概念是客觀事物的本質(zhì)屬性、特征在人們頭腦中的反映。數(shù)學(xué)概念是反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在初中數(shù)學(xué)教學(xué)中,加強(qiáng)概念的教學(xué),正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。在概念教學(xué)中,教師要加強(qiáng)概念的引入與生成,引導(dǎo)學(xué)生主動探索,真正理解概念,在概念運(yùn)用的過程中培養(yǎng)學(xué)生分析和解決問題的能力。
一、新舊理念下數(shù)學(xué)概念教學(xué)模式的層次分析。
傳統(tǒng)的數(shù)學(xué)概念教學(xué)大多采用“屬+種差”的概念同化方式進(jìn)行。通常分為以下幾個步驟:1、揭示概念的本質(zhì)屬性,給出定義、名稱和符號;2、對概念的進(jìn)行特殊分類,揭示概念的外延;3、鞏固概念,利用概念解決的定義進(jìn)行簡單的識別活動;4、概念的應(yīng)用與聯(lián)系,用概念解決問題,并建立所學(xué)概念與其他概念間的聯(lián)系。
這種教學(xué)過程簡明,使學(xué)生可以比較直接地學(xué)習(xí)概念,節(jié)省時間,被稱為是“學(xué)生獲得概念的最基本方式”。但是,僅從形式上做邏輯分析讓學(xué)生理解概念是遠(yuǎn)遠(yuǎn)不夠的。數(shù)學(xué)概念具有過程——對象的雙重性,既是邏輯分析的對象,又是具有現(xiàn)實(shí)背景和豐富寓意的數(shù)學(xué)過程。因此,必須返璞歸真,揭示數(shù)學(xué)概念的形成過程,讓學(xué)生從概念的現(xiàn)實(shí)原型、概念的抽象過程、數(shù)學(xué)思想的指導(dǎo)作用、形式表述和符號化的運(yùn)用等多方位理解一個數(shù)學(xué)概念,使之符合學(xué)生主動建構(gòu)的教育原理。
美國教育心理學(xué)家布魯納曾指出:“獲得的知識如果沒有完滿的結(jié)構(gòu)將它聯(lián)系在一起,那是一個多半會被遺忘的知識。一串不連貫的論據(jù)在記憶中僅有短促可憐的壽命。”就數(shù)學(xué)概念教學(xué)而言,素質(zhì)教育提倡的是為理解而教。新課改理念下的數(shù)學(xué)概念教學(xué)要經(jīng)過四個階段:1、活動階段;2、探究階段;3、對象階段;4、圖式階段。
以上四個階段反映了學(xué)生學(xué)習(xí)數(shù)學(xué)概念過程中真實(shí)的思維活動。其中的“活動階段”是學(xué)生理解概念的一個必要條件,通過“活動”讓學(xué)生親身體驗(yàn)、感受直觀背景和概念間的關(guān)系;“探究階段”是學(xué)生對“活動”進(jìn)行思考,經(jīng)歷思維的內(nèi)化、概括過程,學(xué)生在頭腦中對活動進(jìn)行描述和反思,抽象出概念所特有的性質(zhì);“對象階段”是通過前面的抽象認(rèn)識到了概念本質(zhì),對其進(jìn)行“壓縮”并賦予形式化的定義及符號,使其達(dá)到精致化,成為一個思維中的具體的對象,在以后的學(xué)習(xí)中以此為對象進(jìn)行新的活動;“圖式階段”的形成是要經(jīng)過長期的學(xué)習(xí)活動進(jìn)一步完善,起初的圖式包含反映概念的特例、抽象過程、定義及符號,經(jīng)過學(xué)習(xí),建立起與其它概念、規(guī)則、圖形等的聯(lián)系,在頭腦中形成綜合的心理圖式。
二、新課改理念下的概念與法則的教學(xué)。
1、代數(shù)式概念
代數(shù)式(字母表示數(shù))概念一直是學(xué)生學(xué)習(xí)代數(shù)過程中的難點(diǎn),有很多學(xué)生學(xué)過后只能記住代數(shù)式的形式特征,不能理解字母表示數(shù)的意義。代數(shù)式的本質(zhì)在于可以將未知數(shù)和數(shù)字像數(shù)一樣進(jìn)行運(yùn)算。認(rèn)識這一點(diǎn),需要有以下四個層次。(1)通過操作活動,理解具體的代數(shù)式 (2)探究階段,體驗(yàn)代數(shù)式中過程。針對活動階段的情況,可提出一些問題讓學(xué)生討論探究。(3)對象階段,對代數(shù)式的形式化表述。 這一階段包括建立代數(shù)式形式定義、對代數(shù)式的化簡、合并同類項、因式分解及解方程等運(yùn)算。學(xué)生在進(jìn)行運(yùn)算中就意識到運(yùn)算的對象是形式化的代數(shù)式而不是數(shù),代數(shù)式本身體現(xiàn)了一種運(yùn)算結(jié)構(gòu)關(guān)系,而不只是運(yùn)算過程。這一階段,學(xué)生必須理解字母的意義,識別代數(shù)式。(4)圖式階段,建立綜合的心理圖式。
通過以上三個階段的教學(xué),學(xué)生在頭腦中應(yīng)該建立起如下的代數(shù)式的心理表征:具體的實(shí)例、運(yùn)算過程、字母表示一類數(shù)的數(shù)學(xué)思想、代數(shù)式的定義,并能加以運(yùn)用。
2、有理數(shù)加法法則
(1)運(yùn)算操作:計算一個足球隊在一場足球比賽時的勝負(fù)可能結(jié)果的各種不同情形:
(+3)+(+2)——+5 (-2)+(-1)——-3
(+3)+(-2)——+1 (-3)+(+2)——-1
(+3)+ 0——+3 …………
(其中每個和式中的兩個有理數(shù)是上、下半場中的得分?jǐn)?shù))。
(2)探究規(guī)律:把以上算式作為整體綜合進(jìn)行特征分析:同號相加、異號相加、一個數(shù)與零相加等的過程和結(jié)果對照總結(jié)規(guī)律,理解運(yùn)算意義。
(3)形成對象:把各種規(guī)律綜合在一起成為一完整的有理數(shù)加法法則,并產(chǎn)生有理數(shù)和的模式:
有理數(shù)+有理數(shù)=①符號②數(shù)值
這一階段還包括按照有理數(shù)和的模式及具體的運(yùn)算律進(jìn)行任意的有理數(shù)和的運(yùn)算和代數(shù)式求值的運(yùn)算等。
(4)形成圖式:有理數(shù)加法法則以一種綜合的心理圖式建立在學(xué)生的頭腦中,其中有具體的足球比賽的實(shí)例、有抽象的操作過程、有完整的運(yùn)算律和形成的模式。而且通過以后的學(xué)習(xí)獲得和其他概念、規(guī)則的區(qū)別與聯(lián)系。
三、兩種教學(xué)模式下學(xué)生學(xué)習(xí)方式的對比分析。
與新課改理念相比,傳統(tǒng)的教學(xué)模式下學(xué)生的學(xué)習(xí)缺少“活動”階段,對概念的形成過程沒有充分體驗(yàn),學(xué)生數(shù)學(xué)概念的建立靠教師代替快體驗(yàn)、快抽象。反映出的情況有:
(1)過快的抽象過程使得只能有一少部分學(xué)生進(jìn)行有意義的學(xué)習(xí),難以引發(fā)全體學(xué)生的學(xué)習(xí)活動,大部分學(xué)生理解不了數(shù)學(xué)概念,只能靠死記硬背。例如學(xué)生學(xué)習(xí)有理數(shù)運(yùn)算很長時間,還經(jīng)常出現(xiàn)符號運(yùn)算錯誤,這就是學(xué)生對有理數(shù)運(yùn)算沒有理解而造成的。
(2)由教師代替學(xué)生快體驗(yàn)、快抽象出數(shù)學(xué)概念,即使是能跟隨教師進(jìn)行有意義學(xué)習(xí)的學(xué)生其學(xué)習(xí)活動也是不連貫的,建構(gòu)的概念缺乏完整性。例如學(xué)生學(xué)習(xí)了代數(shù)式的概念,經(jīng)常出現(xiàn)a+a+a×2=3a×2,25x-4=21x,5yz-5z=y等錯誤,這是因?yàn)閷W(xué)生沒有進(jìn)行必要的“活動”,使“探究”的體驗(yàn)不完整需用造成的。又如在求解方程中出現(xiàn)(x+2)2=1=x2+4x+4=1=……等錯誤,說明學(xué)生還停留于運(yùn)算過程層面,對方程對象的結(jié)構(gòu)特征不理解。
(3)學(xué)生建構(gòu)概念的圖式層面是學(xué)習(xí)的最高階段,在現(xiàn)有教學(xué)環(huán)境下很多學(xué)生難以達(dá)到這一層面。例如,為什么要學(xué)習(xí)解方程?解方程的本質(zhì)是什么?
四、新課改理念下數(shù)學(xué)概念教學(xué)的策略。
新課改理念下的數(shù)學(xué)概念教學(xué)是由學(xué)生活動、探究到對象、圖式的學(xué)習(xí)過程,體現(xiàn)了數(shù)學(xué)知識形成的規(guī)律性??梢試L試采取以下策略:
(1)教師要把“教”建立在學(xué)生“學(xué)”的活動中。
為了使學(xué)生建構(gòu)完整的數(shù)學(xué)知識,首先要設(shè)計學(xué)生的學(xué)習(xí)活動。這需要教師創(chuàng)設(shè)問題情境,設(shè)計時要注意以下幾個方面:①能揭示數(shù)學(xué)知識的現(xiàn)實(shí)背景和形成過程;②適合學(xué)生的學(xué)習(xí)水平,使學(xué)習(xí)活動能順利展開;③適當(dāng)數(shù)量的問題,使學(xué)生有充足活動體驗(yàn);④注意趣味性,活動形式可以多種多樣,引起全體學(xué)生的學(xué)習(xí)興趣。
(2)體現(xiàn)數(shù)學(xué)知識形成中的數(shù)學(xué)思維方法。
數(shù)學(xué)思維方法是知識產(chǎn)生的靈魂,把握數(shù)學(xué)知識形成中的數(shù)學(xué)思維方法,是學(xué)生展開思維、建構(gòu)概念的主線。學(xué)生學(xué)習(xí)中要給予提示、建議并在總結(jié)中歸納。另外,要設(shè)計能引起學(xué)生反思的提問,如“你的結(jié)果是什么?”“你是怎樣得出的?”“你為什么這樣做?”……使學(xué)生能順利完成由“活動”到“探究”,“探究”到“對象”的過渡。
(3)數(shù)學(xué)對象的建立需經(jīng)多次反復(fù)。
一個數(shù)學(xué)概念由“探究”到“對象”的建立,有時既困難又漫長(如函數(shù)概念)。“探究”到“對象”的壓縮、抽象需要經(jīng)過多次反復(fù),循序漸進(jìn),螺旋上升,直至學(xué)生真正理解?!皩ο蟆钡慕⒁⒁夂喚毜奈淖中问胶头柋硎?,使學(xué)生在頭腦中建立起數(shù)學(xué)知識的直觀結(jié)構(gòu)形象,加強(qiáng)知識間的聯(lián)系和應(yīng)用,幫助學(xué)生在頭腦中建立起完整的數(shù)學(xué)知識的心理圖式。
綜上所述,數(shù)學(xué)概念教學(xué)應(yīng)努力通過揭示概念的形成、發(fā)展和應(yīng)用的過程,培養(yǎng)學(xué)生的辯證唯物主義觀念,完善學(xué)生的認(rèn)知結(jié)構(gòu),發(fā)展學(xué)生的思維能力。只要我們遵循認(rèn)識規(guī)律,注意概念教學(xué)的研究與實(shí)踐,就不難提高數(shù)學(xué)的教學(xué)質(zhì)量。