亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Some New Properties of An E-Convex Function

        2012-12-09 00:55:38ZHOUMi
        關(guān)鍵詞:凸性周密海南大學(xué)

        ZHOU Mi

        (Branch College of Technology,SanYa College of HaiNan University,Sanya 572022,China)

        Some New Properties of An E-Convex Function

        ZHOU Mi

        (Branch College of Technology,SanYa College of HaiNan University,Sanya572022,China)

        In Ref.1,Youness introduced a class of sets and a class of functions called E-convex sets and E-convex functions by relaxing the de fi nitions of convex sets and convex functions.In Ref.2,Duca and Luspa gave some properties of E-convex functions using two notions of epigraph(epiE(f)and epiE(f)).In this paper,on the basis of the results obtained in Ref.2,some new characterizations of E-con?vex functions are discussed under a relatively weak convexity condition.

        E-convex set;E-convex function;nearly convex set;epigraph;slack2-convex set

        CLC mumber:O 221.2;O 177.92 Document code:A Article ID:1674-4942(2012)01-0005-04

        1 Introduction

        The concept of convexity is important for studies in optimization and variational inequalities.To gener?alize the convexity of functions attracted more atten?tions of researchers[1-7].Youness introduced the con?cepts of E-convex sets and E-convex functions in Ref.1.For convenience,we recall some de fi nitions and give other related concepts and lemmas,which are required in the later discussions.

        De fi nition 1 Let E∶Rn→Rnbe a function.A subset M?Rnis said to be E-convex if

        De fi nition 2 Let M be a nonempty subset of Rnand let E:Rn→Rnbe a function.A function f∶M→R is said to be E-convex on M if M is E-convex and

        Lemma 1 [See Ref.1.]If a set M?Rnis E-con?vex with respect to a mapping

        E∶Rn→Rnthen E(M)?M,

        where E(M)={E(M)|x∈M}

        Next,we give another concept of a nearly convex set.

        De fi nition 3 A subset M of Rnis said to be near?ly convex,if there is an α∈(0 ,1)such that for all x,y∈M,we have αx+(1 -α)y∈M.

        Remark 1 It is easy to check that every con?vex set is also nearly convex,but the converse is not always true.For example,the set

        is nearly convex but not convex.

        If M is a nonempty subset of Rnand E∶M→M and f∶M→R are two functions.We consider the fol?lowing four sets:

        De fi nition 4 If X?Rn,then f∶X→R is said to be upper semicontinuous at-x ∈Xif,for every ε>0,?δ>0 such that for all x∈X with x∈B,

        In Ref.1,the concept of E-convex sets and E-convex functions were given,its properties were proposed,and the related results were used in the study of E-convex programming.In Ref.2,Duca and Lupsa gave some characterizations of E-convex func?tion using notions of epiE(f)and epiE(f).In this pa?per,on the basis of the results obtained in Ref.2,we discuss some new characterizations of E-convex func?tions under a relatively weak convexity condition.

        2 Main Results

        First,let us review the theorem 1[See Ref.2]be?low.

        Theorem 1 Let M be a nonempty subset of Rnand let f:M→R and E:Rn→Rnbe two functions.If M is an E-convex set and epiE(f)is a convex set,then f is an E-convex function on M.

        We can exclude the convexity hypothesis of the set epiE(f)and in exchange we ask for the set epiE(f)to be near convex and the function f to be upper semi?continuous.

        Now see the following theorem as follows.

        Theorem 2 Let M be a nonempty subset of Rnand let f∶M→R be an upper semicontinuous function on M,and E:Rn→Rnbe another function.If M is an E-convex set and there exist an α0∈( )0,1 such that

        Then,f is an E-convex function on M.

        To prove this theorem,firstly we need to intro?duce the following lemma.

        Lemma 2 If f is a real-valued function on an E-convex subset M of Rnand if there exists an α0∈(0,1)such that

        Thus,we can get that

        [1]Youness E A.E-convex sets,E-convex functions and E-convex programming[J].Journal of optimization Theo?ry and Applications,1999,102:439-450.

        [2]Duca D I,Lupsa L.On the E-epigraph of an E-convex function[J].Journal of Optimization Theory and Applica?tions,2006,129(2):341-348.

        [3]Yong W H.Optimality Conditions for Vector Optimiza?tion with Set-Valued Maps[J].Bull Austral Math Soc,2000,66:317-330.

        [4]Chen X S.Some properties of semi-E-convex functions[J].Journal of Mathematical Analysis and Applications,2002,275:251-262.

        [5]Noor M A.Fuzzy preinvex functions[J].Fuzzy Sets and Systems,1994,64:95-104.

        [6]Abou-Tair I A,Sulaiman W T.Inequalites via convex functions,Internat[J].J Math Math Sci,1999,22:543-546.

        [7]Lupsa L.Slack convexity with respect to a given set,Itiner?ant Seminar on Functional Equations,Approximation,and Convexity[M].Babes-Bolyai University Publishing House Cluj-Napoca,Romania,1985:107-114.

        E-凸函數(shù)的一些新性質(zhì)

        周密

        (海南大學(xué)三亞學(xué)院 理工分院,海南 三亞 572022)

        文獻(xiàn)[1]中Youness提出一類E-凸集和一類E-凸函數(shù),削弱了已有的凸集和凸函數(shù).文獻(xiàn)[2]中Duca和Luspa 利用兩種上方圖的概念(epiE(f)和 epiE(f)),給出了E-凸函數(shù)的一些性質(zhì).本文在較弱的凸性條件上,利用文獻(xiàn)[3]所得結(jié)論給出了E-凸函數(shù)的一些新性質(zhì).

        E-凸集;E-凸函數(shù);幾乎凸集;上方圖;松馳2-凸集

        2011-10-10

        海南省自然科學(xué)基金資助項(xiàng)目(110009)

        畢和平

        猜你喜歡
        凸性周密海南大學(xué)
        海南大學(xué)美術(shù)與設(shè)計學(xué)院油畫作品選登
        海南大學(xué)植物保護(hù)學(xué)院
        Reliability and Validity Assessment of Automated Essay Scoring Systems on Graduate Students’ Writings
        照應(yīng)周密,行文流暢
        夏天的風(fēng)秋天的霧
        梅花綻放 滿園春香
        你的愛情無解藥
        American family education mirrored in Disney
        在线不卡中文字幕福利| 少妇无码一区二区三区| 久久亚洲Av无码专区| 国产av91在线播放| 男人天堂亚洲天堂av| 人妻夜夜爽天天爽三区麻豆av网站| 国产主播一区二区三区在线观看| 国产精品18久久久久久首页| 黄色潮片三级三级三级免费| 亚洲精品成人无限看| 色视频www在线播放国产人成| 欧美日韩中文亚洲另类春色| 中文字幕文字幕一区二区 | 无码人妻精品一区二区三区夜夜嗨| 蜜臀av无码精品人妻色欲| 免费国产h视频在线观看86| 国产精品后入内射日本在线观看| 亚洲s色大片在线观看| 国产乱人伦精品一区二区| 午夜国产精品久久久久| 91色综合久久熟女系列| 亚洲av综合av国产av中文| 十八岁以下禁止观看黄下载链接 | 久久精品日韩免费视频| 中国免费看的片| 狠狠色综合网站久久久久久久 | 婷婷综合缴情亚洲狠狠| 久久婷婷综合激情亚洲狠狠| 精品人妻大屁股白浆无码| 少妇厨房愉情理伦片bd在线观看 | 日本一区二区三区区视频| 久久久国产乱子伦精品作者| 久久国产精品不只是精品| 伊人久久大香线蕉综合av| 丝袜人妻一区二区三区| 小sao货水好多真紧h视频| 国产男女乱婬真视频免费| 国产自拍在线观看视频| 性色做爰片在线观看ww| 女女同性黄网在线观看| 国产诱惑人的视频在线观看|