亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        分?jǐn)?shù)階微分方程積分邊值問題正解的存在性

        2012-10-25 06:23:20張興秋
        關(guān)鍵詞:王永慶邊值問題不動(dòng)點(diǎn)

        王 林,張興秋

        分?jǐn)?shù)階微分方程積分邊值問題正解的存在性

        *王 林,張興秋

        (聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東,聊城 252059)

        利用不動(dòng)點(diǎn)指數(shù)理論在相應(yīng)線性算子的第一特征值條件下,得到一類分?jǐn)?shù)階微分方程積分邊值問題正解的存在性定理。

        分?jǐn)?shù)階微分方程;積分邊值問題;第一特征值;正解;不動(dòng)點(diǎn)指數(shù)

        近年來,分?jǐn)?shù)階微分方程成為人們研究的熱點(diǎn),其廣泛應(yīng)用于數(shù)學(xué)、流體力學(xué)、流變學(xué)、粘彈性力學(xué)等諸多學(xué)科。其中許多數(shù)學(xué)工作者對(duì)分?jǐn)?shù)階微分方程解的存在性做了大量研究[1-10]。

        在文獻(xiàn)[1]中,王永慶等在Banach空間研究分?jǐn)?shù)階微分方程

        在文獻(xiàn)[4]中,李等研究分?jǐn)?shù)階微分方程

        在文獻(xiàn)[10]中,白等研究分?jǐn)?shù)階微分方程

        目前,結(jié)合第一特征值研究分?jǐn)?shù)階微分方程積分邊值問題正解存在性的結(jié)果較少。

        本文利用不動(dòng)點(diǎn)指數(shù)理論結(jié)合相應(yīng)線性算子的第一特征值研究下面的分?jǐn)?shù)階微分方程積分邊值問題正解的存在性。

        1 預(yù)備知識(shí)

        其中

        證 應(yīng)用引理1.2,將(1)中微分方程轉(zhuǎn)化為等價(jià)的積分方程

        因此得到

        將(1.3)式從0到1積分得

        因此,

        證畢。

        證畢。

        .

        定義

        由Krein-Rutmann定理,引入下面的引理。

        2 主要結(jié)果及其證明

        定理2.1設(shè)

        則邊值問題(1)至少有一個(gè)正解。

        我們斷言

        下面證明是有界的。

        則是有界的。

        由引理1.9知

        由(2.3)、(2.6) 得

        證畢。

        [1] 王永慶, 劉立山. Banach空間中分?jǐn)?shù)階微分方程點(diǎn)邊值問題的正解[J]. 數(shù)學(xué)物理學(xué)報(bào), 2012(32):246-256.

        [2] Xu Xiaojie, Jiang Daqing, Yuan Chengjun. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J]. Nonlinear Analysis, 2009(71): 4676-4688.

        [3] Bai Zhanbing. On positive solutions of a nonlocal fractional boundary value problem [J]. Nonlinear Analysis, 2010 (72):916-924.

        [4] Li C F, Luo X N, Yong Zhou. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Computers and Mathematics with Applications, 2010(59):1363-1375.

        [5] Zhao Yige, Sun Shurong, Han Zhenlai, et al. The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2011(16):2086-2097.

        [6] Christopher S Goodrich. Existence of a positive solution to a class of fractional differential equations[J]. Applied Mathematics Letters, 2010(23):1050-1055.

        [7] Wang Yongqing, Liu Lishan, Wu Yonghong. Positive solutions for a nonlocal fractional differential equation[J]. Nonlinear Analysis, 2011(74):3599-3605.

        [8] Babakhani A, Varsha Daftardar-Gejji. Existence of positive solutions of nonlinear fractional differential equations[J]. J. Math. Anal. Appl., 2003(278) :434-442.

        [9] Zhao Yige, Sun Shurong, Han Zhenlai, et al. Positive solutions for boundary value problems of nonlinear fractional differential equations[J].Applied Mathematics and Computation,2011(217):6950-6958.

        [10] Bai Zhanbing, LüHaishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J. Math. Anal. Appl.,2005(311): 495-505.

        [11] Guo D, Lakshmikantham V. Nonlinear problems in abstract cones[M]. New York :Academic Press, 1988.

        [12] 郭大鈞. 非線性泛函分析[M]. 濟(jì)南:山東科學(xué)技術(shù)出版社, 2004.

        EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY VALUE PROBLEM

        *WANG Lin,ZHANG Xing-qiu

        (Department of Mathematics, Liaocheng University ,Liaocheng , Shangdong 252059, China )

        In this paper, we are concerned with the existence of positive solutions for a class of fractional differential equations with integral boundary value problem. Furthermore, we obtain the existence of positive solutions by fixed point index theory under some conditions concerning the first eigenvalue with respect to the relevant linear operator.

        fractional differential equations; integral boundary problem; the first eigenvalue; positive solution; fixed point index

        O175.8

        A

        10.3969/j.issn.1674-8085.2012.06.001

        1674-8085(2012)06-0001-05

        2012-06-12;

        2012-07-28

        國家自然科學(xué)基金項(xiàng)目(10971179);山東省優(yōu)秀中青年科學(xué)家獎(jiǎng)勵(lì)基金項(xiàng)目(BS2010SF004);山東省高等學(xué)??萍及l(fā)展計(jì)劃項(xiàng)目(J10LA53)

        *王 林(1985-),男,山東茌平人,碩士生,主要從事非線性系統(tǒng)理論及應(yīng)用研究(E-mail:15020608675@163.com);

        張興秋(1975-),男,山東濟(jì)寧人,副教授,博士,主要從事微分方程理論及應(yīng)用研究(E-mail:zhxq197508@163.com).

        猜你喜歡
        王永慶邊值問題不動(dòng)點(diǎn)
        非線性n 階m 點(diǎn)邊值問題正解的存在性
        凌晨三點(diǎn)的面試
        凌晨三點(diǎn)的面試
        帶有積分邊界條件的奇異攝動(dòng)邊值問題的漸近解
        一類抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
        活用“不動(dòng)點(diǎn)”解決幾類數(shù)學(xué)問題
        凌晨三點(diǎn)的面試
        雜文選刊(2019年1期)2019-01-14 02:23:58
        Research on inter-satellite measurement technique in high dynamic environment
        不動(dòng)點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對(duì)合
        非線性m點(diǎn)邊值問題的多重正解
        国产精品视频二区不卡| 日韩精品视频免费在线观看网站| 亚洲免费观看视频| 久久精品国产久精国产| 亚洲男人天堂网站| 强d乱码中文字幕熟女1000部| 精品乱色一区二区中文字幕| 欧美激情一区二区三区| 无尽动漫性视频╳╳╳3d| 亚洲欧美日韩精品香蕉| 日本乱熟人妻中文字幕乱码69 | 国产精品美女久久久网av| 啪啪无码人妻丰满熟妇| 日本久久久免费高清| 一区二区三区国产天堂| 日本一区二区三区爆乳| 国产剧情麻豆女教师在线观看 | 亚洲天堂资源网| 日本二区三区视频在线观看| 日本精品视频一区二区三区四区| 国产精品无码av天天爽| 一区二区三区不卡在线| 国产成人av区一区二区三| 韩国三级在线观看久| 国产乱子伦精品免费无码专区| 无码av永久免费大全| 人妻少妇艳情视频中文字幕| 精品少妇无码av无码专区| 99视频在线国产| 日日麻批视频免费播放器| 日本xxxx色视频在线观看| 97精品依人久久久大香线蕉97| 国产成人精品男人的天堂网站| 性生大片免费观看性少妇| 忘忧草社区www日本高清| 中文字幕AⅤ人妻一区二区| 亚洲欧美日韩精品高清| av日本一区不卡亚洲午夜| 成年人观看视频在线播放| 日本aⅴ大伊香蕉精品视频| 亚洲成在人网av天堂|