摘要: 為了提高時(shí)變非平穩(wěn)信號(hào)的盲源分離效果,提出了自適應(yīng)最大信噪比盲源分離新方法.該方法以信噪比函數(shù)作為代價(jià)函數(shù),并基于改進(jìn)的多項(xiàng)式系數(shù)自回歸模型,進(jìn)行最優(yōu)滑窗長(zhǎng)度的自適應(yīng)估計(jì).仿真計(jì)算表明,F(xiàn)astICA算法需要預(yù)設(shè)源信號(hào)的概率密度函數(shù),以選擇適宜的非線性函數(shù)近似估計(jì)源信號(hào)的非高斯性,當(dāng)假設(shè)的概率密度函數(shù)與實(shí)際不符時(shí)無(wú)法正確分離源信號(hào);累積量算法在信源的峰度相同時(shí)無(wú)法正確分離源信號(hào).新方法與經(jīng)典的FastICA算法和基于累積量的盲源分離算法比較結(jié)果表明,對(duì)于經(jīng)典的FastICA算法、累積量算法無(wú)法正確分離的時(shí)變非平穩(wěn)信號(hào),新方法能夠有效地進(jìn)行盲源分離,分離結(jié)果不受源信號(hào)的概率分布、信源的峰度等統(tǒng)計(jì)因素影響.
關(guān)鍵詞: 非平穩(wěn)信號(hào);盲源分離;自適應(yīng)最大信噪比;FastICA;累積量分離算法
中圖分類號(hào): TN911.7文獻(xiàn)標(biāo)志碼: ABlind Sources Separation of Nonstationary Signals Based on
Adaptive Maximum SignaltoNoise Ratio MethodZHANG Jie
(School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)
Abstract:In order to improve the blind separation performance of nonstationary signals, a new blind source separation algorithm named adaptive maximum signaltonoise ratio algorithm was proposed. This algorithm uses the signal noise ratio function as the cost function parameter and an improved multinomial coefficient autoregressive model to estimate the best length of moving average window. Simulations showed that FastICA algorithm needs to assume the probability density function (PDF) of the sources to approximate their unGaussian features by choosing the appropriate nonlinear function. If the assumed PDF considerably deviates from the true one, the sources could not be separated correctly. In the case of the sources with identical kurtosis, the separation algorithm using cumulants failed to separate the sources. The comparison between the proposed method, the classical FastICA algorithm, and the separation algorithm using cumulants showed that the proposed method could retrieve the timevarying nonstationary source signals accurately, and the separation performance of the proposed method was not influenced by the PDF and the kurtosis of the source signals.
Key words:nonstationary signal; blind source separation; adaptive maximum signaltonoise ratio; FastICA; separation algorithm using cumulants
盲源分離研究始于20世紀(jì)80年代中后期, Herault和Jutten使用反饋神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)了兩個(gè)混合信號(hào)的盲源分離,揭開(kāi)了信號(hào)處理領(lǐng)域的新篇章.近年來(lái),盲源分離、盲波束形成、盲均衡、盲反卷積等盲信號(hào)處理理論與算法研究成為現(xiàn)代測(cè)試信號(hào)處理領(lǐng)域的熱點(diǎn)命題,在聲學(xué)、醫(yī)學(xué)、通信、遙感等研究領(lǐng)域展現(xiàn)了絢麗的應(yīng)用前景[18].
盡管盲源分離研究發(fā)展迅速,但仍有大量的理論和實(shí)際問(wèn)題需要解決,源信號(hào)非平穩(wěn)[910]情況下的穩(wěn)健高效分離就是亟待解決的難題之一.對(duì)于非平穩(wěn)信號(hào),既有文獻(xiàn)中主要采用的是基于時(shí)頻分析的盲源分離方法[1112].文獻(xiàn)中提出,當(dāng)源信號(hào)具有不同的時(shí)頻分布時(shí),其空間時(shí)頻分布矩陣是一個(gè)對(duì)角陣,而混合信號(hào)的空間時(shí)頻分布矩陣不是對(duì)角陣,將混合信號(hào)的空間時(shí)頻分布矩陣進(jìn)行聯(lián)合對(duì)角化就可以估計(jì)出混合矩陣,進(jìn)而估計(jì)出源信號(hào).但是,由于時(shí)頻交叉項(xiàng)的存在,即使源信號(hào)具有不同的時(shí)頻分布,其空間時(shí)頻分布矩陣也不是對(duì)角陣,這個(gè)因素影響了既有算法的分離性能.
本文針對(duì)時(shí)變非平穩(wěn)信號(hào),提出了自適應(yīng)最大信噪比盲源分離新方法.與經(jīng)典方法的對(duì)比表明,新方法適用性廣,分離性能不受源信號(hào)概率分布、峰度等因素影響.1經(jīng)典方法圖1是盲源分離模型簡(jiǎn)圖,是指在獨(dú)立源信號(hào)s(t)=(s1(t),s2(t),…,sn(t))T以及傳輸通道特性A未知的情況下,根據(jù)觀測(cè)信號(hào)x(t)=(x1(t),x2(t),…,xn(t))T以及關(guān)于源信號(hào)的一些先驗(yàn)知識(shí),構(gòu)造分離系統(tǒng)W,使系統(tǒng)輸出y(t)=(y1(t),y2(t),…,yn(t))T逼近s(t),從而估計(jì)出源信號(hào)s(t)的各個(gè)分量.
西南交通大學(xué)學(xué)報(bào)第48卷第4期張潔:非平穩(wěn)信號(hào)自適應(yīng)最大信噪比盲源分離方法圖1盲源分離模型
Fig.1Blind source separation model
盲源分離實(shí)際上是一個(gè)優(yōu)化問(wèn)題,需要在某一衡量獨(dú)立性的判據(jù)最優(yōu)的意義下尋求最佳解答.從原理上說(shuō),最根本的獨(dú)立性判據(jù)來(lái)自于統(tǒng)計(jì)學(xué)定義,即:混合信號(hào)y(t)的聯(lián)合概率密度函數(shù)p(y)等于各個(gè)分量yi(t)的邊緣概率密度函數(shù)p(yi)的乘積.但是,p(yi)和p(y)均是未知的,需要根據(jù)優(yōu)化判據(jù)加以估計(jì).研究者們已提出了實(shí)現(xiàn)盲源分離的一些方法,包括基于二階統(tǒng)計(jì)量的方法、基于高階統(tǒng)計(jì)量的方法、基于非線性函數(shù)的方法和基于神經(jīng)網(wǎng)絡(luò)的方法,等等.1.1FastICA算法FastICA算法[13]是應(yīng)用廣泛的盲源分離方法之一.根據(jù)中心極限定理,獨(dú)立隨機(jī)變量之和比任何一個(gè)原來(lái)的隨機(jī)變量更接近高斯分布,所以,非高斯性可以作為獨(dú)立源信號(hào)估計(jì)的切入點(diǎn).
“熵”是一個(gè)典型的非高斯性度量,但熵的計(jì)算較為困難,所以研究者們提出了一些使用多項(xiàng)式近似值作為非高斯性度量判據(jù)的方法,F(xiàn)astICA算法就是其中有代表性的一種方法.FastICA算法基于非高斯性最大化原理,使用固定點(diǎn)迭代理論使輸出變量yi互不相關(guān)且非高斯性最大來(lái)實(shí)現(xiàn)獨(dú)立源信號(hào)的盲源分離.
下面應(yīng)用FastICA算法進(jìn)行非平穩(wěn)信號(hào)盲源分離仿真計(jì)算.圖2所示是4個(gè)獨(dú)立源信號(hào)si(t),i=1,2,3,4.其中s1(t)、s3(t)是時(shí)變非平穩(wěn)信號(hào).
圖2源信號(hào)
Fig.2Source signals混合矩陣為
A=[111122.0012233
3.00234444.001].
圖3所示是混合觀測(cè)信號(hào)xi(t), i=1,2,3,4.各個(gè)觀測(cè)信號(hào)的相似度很高,在實(shí)際應(yīng)用中,傳感器位置接近時(shí)往往會(huì)出現(xiàn)這樣的情況.
圖4所示是應(yīng)用FastICA算法得到的分離信號(hào)yi(t), i=1,2,3,4.計(jì)算耗時(shí)0.297 735 s.
對(duì)比圖2與圖4,顯然,對(duì)于本例的分時(shí)非平穩(wěn)信號(hào),F(xiàn)astICA算法不能根據(jù)圖3所示的混合信號(hào)來(lái)分離s1(t)與s3(t),F(xiàn)astICA分離算法失效.圖3混合觀測(cè)信號(hào)
Fig.3Mixture of observation signals圖4應(yīng)用FastICA分離的信號(hào)
Fig.4Separated signal with FastICA究其原因,F(xiàn)astICA算法要求預(yù)先假設(shè)源信號(hào)的概率密度函數(shù),采用非線性函數(shù)近似估計(jì)非高斯性,只有當(dāng)所選擇的函數(shù)與源信號(hào)的概率密度函數(shù)成比例時(shí),該方法才能取得較好的效果.而任何一個(gè)近似函數(shù)都不可能對(duì)不同的概率密度分布模型取得最佳分離效果,在本例中,假設(shè)的與真實(shí)的概率密度函數(shù)之間差異較大,所以非平穩(wěn)源信號(hào)不能被正確分離.1.2 基于累積量的ICA算法獨(dú)立分量盲源分離的優(yōu)化算法可大致分為兩類:批處理和自適應(yīng)處理.早期批處理的主要方法是Comon提出的基于成對(duì)數(shù)據(jù)逐次旋轉(zhuǎn)的Jacobi法.法國(guó)學(xué)者Cardoso對(duì)算法加以改進(jìn),提出了一種建立在“四階累積量矩陣對(duì)角化”基礎(chǔ)上的方法(簡(jiǎn)稱JADE法).在JADE法基礎(chǔ)上,研究者們陸續(xù)提出了其他一些批處理算法,如SHIBSS法、FOBI法等.
為了闡述此類算法原理,首先給出四階累積量矩陣的定義.令z為球化后的N通道觀測(cè)矢量z=(z1,z2,…,zn)T,M為任意N×N矩陣.定義z的四階累積量矩陣Qz(M),它的第i,j元素為
[Qz(M)]ij=∑Nk=1∑Nl=1Kijkl(z)mkl,(1)
式中:Kijkl(z)是矢量z中第i,j,k,l四個(gè)分量的四階累積量;mkl是矩陣的第(k,l)元素.
累積量陣Qz(M)可分解:
Qz(M)=λM,(2)
式中:λ=k4(sm)是信源sm的峰度;M稱為Qz(M)的特征矩陣,k4(sm)是其特征值.
所以,只要完成Qz(M)的特征值分解,就能得到它的特征矩陣M=vmvTm和特征值λ=k4(sm).如果各信源的峰度不同,vm和λm也就各不相同,即可求解混合矩陣和各獨(dú)立分量信源.
文獻(xiàn)[14]中提出了一種改進(jìn)的高階累積量ICA方法,同時(shí)把三階和四階累積量對(duì)角化,因此,它可以處理對(duì)稱的線性混合和偏差分布源信號(hào),也可以處理同時(shí)含對(duì)稱和非對(duì)稱分布的信源.這種改進(jìn)算法無(wú)需假設(shè)源信號(hào)的概率密度函數(shù),可直接對(duì)獨(dú)立分量分析中的激活函數(shù)進(jìn)行自適應(yīng)學(xué)習(xí).
下面考察基于高階累積量的改進(jìn)ICA方法是否適用于分時(shí)非平穩(wěn)信號(hào)盲源分離.
圖5所示是4個(gè)獨(dú)立源信號(hào)si(t),i=1,2,3,4.需要指出的是,s1(t)與s3(t)正弦段信號(hào)的幅值是不同的.
圖6所示是應(yīng)用改進(jìn)累積量算法得到的分離信號(hào),分離效果較好.
但是,當(dāng)僅僅改變?cè)葱盘?hào)的幅值,如圖7所示,使s1(t)與s3(t)正弦段信號(hào)的幅值相同時(shí),改進(jìn)累積量算法完全無(wú)法分離s1(t)與s3(t),結(jié)果如圖8所示,計(jì)算耗時(shí)0.357 818 s.
究其原因,這一類分離方法要求信源的峰度各不相同,才能求解混合矩陣和各獨(dú)立分量信源.在該例中s1(t)與s3(t)部分區(qū)段信號(hào)的幅值相同,累積量分離算法失效.圖5源信號(hào)s1(t)與s3(t)幅值不同
Fig.5Different amplitudes of
source signals s1(t) and s3(t)圖6累積量算法分離效果好
Fig.6Fine separation performance with
the separation algorithm using cumulants圖7源信號(hào)s1(t)與s3(t)幅值相同
Fig.7Identical amplitudes of
source signals s1(t) and s3(t)圖8累積量算法分離效果差
Fig.8Poor separation performance with
the separation algorithm using cumulants2 自適應(yīng)最大信噪比算法2 .1算法原理本文提出自適應(yīng)最大信噪比盲源分離新方法,根據(jù)信號(hào)特性進(jìn)行自適應(yīng)濾波,使輸出部分各信號(hào)的信息冗余度減到最低.
考慮到盲源分離是根據(jù)觀測(cè)信號(hào)x尋找分離矩陣W,使輸出y成為源信號(hào)s的一個(gè)估計(jì).將源信號(hào)與估計(jì)信號(hào)的誤差e=s-y作為噪聲信號(hào),建立信噪比函數(shù)[15]:
R=10lgs·sTe·eT=10lgs·sT(s-y)·(s-y)T .(3)
源信號(hào)是未知的,且含有噪聲,用估計(jì)信號(hào)y的滑動(dòng)平均來(lái)代替源信號(hào),那么式(3)改寫(xiě)為
R=10lgs·sTe·eT=
10lg·T(-y)·(-y)T,(4)
式中:i(n)=1p∑pj=0yi(n-j), i=0,1,…,p-1.
為簡(jiǎn)化后續(xù)推導(dǎo),在式(4)的分子中,用y代替,得到自適應(yīng)最大信噪比盲源分離算法的目標(biāo)函數(shù)
F(y)=R=10lgy·T(-y)·(-y)T .(5)
注意到y(tǒng)=Wx,=W,為混合信號(hào)經(jīng)滑動(dòng)平均處理后的信號(hào),即
i(n)=1p∑pj=0xi(n-j),
i=0,1,…,p-1,(6)
那么式(4)改寫(xiě)為
F(W,x)=10lgy·T(-y)·(-y)T=
10lgWxxTWTW(-x)(-x)TWT=
10lgWCWTWC~WT=10lgVU,(7)
式中:C=xxT、C~=(-x)(-x)T為相關(guān)矩陣;V=WCWT;U=WC~WT.
根據(jù)式(7),可以推導(dǎo)出F關(guān)于分離矩陣W的梯度,即
FW=2WVC-2WUC~,(8)
目標(biāo)函數(shù)F(W,x)的極值點(diǎn)就是式(8)的零點(diǎn),即
WC=VUWC~.(9)
對(duì)式(9)進(jìn)行求解即可得到分離矩陣,進(jìn)而得到源信號(hào)的估計(jì).
下面進(jìn)行仿真計(jì)算.首先令滑動(dòng)平均長(zhǎng)度p為任意選定的整數(shù),應(yīng)用最大信噪比方法進(jìn)行盲源分離.對(duì)于圖2所示的分時(shí)非平穩(wěn)信號(hào),圖9、圖10分別是滑動(dòng)平均長(zhǎng)度p等于2、80的分離結(jié)果.圖9滑動(dòng)平均長(zhǎng)度p=2的分離信號(hào)
Fig.9Separated signal with
average moving length p=2圖10滑動(dòng)平均長(zhǎng)度p=80的分離信號(hào)
Fig.10Separated signal with
average moving length p=80由圖可見(jiàn),滑動(dòng)平均長(zhǎng)度p等于2或80 時(shí),最大信噪比算法的分離效果仍然不盡如人意.為了提升盲源分離性能,本文提出自適應(yīng)最大信噪比盲源分離新方法,對(duì)多項(xiàng)式系數(shù)自回歸模型[16]加以改進(jìn),進(jìn)行最優(yōu)滑動(dòng)平均長(zhǎng)度自適應(yīng)估計(jì),實(shí)現(xiàn)非平穩(wěn)信號(hào)自適應(yīng)最大信噪比盲源分離.
采用多項(xiàng)式系數(shù)自回歸模型[16],觀測(cè)信號(hào)可寫(xiě)為
x(n)=∑pi=1∑rj=0aijx(n-d)jx(n-i)+ε(n),(10)
式中:{x(n),n∈N}是觀測(cè)序列;p是多項(xiàng)式系數(shù)自回歸模型的秩,也即自適應(yīng)最大信噪比算法的滑動(dòng)平均長(zhǎng)度;{ε(n),n∈N}是獨(dú)立同分布的隨機(jī)噪聲序列,{ε(n)}與{x(n)}相互獨(dú)立.
定義誤差函數(shù):
M(aiji=1,2,…,p;j=0,1,…,r)=
∑Nn=p+1x(n)-∑pi=1∑rj=0aijx(n-d)jx(n-i)2.(11)
基于BIC信息準(zhǔn)則[16],引入代價(jià)函數(shù):
Br,p,d=ln 2ε+[p(r+1)+1]ln NN,(12)
式中:2ε是{ε(n)}的均方誤差最大似然估計(jì),即
2ε=MminN-p,(13)
式(13)中:Mmin是式(11)中定義的誤差函數(shù)M(aij)的最小值.
根據(jù)式(12)進(jìn)行最優(yōu)化計(jì)算,使代價(jià)函數(shù)取得最小值的p,就是最優(yōu)的滑動(dòng)平均長(zhǎng)度.
總結(jié)上述思路,得到自適應(yīng)最大信噪比盲源分離算法步驟:
(1) 對(duì)觀測(cè)信號(hào)數(shù)據(jù)進(jìn)行零均值化,并計(jì)算自相關(guān)矩陣;
(2) 基于式(11)與式(12),進(jìn)行約束優(yōu)化求解,使代價(jià)函數(shù)取得最小值,即可解得最優(yōu)滑動(dòng)平均長(zhǎng)度p;
(3) 將p代入式(7),求解目標(biāo)函數(shù)F(W,x)的極值,即可得到分離矩陣W;
(4) 計(jì)算y(t)= Wx(t),得到源信號(hào)的估計(jì). 2.2應(yīng)用示例對(duì)于圖2所示的分時(shí)非平穩(wěn)信號(hào),仍取混合矩陣為
A=[111122.0012233
3.00234444.001].
使用本文提出的新方法,對(duì)混合信號(hào)進(jìn)行盲源分離,計(jì)算得到自適應(yīng)滑動(dòng)平均長(zhǎng)度p=8,分離信號(hào)如圖11所示,計(jì)算耗時(shí)0.399 265 s.對(duì)比圖2和圖11,可以看到每個(gè)源信號(hào)都很好地被分離出來(lái),分離效果令人滿意.
下面再考察圖7所示的情況,對(duì)于用累積量算法無(wú)法有效分離的峰度相同的信源,用本文提出的新方法進(jìn)行分離,結(jié)果如圖12所示,計(jì)算耗時(shí)0.385 382 s.對(duì)比圖7與圖12,新方法實(shí)現(xiàn)了對(duì)峰度相同的分時(shí)非平穩(wěn)信號(hào)的有效分離,再次驗(yàn)證了新方法的有效性、適用性.
但就計(jì)算速度而言,新方法低于經(jīng)典方法,原因在于進(jìn)行優(yōu)化迭代計(jì)算的耗時(shí)較多,提升新方法的計(jì)算效率是下一步的改進(jìn)目標(biāo).圖11新方法對(duì)圖2信源的分離結(jié)果
Fig.11Separated signals with the proposed method
for sources in figure 2圖12新方法對(duì)圖7信源的分離結(jié)果
Fig.12Separated signals with the proposed method
for sources in figure 73結(jié)論非平穩(wěn)信號(hào)的盲源分離是盲信號(hào)處理研究領(lǐng)域亟待解決的難題之一.為了解決時(shí)變非平穩(wěn)信號(hào)的盲源分離,本文基于多項(xiàng)式系數(shù)自回歸模型,自適應(yīng)的進(jìn)行最優(yōu)滑動(dòng)平均長(zhǎng)度估計(jì),提出了自適應(yīng)最大信噪比盲源分離新算法.仿真示例驗(yàn)證了該方法的有效性.與經(jīng)典的FastICA算法以及基于累積量的盲源分離算法的對(duì)比結(jié)果表明,新算法的分離性能不受源信號(hào)概率分布、峰度等因素影響,適用性廣,能夠更好地分離分時(shí)非平穩(wěn)獨(dú)立源信號(hào).參考文獻(xiàn):[1]RICARDO A, SALIDO R, RADU R, et al. EEG montage analysis in the blind source separation framework[J]. Biomedical Signal Processing and Control, 2011, 33(1): 7784.
[2]CLARK F S P, PETRAGLA M R, HADDAD D B. A new initialization method for frequencydomain blind source separation algorithms[J]. Signal Processing Letters, 2011, 18(6): 343346.
[3]FABRIZIO G, FARINA A. An adaptive filtering algorithm for blind waveform estimation in diffuse multipath channels[J]. IET Radar Sonar, 2011, 5(3): 322330.
[4]KOCINSKI J, DRGAS S, OZIMEK E. Evaluation of blind source separation for different algorithms based on second order statistics and different spatial configurations of directional microphones[J]. Applied Acoustics, 2012, 73(2): 109116.
[5]ZHOU Guoxu, YANG Zuyuan, XIE Shengli. Mixing matrix estimation from sparse mixtures with unknown number of sources senior member[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 211221.
[6]PETR T, ZBYN K. Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 10371047.
[7]LINARE R, IGUAL J, SALAZAR A, et al. Semiblind source extraction of atrial activity by combining statistical and spectral features[J]. Digital Signal Processing, 2011, 21(2): 391403.
[8]HAMADA T, NAKANO K, ICHIJO A. Wavelet based underdetermined blind source separation of speech mixtures[C]∥International Conference on Control, Automation and Systems. Seoul: [s.n.], 2007: 27902794.
[9]OZGEN M T, KURUOGLU E E, HERRANZ D. Astrophysical image separation by blind tim e frequency source separation methods[J]. Digital Signal Processing, 2009(19): 360369.
[10]ZHANG Jie, LIN Jianhui. Improved blind source separation method based on independent component analysis and empirical mode decomposition[C]∥Proceeding of the 4th International Conference on Image and Signal processing. Shanghai: IEEE, 2011: 22172219.
[11]李奕璠,林建輝,劉建新. 基于組合預(yù)測(cè)模型的輪軌力連續(xù)測(cè)試[J]. 西南交通大學(xué)學(xué)報(bào),2012,47(4): 597604.
LI Yifan, LIN Jianhui, LIU Jianxin. Wheelrail force continuous measurement based on combinational forecast model[J]. Journal of Southwest Jiaotong University, 2012, 47(4): 597604.
[12]LIU Fang, DONG Jinwen, JING Yongzhi. Structure analysis of levitation chassis of mediumtolow speed maglev vehicles based on leftright decoupling[J]. Journal of Modern Transportation, 2012, 20(2): 8287.
[13]PRASAD R, SARUWATARI H, SHIKANO K. Blind separation of speech by fixedpoint ica with source adaptive negentropy approximation[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88A(7): 16831692.
[14]BLASCHKE T, WISKOTT L. An improved cumulant based method for independent component analysis[C]∥Proceedings of the 2002 International Conference on ICANN. Madrid: IEEE, 2002: 2730.
[15]張小兵,馬建倉(cāng),陳翠華,等. 基于最大信噪比的盲源分離算法[J]. 計(jì)算機(jī)仿真,2006,23(10): 7275.
ZHANG Xiaobing, MA Jiancang, CHEN Cuihua, et al. A blind source separation algorithm based on maximum signal noise ratio[J]. Computer Simulation, 2006, 23(10): 7275.
[16]呂永樂(lè). 一種新的統(tǒng)計(jì)預(yù)測(cè)模型:多項(xiàng)式系數(shù)自回歸模型[J]. 計(jì)算機(jī)工程與應(yīng)用,2012,48(3): 237241.
L Yongle. New statistical prediction model: polynomial coefficient autoregressive mode1[J]. Computer Engineering and Applications, 2012, 48(3): 237241.