蔣寶坤 李映輝 李亮
(西南交通大學(xué)力學(xué)與工程學(xué)院,成都 610031)
旋轉(zhuǎn)粘彈性?shī)A層梁非線性自由振動(dòng)特性研究*
蔣寶坤 李映輝?李亮
(西南交通大學(xué)力學(xué)與工程學(xué)院,成都 610031)
對(duì)旋轉(zhuǎn)粘彈性?shī)A層梁的非線性自由振動(dòng)特性進(jìn)行了分析.基于Kelvin-Voigt粘彈性本構(gòu)關(guān)系和大撓度理論,建立了旋轉(zhuǎn)粘彈性?shī)A層梁的非線性自由振動(dòng)方程,并使用Galerkin法將偏微分形式振動(dòng)方程化為常微分振動(dòng)方程.采用多重尺度法對(duì)非線性常微分振動(dòng)方程進(jìn)行求解,通過小參數(shù)同次冪系數(shù)相等獲得微分方程組,并通過求解方程組及消除久期項(xiàng)來獲得旋轉(zhuǎn)粘彈性?shī)A層梁非線性自由振動(dòng)的一次近似解.用數(shù)值方法討論了粘彈性?shī)A層厚度、轉(zhuǎn)速和輪轂半徑對(duì)梁固有頻率的影響.結(jié)果表明:固有頻率隨轉(zhuǎn)速增大而增大,隨夾層厚度增大而減小,隨輪轂半徑的增大而增大.
旋轉(zhuǎn)粘彈性?shī)A層梁, Kelvin-Voigt, 非線性振動(dòng), 多重尺度法, 近似解, 固有頻率
粘彈性?shī)A層梁結(jié)構(gòu)通常是由剛度較大的上下約束層和中間夾心層構(gòu)成.Younesian[1]等研究了粘彈性旋轉(zhuǎn)梁的非線性振動(dòng);應(yīng)祖光[2]、吳強(qiáng)[3]等研究了粘彈性?shī)A層梁的線性與非線性的振動(dòng)特性和響應(yīng);李中華[4-5]等研究了軸向運(yùn)動(dòng)粘彈性?shī)A層板的振動(dòng)分析以及軸向運(yùn)動(dòng)粘彈性?shī)A層板的多模態(tài)耦合橫向振動(dòng);呂海煒[6]等對(duì)軸向變速運(yùn)動(dòng)粘彈性?shī)A層梁的橫向振動(dòng)分析作了研究;Valverde[7]等分析了旋轉(zhuǎn)梁的附屬結(jié)構(gòu)的穩(wěn)定性;Mahmood[8]等對(duì)Kelvin-Voigt粘彈性梁的非線性自由振動(dòng)作了研究;Nayfeh[9]等研究了線性和非線性結(jié)構(gòu)力學(xué);Abolghasemi[10]等研究了旋轉(zhuǎn)粘彈性梁的吸引子;Nayfeh[11]等對(duì)非線性波動(dòng)作了研究.目前,對(duì)旋轉(zhuǎn)梁的研究尚為少見,而工程中常會(huì)遇到旋轉(zhuǎn)梁類問題.本文基于Kelvin-Voigt粘彈性本構(gòu)關(guān)系和幾何大變形理論,建立旋轉(zhuǎn)粘彈性?shī)A層梁自由振動(dòng)方程,采用Galerkin法和多重尺度法求解非線性振動(dòng)方程,給出了振動(dòng)方程的一次近似解.
本文基于如下基本假設(shè):
(1)不考慮轉(zhuǎn)動(dòng)慣量和剪切變形影響;(2)只考慮橫向位移;(3)截面變形滿足平面假設(shè);(4)層與層之間沒有相對(duì)滑移;(5)層與層之間橫向位移連續(xù).
圖1為旋轉(zhuǎn)粘彈性?shī)A層梁模型,上下兩層為對(duì)稱約束層,厚度均為h/2,中間為夾心層,厚度為H,輪轂半徑為R并以轉(zhuǎn)速Ω繞轉(zhuǎn)軸轉(zhuǎn)動(dòng).上下層彈性模量E,密度ρ,夾心層為粘彈性材料,彈性模量E0,密度 ρ0,阻尼系數(shù) η0,等效線密度為:ρeq=(ρh+ρ0H)(h+H).
圖1 旋轉(zhuǎn)粘彈性?shī)A層梁模型Fig.1 Model of rotating sandwich beam
旋轉(zhuǎn)粘彈性?shī)A層梁的平衡方程:
式中,w為z方向上的撓度,N為軸力,b為梁的寬度,M為彎矩,w,x,M,xx分別表示w和M對(duì)x的一階、二階偏導(dǎo).
使用幾何大變形理論,夾層梁軸向應(yīng)變?yōu)?/p>
式中,εx為軸向應(yīng)變,上、下約束層本構(gòu)關(guān)系為
夾心層為Kelvin粘彈性材料,其本構(gòu)關(guān)系為
σc和σj分別為約束層和夾層在x方向的正應(yīng)力,其截面彎矩為
梁的總質(zhì)量m=(ρh+ρ0H)bl,則距固定端x處截面上的離心力為
其中Ω為旋轉(zhuǎn)角速度,軸力N可表示為
將(5)、(7)式代入(1)式中,得
取w(x,t)=φ(x)q(t),其中 φ(x)為滿足邊界條件的模態(tài)函數(shù),q(t)為廣義模態(tài)坐標(biāo).代入(8)式,兩端同乘 φ(x)后在[0,l]對(duì)x積分,整理得
(9)式可化為
(10)式可進(jìn)一步整理為:
令q(t)=εq^(t),2ζω0=ε,ε 為小參數(shù).將q(t)和2ζω0代入(11)式中,得
(12)式即為旋轉(zhuǎn)粘彈性?shī)A層梁的自由振動(dòng)方程.
采用多重尺度法,令
其中,Tn=εnτ,將(13)式代入到(12)式中,比較 ε的同次冪系數(shù)
由(14)式得
將(17)代入(15)式,得
(18)式中,cc表示共軛項(xiàng),消除(18)式的久期項(xiàng),可得
這樣,由(18)式可以解得
將(17)、(20)式代入(16)式,得
消除(21)式中的久期項(xiàng),得
經(jīng)整理后,(22)式化為
將(19)式代入(23)式中,經(jīng)整理后得
H對(duì)時(shí)間求導(dǎo)
因?yàn)镠=H(T1,T2),所以D0H=0,即
將(19)、(24)式代入(26)式中,得
為便于解出H,將它寫成復(fù)數(shù)形式,即設(shè)
其中a和γ是時(shí)間的實(shí)函數(shù),則H對(duì)時(shí)間求導(dǎo)得
將(28)式代入(27)式中,經(jīng)整理得
(29)式和(30)式實(shí)部、虛部對(duì)應(yīng)相等,得
由(31)、(32)式得
將 ε還原成 2ζω0,(33)、(34)式變?yōu)?/p>
(35)、(36)式的穩(wěn)態(tài)解對(duì)應(yīng)系統(tǒng)的不動(dòng)點(diǎn),由a=0, γ=0可得
(39)式中,α、β、ζ,ω0均為常數(shù).這樣給定一個(gè)滿足cosγ和sinγ均在[-1,1]這個(gè)區(qū)間內(nèi)的ε值,就可以通過(40)式求出a,結(jié)合(37)式,可以求出γ.由(17)式,可得系統(tǒng)的一次近似解為
由(40)式可見,a為振幅,γ為相位差.
計(jì)算所用材料參數(shù)如表1,幾何參數(shù)如表2.
表1 旋轉(zhuǎn)粘彈性?shī)A層梁材料參數(shù)Table 1 Material parameters of rotating viscoelastic beam
表2 粘彈性?shī)A層梁幾何參數(shù)Table 2 Geometry parameters of viscoelastic sandwich beam
首先討論轉(zhuǎn)速對(duì)結(jié)構(gòu)一階固有頻率和損耗因子的影響.l=1 m,b=0.002 m,H+h=0.005 m,R=0.05 m,轉(zhuǎn)速?gòu)?到50 rad/s間變化.三種夾層厚度比下一階固有頻率隨轉(zhuǎn)速變化如圖2.
可見,在夾心層厚度一定時(shí),旋轉(zhuǎn)粘彈性?shī)A層梁的一階固有頻率隨轉(zhuǎn)速增大而增大;在轉(zhuǎn)速相同時(shí),夾心層越厚,一階固有頻率越?。?/p>
圖2 一階固有頻率隨轉(zhuǎn)速變化圖Fig.2 First natural frequency versus rotating velocity
取l=1 m,b=0.002 m,H+h=0.005 m,Ω =50 rad/s,計(jì)算H/(H+h)=0.6,0.7,0.8 時(shí),輪轂半徑R的變化對(duì)系統(tǒng)一階固有頻率和損耗因子的影響,結(jié)果如圖3.
圖3 一階固有頻率與轉(zhuǎn)速比隨R的變化Fig.3 The ratio of first natural frequency to rotating velocity versus the variation of R
可見,R的增大會(huì)使旋轉(zhuǎn)粘彈性?shī)A層梁的一階固有頻率略有增加,但不明顯.
本文對(duì)旋轉(zhuǎn)粘彈性?shī)A層梁的非線性自由振動(dòng)特性作了研究,通過多尺度法求解非線性振動(dòng)方程,并得到一次近似解.此外還討論了固有頻率隨轉(zhuǎn)速及輪轂半徑的變化,結(jié)論如下:
1)固有頻率隨轉(zhuǎn)速增大而增大,隨夾層厚度增大而減小;
2)固有頻率隨輪轂半徑R的增大而增大.
1 Younesian D,Esmailzadeh E.Non-linear vibration of variable speed rotating viscoelastic beams.Nonlinear Dynamics,2010,60:193 ~205
2 應(yīng)祖光,奚德昌.粘彈性阻尼夾層梁的振動(dòng)分析.強(qiáng)度與環(huán)境,1993,2:31~38(Ying Z G,Xi D C.Vibration analysis of viscoelastic damping sandwich beam.Structure and Environment Engineering,1993,2:31 ~ 38(in Chinese))
3 吳強(qiáng),凌道盛,徐興.粘彈性幾何非線性?shī)A層梁動(dòng)態(tài)響應(yīng)分析.計(jì)算力學(xué)學(xué)學(xué)報(bào),1997,14(1):36~42(Wu Q,Ling D S,Xu X.Dynamic response analysis of geometrical non linearity viscoelastic sandwich beam.Journal of Computational Mechanics,1997,14(1):36 ~42(in Chinese))
4 李中華,李映輝.軸向運(yùn)動(dòng)粘彈性?shī)A層板的振動(dòng)分析.四川大學(xué)學(xué)報(bào),2011,43:147~151(Li Z H,Li Y H.Vibration analysis of axially moving viscoelastic sandwich plate.Journal of Sichuan University,2011,43:147 ~ 151(in Chinese))
5 李中華,李映輝.軸向運(yùn)動(dòng)粘彈性?shī)A層板的多模態(tài)耦合橫向振動(dòng).復(fù)合材料學(xué)報(bào),2012,29(3):219~225.(Li Z H,Li Y H.Muti-mode coupled transverse vibration of the axially moving viscoelastic Sandwichplate.Acta Materiae Compositae Sinica,2012,29(3):219 ~225(in Chinese))
6 Lv H W,Li Y H,Liu Q K,Li L.Analysis of transverse vibration of axially moving viscoelastic sandwich beam with time-dependent velocity.AdvancedMaterialsResearch,2011,338:487 ~490
7 Valverde J,García-Vallejo D.Stability analysis of a substructured model of the rotating beam.Nonlinear Dynamics,2009,55(4):355~372
8 Mahmoodi S N,Khadem S E,Kokabi M.Non-linear free vibrations of Kelvin-Voigt visco-elastic beams.International Journal Mechanical Sciences,2007,49:722 ~732
9 Nayfeh A H,Pai P F.Linear and nonlinear structural mechanics.New York:Wiley-Interscience,2004
10 Abolghasemi M,Jalali M.A.Attractors of a rotating viscoelastic beam.International.Journal.of Non-Linear Mechanics,2003,38:739~751
11 Nayfeh A H,Mook D T.Nonlinear oscillations.New York:Wiley-Interscience,1979
*The project supported by the National Natural Science Foundation of China(11072204),the Fundmental Research Funds for the Central Universities(SWJTU11ZT15)
? Corresponding author E-mail:yinghui.li@home.swjtu.edu.cn
VIBRATION ANALYSIS OF ROTATING VISCOELASTIC SANDWICH BEAM*
Jiang Baokun Li Yinghui?Li liang
(School of Mechanics and Eng,Southwest Jiaotong Univ,Chengdu610031,China)
The nonlinear free vibration analysis of rotating viscoelastic sandwich beam is presented in this article.The control equation of the rotating viscoelastic sandwich beam was established based on Kelvin-Voigt constitutive equation and large deflection theory.Partial differential equation of vibration was transformed into an ordinary differential one using Galerkin method.The ordinary differential equation of nonlinear vibration was solved by multiple scale method.Systems of equations were obtained by comparing coefficient of power of the micro parameter.First approximate solution of the nonlinear free vibration of rotating viscoelastic sandwich beam could be acquired by solving the systems of equations as well as eliminating the secular terms.Numerical simulation was used to discuss the effect of thickness of the sandwich layer,variation of rotating velocity and radius of the hub on nature frequency.The results indicated that natural frequency of the rotating viscoelastic sandwich beam increased with the increase of rotating velocity and radius of the hub while decreased with the increase of thickness of the sandwich layer.
rotating viscoelastic sandwich beam, Kelvin-Voigt, nonlinear vibration, multiple scale method,approximate solution,natural frequency
11 July 2012,
16 July 2012.
10.6052/1672-6553-2013-045
2012-07-11 收到第 1 稿,2012-07-16 收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(11072204)和中央高校基本科研業(yè)務(wù)費(fèi)專題項(xiàng)目(SWJTU11ZT15)
E-mail:yinghui.li@home.swjtu.edu.cn