲技術(shù)將會用于微藻新基因的克隆和功能驗證,成為微藻基因克隆研究不可或缺的工具。

        2 基因沉默(Gene silencing)

        基因沉默通過降低基因表達水平改變表型,從而驗證基因功能?;虺聊侄沃饕荝NA干擾(RNA interference,RNAi)和反義嗎啉代寡核苷酸(Morpholino)干擾。RNA干擾通過人工引入完美堿基配對的dsRNA,經(jīng)Dicer酶、Ago蛋白等(RNA干擾系統(tǒng))作用形成siRNA,誘導mRNA特異性降解,沉默基因功能,改變對應(yīng)性狀表現(xiàn)[30-31]。引入干擾RNA的方法主要包括顯微注射、基因槍、喂食可轉(zhuǎn)錄雙鏈RNA細菌、直接雙鏈RNA浸泡、病毒和農(nóng)桿菌介導轉(zhuǎn)化、電轉(zhuǎn)化等。Morpholino是嗎啡啉類似物修飾的反義寡核苷酸,與mRNA前體或與剪切處結(jié)合,通過空間位阻特異性抑制翻譯或RNA剪切,實現(xiàn)基因沉默[32]。

        干擾綠色熒光蛋白報告基因表達證明了RNA干擾在芽殖酵母(Saccharomyces castellii)中的可行性[33]。用此方法闡明功能的酵母基因有端粒酶和二態(tài)性相關(guān)基因等[34-35]。將RNA干擾構(gòu)建物導入果蠅和線蟲胚胎,已闡明與生殖、胚胎發(fā)育、細胞分裂和分化、信號傳導通路等生命過程相關(guān)的許多基因的功能,并建立起全基因組RNA干擾轉(zhuǎn)基因文庫[36-39]。在斑馬魚[40]、小鼠[41]等的基因功能解析中,RNA干擾也是常用方法。RNA干擾與表達譜、蛋白質(zhì)互作分析[42]、敏感突變株[43]等組合使用,可對任何組織任何發(fā)育階段的基因功能進行研究,同時還可用于反向遺傳學研究[44]。RNA干擾同樣適用植物,其解析的基因包括擬南芥耐寒性調(diào)節(jié)基因[45]、有絲分裂相關(guān)基因[46]、水稻抗病毒基因[47]等。與果蠅、線蟲等模式動物一樣,植物RNA干擾庫的建立進一步提高了基因功能解析效率[48]。

        特別需要明晰RNA干擾蛋白系統(tǒng)和小RNA的區(qū)別和關(guān)聯(lián)。小RNA(Small RNA)長約20~30個核苷酸,是基因表達和基因組結(jié)構(gòu)管控的關(guān)鍵因子,調(diào)節(jié)基因表達、維持基因組穩(wěn)定。依起源、結(jié)構(gòu)、效應(yīng)蛋白等可將小RNA分為短干擾RNA(Short interfering RNA,siRNA)、微小RNA(MicroRNA,miRNA)和piwi互作RNA(Piwi-interacting RNA,piRNA)3個主要類群。短干擾RNA源自轉(zhuǎn)入基因、病毒;著絲粒、轉(zhuǎn)座子和其他重復序列;雙向mRNA轉(zhuǎn)錄本(Convergent mRNA transcript)、正義-反義配對物(Sense-antisense pair)、假基因反義轉(zhuǎn)錄本和正?;蛘x轉(zhuǎn)錄本雙鏈、發(fā)卡結(jié)構(gòu)RNA(Hairpin RNA,hpRNA)等。因此,短干擾RNA既可源自外源核酸,也可基因組內(nèi)部產(chǎn)生。微小RNA是動植物基因組編碼的miRNA基因的轉(zhuǎn)錄剪切產(chǎn)物,有加帽和加尾修飾。Piwi互作RNA指那些與piwi蛋白結(jié)合發(fā)揮作用的小RNA,它們控制轉(zhuǎn)座子活動,維持基因組穩(wěn)定。piRNA前體一般從基因組稱為“聚叢(Cluster)”的區(qū)域(富含轉(zhuǎn)座子區(qū)域)轉(zhuǎn)錄而來。除piRNA外,其他2類小RNA發(fā)揮功能都需要Dicer酶、Ago蛋白等發(fā)揮作用。miRNA、piRNA和內(nèi)源siRNA源自基因組,而外源siRNA源自人工引入;Dicer酶、Ago蛋白等早已存在,而miRNA可能只存在于多細胞真核生物中。

        針對目的基因翻譯起始點設(shè)計Morpholino,顯微注射引入,用實時定量PCR、吖啶橙染色、原位雜交、原位免疫熒光等手段檢測基因表達水平,可快速準確驗證基因功能[49-50]。該方法已廣泛用于斑馬魚、爪蟾、小鼠等生物的基因功能研究。其缺點在于需重復注射且效應(yīng)短暫,對成體表型幾乎無影響,只適用發(fā)育初期相關(guān)研究。

        有用RNA干擾對萊茵衣藻高產(chǎn)H2突變株進行研究的報道。同步敲降3個捕光復合物蛋白基因使表達水平下降,H2生產(chǎn)效率和生物量換能效率升高[51]。可以預期,RNA干擾方法將逐步演變成微藻基因功能研究的主要方法之一。但是,Morpholino在引入、效應(yīng)維持等問題上都存在困難,微藻中還沒有任何嘗試。如果添加在培養(yǎng)基中的Morpholino可自由進入微藻細胞,那么,Morpholino將會成為微藻極其有效的基因功能驗證方法,值得嘗試。

        3 圖位克隆和基因組目標區(qū)重測序

        基因克隆包括序列鎖定和功能驗證2個步驟。基因功能驗證可用基因敲除、基因沉默等方法,而基因序列鎖定可通過圖位克隆或基因組目標區(qū)域重測序完成。

        圖位克隆(Map-based cloning)基于遺傳連鎖或遺傳關(guān)聯(lián),將特定性狀控制區(qū)鎖定在一個很小的染色體區(qū)域(越小越好,如<1c M)的過程。測序該區(qū)域?qū)?yīng)的細菌人工染色體(BAC)或BAC重疊群,甄別所有但數(shù)量很少的功能基因,再比較相對性狀對應(yīng)基因,進一步鎖定功能基因,最后通過引入完整功能基因恢復性狀表現(xiàn)或敲除基因喪失性狀表現(xiàn)驗證基因功能。鎖定基因序列依賴RFLP、SSR、SNP等分子標記連鎖圖,因而稱為圖位克隆。高多態(tài)性分子標記和高效基因型分型技術(shù),如基于海量平行測序的RAD[52]等,將進一步提高圖位克隆效率。

        重測序技術(shù)是在已知基因組序列基礎(chǔ)上,對群體或個體基因組中的特定區(qū)域(甚至全基因組)進行測序,掃描序列變異,甄別基因[53]。在化學誘變突變體中,組合使用重測序方法、定向誘導基因組局部突變技術(shù)(Targeting induced local lesions in genomes,TILLING)和多種信息學分析手段,可高效率、高通量識別和篩查基因突變[54-56]。

        微藻中,萊茵衣藻已有分子標記連鎖圖譜構(gòu)建[57]和圖位克?。?8]嘗試。但這些嘗試基于連鎖分析,需經(jīng)有性生殖和雜交構(gòu)建分離群體。大多數(shù)微藻生活史不詳,沒有有性生殖或者有性生殖過程難以操控。誘變技術(shù)可以創(chuàng)制豐富變異,并且可與人工進化[59-61]結(jié)合使用。各種突變技術(shù)已在酵母、細菌等遺傳改良中廣泛使用。近年來,更有離子束注入[62-63]、常溫常壓等離子體[64]誘變進一步提高誘變深度、誘變效率和誘變安全性。關(guān)聯(lián)分析[65]也早已用于酵母[66]、高等植物[67-68]的基因序列鎖定。目前已有大量微藻基因組獲得測序[89-95]。在這些基因組序列基礎(chǔ)上,既可用高密度標記,也能用重測序分型基因型。因此,“誘變創(chuàng)制變異群體、關(guān)聯(lián)分析或重測序鎖定基因序列、基因敲除或沉默驗證基因功能”途徑將是微藻全新基因克隆的主要手段。

        4 插入突變(Insertional mutation)

        插入突變將外源DNA隨機插入到基因組中,影響插入位點基因正常表達,產(chǎn)生具有突變表型的插入突變體,是1種可以在所有基因中誘導突變的方法。與基因捕獲相似,插入序列作為標記可以識別插入位點,追尋內(nèi)源基因。通過對側(cè)翼序列直接進行同源搜索或染色體步移可獲得候選基因,并用反轉(zhuǎn)錄或原位雜交等方法對插入突變破壞的基因表達作進一步證實[69-70]。

        常用的插入DNA有T-DNA、轉(zhuǎn)座子等。來自根癌農(nóng)桿菌Ti質(zhì)粒的T-DNA在基因組中整合,一般只有1~2個拷貝,可引起插入突變[71]。T-DNA插入突變已在擬南芥、水稻等生物的基因功能研究廣泛應(yīng)用。雖然T-DNA插入能產(chǎn)生穩(wěn)定突變,但僅適用農(nóng)桿菌介導的遺傳轉(zhuǎn)化。另外,T-DNA整合可能引起染色體重排,導致與插入突變無關(guān)的表型,為遺傳學分析帶來困難[72]。轉(zhuǎn)座子可在基因座之間移動,插入基因時可影響基因表達,引起突變。與T-DNA相比,轉(zhuǎn)座子可在轉(zhuǎn)移酶作用下被剪切掉,使生物體恢復野生型表型。因此,可依據(jù)突變體表型的可恢復性判定突變是否由轉(zhuǎn)座子插入引起。在斑馬魚中,將基于莫洛尼鼠類白血病假型逆轉(zhuǎn)錄病毒載體大規(guī)模插入基因組,可快速識別早期脊椎動物發(fā)育相關(guān)基因[70,73]。

        微藻中廣泛存在病毒或噬藻體。因此,微藻中也應(yīng)該能建立插入突變體系。不過,目前還沒有任何嘗試。相關(guān)研究有望成為微藻新基因克隆的1個全新研究領(lǐng)域。

        5 基因組編輯(Genome editing)

        核酸內(nèi)切酶早已用于體外DNA分析,俗稱分子剪刀,可精確識別和切斷核酸序列。結(jié)合核酸內(nèi)切酶切斷DNA以及基因組非同源末端連接或同源重組修復機制,可以實現(xiàn)基因組定點修飾,完成基因組編輯[74]。

        鋅指核酸內(nèi)切酶就是為基因組編輯設(shè)計的1種限制性內(nèi)切酶-鋅指蛋白融合蛋白。鋅指核酸內(nèi)切酶由一系列鋅指蛋白單元和非特異性限制性內(nèi)切酶Fok I切割域融合形成[75],每個鋅指蛋白可用其α螺旋上-1~+6氨基酸殘基識別1個三聯(lián)體堿基[76],因此,設(shè)計改造氨基酸殘基組成就可設(shè)計出特異性識別DNA序列的鋅指蛋白[77]。當兩個特別設(shè)計的“鋅指蛋白-內(nèi)切酶”與目標DNA結(jié)合,內(nèi)切酶切斷DNA,基因組修復切點時定點引入突變。鋅指核酸內(nèi)切酶已被成功用于果蠅、線蟲、斑馬魚和哺乳動物等基因組編輯,其特異位點突變效率與基因敲除相比可提高103~105倍[78],但也存在許多問題,例如鋅指蛋白結(jié)構(gòu)間的相似性可能影響識別的特異性,使可操作基因范圍受到限制。

        轉(zhuǎn)錄激活因子樣效應(yīng)物(Transcription activatorlike effectors,TALE)是一類可調(diào)節(jié)內(nèi)源基因轉(zhuǎn)錄活動的蛋白質(zhì),其DNA結(jié)合結(jié)構(gòu)域有多個重復單位,每個重復單位由33~35個氨基酸構(gòu)成,可識別1個堿基對。TALENs是人工合成的含TALE DNA結(jié)合域和Fok I切割域的融合蛋白,可用于基因組編輯[79]。與鋅指核酸酶相比,TALENs不會有重復單元間的關(guān)聯(lián)影響,相對更易設(shè)計,DNA識別更特異[80]。

        成簇的規(guī)律間隔的短回文重復序列(Clustered regularly interspaced short palindromic repeats,CRISPR)來自特殊的遺傳座位,這些遺傳座位一般由21~48 bp的回文重復序列和重復序列間26~72 bp非重復性間隔序列組成,側(cè)翼序列為4~20個數(shù)量不等的CRISPR相關(guān)基因(cas)。CRISPR/Cas系統(tǒng)是1種細菌特有的防御系統(tǒng)[81]。Cas核酸酶受短鏈RNA引導進行位點特異性DNA切割,并引發(fā)細胞使用事先引入的正確的基因序列模板按照相似性進行損傷修復。這種RNA引導的核酸酶技術(shù)易于設(shè)計、應(yīng)用廣泛,且可將多條引導序列編碼到1個CRISPR上,從而實現(xiàn)基因組多個位點同步編輯[82]。CRISPR/Cas介導的基因調(diào)節(jié)能抑制某些細菌蛋白(如脂蛋白)轉(zhuǎn)錄物的生成,轉(zhuǎn)錄水平可降低100倍。因此,也可通過對蛋白表達的抑制來研究相關(guān)基因功能[83]。

        這些方法最初在細菌中研發(fā)和應(yīng)用,并逐漸延伸到一些模式生物、高等動植物[84-86]。雖然目前微藻的相關(guān)研究幾乎為零,但受其他生物的啟發(fā),我們有理由相信這些理念和工具一定會很快引入微藻,開展相關(guān)基礎(chǔ)研究探索。

        6 結(jié)語

        微藻種類多,分布廣,除在生態(tài)系統(tǒng)具有不可替代的作用,微藻在水產(chǎn)養(yǎng)殖、生物能源開發(fā)、食品飼料研制等方面也有極顯著的應(yīng)用價值。包括基因組測序在內(nèi),微藻分子生物學研究正蓬勃開展。但是,微藻新基因克隆案例卻很少。已有的嘗試也都基于序列和結(jié)構(gòu)的同源性,實質(zhì)上是從已知到已知的基因序列分離過程。模式生物和經(jīng)濟動植物的新基因克隆需鎖定序列,同時在生物體系中驗證功能。其中,功能驗證是新基因克隆最重要的內(nèi)容。已有的基因功能驗證方法有基因敲除、基因沉默、RNA干擾、基因組編輯等。微藻中有嘗試,但還處于起步階段。值得慶幸的是,多種微藻已有遺傳轉(zhuǎn)化技術(shù),有望直接采用模式生物和經(jīng)濟動植物基因功能驗證技術(shù)來克隆新基因。

        本文歸納了模式生物和經(jīng)濟動植物已有新基因功能驗證技術(shù),并結(jié)合微藻生物學特性分析了這些技術(shù)在微藻新基因克隆中的適用性,以促進微藻新基因克隆研究。筆者相信,基因敲除、基因沉默、RNA干擾等技術(shù)將很快用于微藻新基因克隆研究;而插入突變、基因組編輯等技術(shù)用于微藻新基因克隆可能還需要先克服一些技術(shù)瓶頸。另外,任何單一方法都不能適用所有基因功能闡明的需要。微藻特別需要闡明基因功能的方法以加快從頭克隆微藻新基因。筆者的歸納和分析將有助于微藻新基因克隆直接采用或仿效借鑒已有新基因功能驗證技術(shù)。

        [1] International Human Genome Sequencing Consortium.Finishing the euchromatic sequence of the human genome[J].Nature,2004,431:931-945.

        [2] Bentley D R,Balasubramanian S,Swerdlow H P,et al.Accurate whole human genome sequencing using reversible terminator chemistry[J].Nature,2008,456:53-59.

        [3] Huddleston J,Ranade S,Malig M,et al.Reconstructing complex regions of genomes using long-read sequencing technology[J]. Genome Research,2014,24(4):688-696.

        [4] Altelaar A F M,Munoz J,Heck A J R.Next-generation proteomics:towards an integrative view of proteome dynamics[J]. Nature Reviews Genetics,2013,14:35-48.

        [5] Chung J J,Navarro B,Krapivinsky G,et al.A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa[J].Nature Communications,2011,2:153.

        [6] Forconi M,Canapa A,Barucca M,et al.Characterization of sex determination and sex differentiation genes in Latimeria[J]. PLoS ONE,2013,8(4):e56006.

        [7] The Comprehensive Knockout Mouse Project Consortium.The knockout mouse project[J].Nature Genetics,2004,36:921-924.

        [8] Thomas K R,Capecchi M R.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J].Cell,1987,51:503-512.

        [9] Mateyak M K,Obaya A J,Adachi S,et al.Phenotypes of c-Mycdeficient rat fibroblasts isolated by targeted homologous recombination[J].Cell Growth and Differentiation,1997,8:1039-1048.

        [10] Terada R,Johzuka-Hisatomi Y,Saitoh M,et al.Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics[J].Plant Physiology,2007,144:846-856.

        [11] Haseloff J,Siemering K R,Prasher D C,et al.Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly[J].Proceedings of the National Academy of Sciences of the U-nited States of America,1997,94:2122-2127.

        [12] Ninomiya Y,Suzuki K,Ishii C,et al.Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101:12248-12253.

        [13] Villalba F,Collemare J,Landraud P,et al.Improved gene targeting in Magnaporthe grisea by inactivation of Mg KU80 required for non-homologous end joining[J].Fungal Genetics and Biology,2008,45:68-75.

        [14] Smith G R.Homologous recombination in E.coli:Multiple pathways for multiple reasons[J].Cell,1989,58:807-809.

        [15] Zhang Y,Muyrers JPP,Testa G,et al.DNA cloning by homologous recombination in Escherichia coli[J].Nature Biotechnology,2000,18:1314-1317.

        [16] Skarnes W C.Entrapment vectors:A new tool for mammalian genetics[J].Nature Biotechnology,1990,8:827-831.

        [17] Bier E,Vaessin H,Shepherd S,et al.Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector[J]. Genes and Development,1989,3:1273-1287.

        [18] Alien N D,Cran D G,Barton S C,et al.Transgenes as probes for active chromosomal domains in mouse development[J].Nature,1988,333:852-855.

        [19] Skarnes W C,Auerbach B A,Joyner A L.A gene trap approach in mouse embryonic stem cells:The lacZ reported is activated by splicing,reflects endogenous gene expression,and is mutagenic in mice[J].Genes and Development,1992,6:903-918.

        [20] Ringwald M,Iyer V,Mason J C,et al.The IKMC web portal:A central point of entry to data and resources from the International Knockout Mouse Consortium[J].Nucleic Acids Research,2011,39:D849-D855.

        [21] Cha T S,Chen C F,Yee W,et al.Cinnamic acid,coumarin and vanillin:Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga,Nannochloropsis sp.[J].Journal of Microbiological Methods,2011,84:430-434.

        [22] Chen H L,Li S S,Huang R,et al.Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis Oculata(Eustigmatophyceae)[J].Journal of Phycological,2008,44:768-776.

        [23] Coll J M.Methodologies for transferring DNA into eukaryotic microalgae[J].Spanish Journal of Agricultural Research,2006,4:316-330.

        [24] Miyahara M,Aoi M,Inoue-Kashino N,et al.Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation[J].Bioscience,Biotechnology,and Biochemistry,2013,77:874-876.

        [25] Neupert J,Shao N,Lu Y,et al.Genetic transformation of the model green alga Chlamydomonas reinhardtii[J].Transgenic Plants Methods in Molecular Biology,2012,847:35-47.

        [26] Niu Y F,Yang Z K,Zhang M,et al.Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker[J].BioTechniques,2012:1-3.

        [27] Pratheesh P T,Vineetha M,Kurup G M.An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii[J].Molecular Biotechnology,2014,56(6):507-515.

        [28] Zorin B,Hegemann P,Sizova I.Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii[J].Eukaryotic Cell,2005,4:1264-1272.

        [29] Kiliana O,Benemanna C S E,Niyogib K K,et al.High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108:21265-21269.

        [30] Fire A,Xu S,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditiselegans[J].Nature,1998,391:806-811.

        [31] Matzke M,Matzke A J M,Kooter J M.RNA:Guiding gene silencing[J].Science,2001,293:1080-1083.

        [32] Draper B W,Morcos P A,Kimmel C B.Inhibition of zebrafishfgf8 pre-mRNA splicing with morpholino oligos:A quantifiable method for gene knockdown[J].Genesis,2001,30:154-156.

        [33] Drinnenberg I A,Weinberg D E,Xie K T,et al.RNAi in budding yeast[J].Science,2009,326:544-550.

        [34] Andreas A.Construction of a long hairpin RNA for knockdown of an endogenous gene in budding yeast[C].Lund:Lund University,2010.

        [35] Rodriguez-Caban J,Gonzalez-Velazquez W,Perez-Sanchez L,et al.Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii:An RNAi and yeast two-hybrid study[J].BMC Microbiology,2011,11:162.

        [36] Boutros M,Kiger A A,Armknecht S,et al.Genome-wide RNAi analysis of growth and viability in Drosophila cells[J].Science,2004,303:832-835.

        [37] Clemens J C,Worby C A,Simonson-Leff N,et al.Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J].Proceedings of the National A-cademy of Sciences of the United States of America,2000,97:6499-6503.

        [38] Kamath R S,F(xiàn)raser A G,Dong Y,et al.Systematic functional analysis of the Caenorhabditis elegans genome using RNAi[J]. Nature,2003,421:231-237.

        [39] Kim J K,Gabel H W,Kamath R S,et al.Functional genomic analysis of RNA interference in C.elegans[J].Science,2005,308:1164-1167.

        [40] Huang W T,Hsieh J C,Chiou M J,et al.Application of RNAi technology to the inhibition of zebrafish Gt Hα,F(xiàn)SHβ,and LHβ expression and to functional analyses[J].Zoological Science,2008,25:614-621.

        [41] Rubinson D A,Dillon C P,Kwiatkowski A V,et al.A lentivirus-based system to functionally silence genes in primary mammalian cells,stem cells and transgenic mice by RNA interference[J]. Nature Genetics,2003,33:401-406.

        [42] Piano F,Gunsalus K.RNAi-based functional genomics in Caenorhabditiselegans[J].Current Genomics,2002,3:69-81.

        [43] Simmer F,Moorman C,van der Linden A M,et al.Genomewide RNAi of C.elegans using the hypersensitive rrf-3 strain reveals novel gene functions[J].PLoS Biology,2003,1(1):e12.

        [44] Green E W,F(xiàn)edele G,Giorgini F,et al.A Drosophila RNAi collection is subject to dominant phenotypic effects[J].Nature Methods,2014,11:222-223.

        [45] Gery C,Zuther E,Schulz E,et al.Natural variation in the freezing tolerance of Arabidopsis thaliana:Effects of RNAi-induced CBF depletion and QTL localisation vary among accessions[J]. Plant Science,2011,180:12-23.

        [46] Burgos-Rivera B,Dawe R K.An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis[J].PLoS ONE,2012,7(12):e51388.

        [47] Park H M,Choi M S,Kwak D Y,et al.Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice Stripe Virus(RSV)resistance obtained by targeting the fully complementary RSV-CP gene[J].Molecules and Cells,2012,33:43-51.

        [48] Wang L,Zheng J,Luo Y,et al.Construction of a genomewide RNAi mutant library in rice[J].Plant Biotechnology Journal, 2013,11:997-1005.

        [49] Agrawal S.Antisense oligonucleotides:Towards clinical trials[J].Trends in Biotechnology,1996,14:376-387.

        [50] Nasevicius A,Ekker S C.Effective targeted gene“knockdown”in zebrafish[J].Nature Genetics,2000,26:216-220.

        [51] Oey M,Ross I L,Stephens E,et al.RNAi knock-down of LHCBM1,2 and 3 increases photosynthetic H2production efficiency of the green alga Chlamydomonas reinhardtii[J].PLoS ONE,2013,8(4):e61375.

        [52] Lorenz K,Cohen B A.Small-and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency[J].Genetics,2012,192:1123-1132.

        [53] Ehrenreich I M,Torabi N,Jia Y,et al.Dissection of genetically complex traits with extremely large pools of yeast segregants[J]. Nature,2010,464:1039-1042.

        [54] Kettleborough R N W,de Bruijn E,van Eeden F,et al.Highthroughput target-selected gene inactivation in zebrafish[J]. Methods in Cell Biology,2011,104:121-127.

        [55] Sood R,English M A,Jones M P,et al.Methods for reverse genetic screening in zebrafish by resequencing and TILLING[J]. Methods,2006,39:220-227.

        [56] Stemple D L.TILLING-a high-throughput harvest for functional genomics[J].Nature Reviews Genetics,2004,5:145-150.

        [57] Kathir P,LaVoie M,Brazelton W J,et al.Molecular map of the Chlamydomonas reinhardtii nuclear genome[J].Eukaryotic Cell,2003,2:362-379.

        [58] Rymarquis L A,Handley J M,Thomas M,et al.Beyond complementation.Map-based cloning in Chlamydomonas reinhardtii[J].Plant Physiology,2005,137:557-566.

        [59] Chaturvedi R,F(xiàn)ujita Y.Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level[J].Phycological Research,2006,54:208-219.

        [60] Doan T T Y,Obbard J P.Enhanced intracellular lipid in Nannochloropsis sp.via random mutagenesis and flow cytometric cell sorting[J].Algal Research,2012,1:17-21.

        [61] Schneider J C,Livne A,Sukenik A,et al.A mutant of Nannochloropsis deficient in eicosapentaenoic acid production[J].Phytochemistry,1995,40:807-814.

        [62] 王芝瑤,馬玉彬,牟潤芝,等.重離子誘變創(chuàng)制高產(chǎn)油微擬球藻新品種[J].生物工程學報,2013,29(1):119-122.

        [63] Kazama Y,Ma L,Hirano T,et al.Rapid evaluation of effective linear energy transfer in heavy-ion mutagenesis of Arabidopsis thaliana[J].Plant Biotechnology,2012,29:441-445.

        [64] Jiang M,Wan Q,Liu R,et al.Succinic acid production from corn stalk hydrolysate in an E.coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies[J].Journal of Industrial Microbiology and Biotechnology,2014,41:115-123.

        [65] Hirschhorn J N,Daly M J.Genome-wide association studies for common diseases and complex traits[J].Nature Reviews Genetics,2005,6:95-108.

        [66] Muller L A H,Lucas J E,Georgianna D R,et al.Genome-wide association analysis of clinical vs.nonclinical origin provides in-sights into Saccharomyces cereυisiae pathogenesis[J].Molecular Ecology,2011,20:4085-4097.

        [67] Huang X,Wei X,Sang T,et al.Genome-wide association studies of 14 agronomic traits in rice landraces[J].Nature Genetics,2010,42:961-967.

        [68] Li H,Peng Z,Yang X,et al.Genome-wideassociation study dissects the genetic architecture of oil biosynthesis in maize kernels[J].Nature Genetics,2013,45:43-50.

        [69] Gaiano N,Amsterdam A,Kawakami K,et al.Insertional mutagenesis and rapid cloning of essential genes in zebrafish[J].Nature,1996,383:829-832.

        [70] Golling G,Amsterdam A,Sun Z,et al.Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development[J].Nature Genetics,2002,31:135-140.

        [71] Brunaud V,Balzergue S,Dubreucq B,et al.T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites[J].EMBO reports,2002,3:1152-1157.

        [72] Parinov S,Sundaresan V.Functional genomics in Arabidopsis:Large-scale insertional mutagenesis complements the genome sequencing project[J].Current Opinion in Biotechnology,2002,11:157-161.

        [73] Amsterdam A,Nissen R M,Sun Z,et al.Identification of 315 genes essential for early zebrafish development[J].Proceedings of the National Academy of Sciences of the United States of A-merica,2004,101:12792-12797.

        [74] Smith J,Berg J M,Chandrasegaran S.A detailed study of the substrate specificity of a chimeric restriction enzyme[J].Nucleic Acids Research,1999,27:674-681.

        [75] Kim Y G,Cha J,Chandrasegaran S.Hybrid restriction enzymes:Zinc finger fusions to Fok I cleavage domain[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93:1156-1160.

        [76] Dreier B,Beerli R R,Segal D J,et al.Development of zinc finger domains for recognition of the 5’-ANN-3’family of DNA sequences and their use in the construction of artificial transcription factors[J].The Journal of Biological Chemistry,2001,276:29466-29478.

        [77] Pabo C O,Peisach E,Grant R A.Design and selection of novel Cys2His2 zinc finger proteins[J].Annual Review of Biochemistry,2001,70:313-340.

        [78] Porteus M H,Carroll D.Gene targeting using zinc finger nucleases[J].Nature Biotechnology,2005,23:967-973.

        [79] Miller J C,Tan S,Qiao G,et al.A TALE nuclease architecture for efficient genome editing[J].Nature Biotechnology,2011,29:143-148.

        [80] Huang P,Xiao A,Zhou M,et al.Heritable gene targeting in zebrafish using customized TALENs[J].Nature Biotechnology,2011,29:699-700.

        [81] Horvath P,Barrangou R.CRISPR/Cas,the immune system of bacteria and archaea[J].Science,2010,327:167-170.

        [82] Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339:819-823.

        [83] Sampson T R,Saroj S D,Llewellyn A C,et al.A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J].Nature,2013,497:254-257.

        [84] Jiang W,Zhou H,Bi H,et al.Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J].Nucleic Acids Research,2013,41:e188.

        [85] Shen B,Zhang X,Du Y,et al.Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes[J].PLoS ONE,2013,8(10):e77696.

        [86] Zu Y,Tong X,Wang Z,et al.TALEN-mediated precise genome modification by homologous recombination in zebrafish[J].Nature Methods,2013,10:329-331.

        [87] Williams J G K.Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803[J].Methods in enzymology,1988,167:766-778.

        [88] Aoki S,Kondo T,Ishiura M.A promoter-trap vector for clockcontrolled genes in the cyanobacterium Synechocystis sp.PCC 6803[J].Journal of Microbiological Methods,2002,49:265-274.

        [89] Armbrust E V,Berges J A,Bowler C,et al.The Genome of the diatom Thalassiosira pseudonana:Ecology,evolution,and metabolism[J].Science,2004,306:79-86.

        [90] Bowler C,Allen A E,Badger J H,et al.The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J].Nature,2008,456:239-244.

        [91] Gobler C J,Berry D L,Dyhrman S T,et al.Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics[J].Proceedings of the National Academy of Sciences of the U-nited States of America,2011,108:4352-4357.

        [92] Merchant S S,Prochnik S E,Vallon O,et al.The Chlamydomonas genome reveals the evolution of key animal and plant functions[J].Science,2007,318:245-250.

        [93] Moreau H,Verhelst B,Couloux A,et al.Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage[J].Genome Biology,2012,13:R74.

        [94] Pan K,Qin J,Li S,et al.Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica(Eustigmatophyceae)as revealed by its genome sequence[J].Journal of Phycology,2011,47:1425-1432.

        [95] Prochnik S E,Umen J,Nedelcu A M,et al.Genomic qnalysis of organismal complexity in the multicellular green alga Volυox carteri[J].Science,2010,329:223-226.

        Function-Verifying Techniques of Novel Genes and Their Applicability in Gene Cloning of Microalgae

        YANG Guan-Pin,LIN Gin-Mei
        (College of Marine Life Sciences,Ocean University of China,Qingdao 266003,China)

        In microalgae,a group of eukaryotic,single cellular and photosynthesis-performaing microbes belong.Diverse microalgae inhabit various environments,and many of them are of values to aquaculture and biofuel exploitation.Being similar to model organisms and economic animals and plants,cloning novel genes is one of the major researching activities of microalgal biology.Genome annotation,transcriptome analysis and gene isolation are based on sequential and structural homology,which are actually a process of searching the homologs by using known queries.In contrast,cloning a novel gene needs to obtain the sequence of a gene and most crucially verify its function at the same time.The currently available methods of verifying the function of a gene includes gene knockout,gene silencing,insertional mutation,genome editing and among others.Genetic transformation has met success in many microalgal species,making function verifying of microalgal genes by adopting directly the methods available for model organisms and economic animals and plants possible.Here we reviewed these methods and analyzed their applicability to microalgae.Such an analysis may aid to cloning novel microalgal genes.

        microalga;novel gene;gene cloning;genetic transformation

        Q785

        A

        1672-5174(2014)10-072-08

        責任編輯 高 蓓

        國家海洋局海洋生物活性物質(zhì)與現(xiàn)代分析技術(shù)重點實驗室開放課題資助;國家自然科學基金項目(31270408)資助

        2014-04-09;

        2014-04-23

        楊官品(1963-),男,教授,博導,主要從事藻類遺傳學研究。E-mail:yguanpin@ouc.edu.cn

        猜你喜歡
        基因功能報告基因微藻
        板栗外生菌根誘導基因CmNRT3的表達及功能研究
        果樹學報(2024年10期)2024-12-31 00:00:00
        日本落葉松內(nèi)源GUS基因鑒定及其酶活性分析
        代食品運動中微藻的科研與生產(chǎn)
        西瓜噬酸菌Ⅲ型分泌系統(tǒng)hrcQ基因功能分析
        植物保護(2019年2期)2019-07-23 08:40:58
        絮凝法采收生物燃料微藻的研究進展
        基因組編輯系統(tǒng)CRISPR—Cas9研究進展及其在豬研究中的應(yīng)用
        藥用植物萜類生物合成β—AS基因研究進展
        啟動子陷阱技術(shù)在植物啟動子克隆研究中的應(yīng)用
        報告基因標記在干細胞治療急性心肌梗死中的應(yīng)用進展
        微藻對低溫響應(yīng)的Ca2+信號傳導途徑研究進展
        亚洲国语对白在线观看| 国内精品久久久久久久影视麻豆| 精品人妻VA出轨中文字幕| 亚洲一码二码在线观看| 青青草视频在线观看网| 啦啦啦中文在线观看日本| 亚洲不卡av不卡一区二区| a级毛片成人网站免费看| 国产精品日韩欧美一区二区区| 国产久视频| 青青草免费观看视频免费| 欧美a级在线现免费观看| 国产高清乱理伦片| 亚洲一区二区高清精品| 人妻少妇偷人精品视频| 国产精品毛片va一区二区三区| 亚洲av无码久久寂寞少妇| 乱色视频中文字幕在线看| 日韩在线一区二区三区中文字幕| 日本免费大片一区二区| 最近中文字幕大全在线电影视频| 黄色网址国产| 日本伦理视频一区二区| av网站大全免费在线观看| 让少妇高潮无乱码高清在线观看| 成年人黄视频大全| 亚洲av一二三又爽又爽又色 | 国内精品久久久久影院蜜芽| 国产一级黄色性生活片| 日韩精品亚洲一区二区| 亚洲熟少妇在线播放999| a午夜国产一级黄片| 亚洲午夜经典一区二区日韩| 亚洲人成国产精品无码果冻| 欧美高大丰满freesex| 日韩精品一区二区av在线| 亚洲成人中文字幕在线视频| 色一情一乱一伦一区二区三区日本| 91成人午夜性a一级毛片| 久久91精品国产一区二区| 国产精品99精品无码视亚|