亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        分?jǐn)?shù)階微分方程積分邊值問題正解的存在性

        2012-10-25 06:23:20張興秋
        關(guān)鍵詞:王永慶邊值問題不動(dòng)點(diǎn)

        王 林,張興秋

        分?jǐn)?shù)階微分方程積分邊值問題正解的存在性

        *王 林,張興秋

        (聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東,聊城 252059)

        利用不動(dòng)點(diǎn)指數(shù)理論在相應(yīng)線性算子的第一特征值條件下,得到一類分?jǐn)?shù)階微分方程積分邊值問題正解的存在性定理。

        分?jǐn)?shù)階微分方程;積分邊值問題;第一特征值;正解;不動(dòng)點(diǎn)指數(shù)

        近年來,分?jǐn)?shù)階微分方程成為人們研究的熱點(diǎn),其廣泛應(yīng)用于數(shù)學(xué)、流體力學(xué)、流變學(xué)、粘彈性力學(xué)等諸多學(xué)科。其中許多數(shù)學(xué)工作者對(duì)分?jǐn)?shù)階微分方程解的存在性做了大量研究[1-10]。

        在文獻(xiàn)[1]中,王永慶等在Banach空間研究分?jǐn)?shù)階微分方程

        在文獻(xiàn)[4]中,李等研究分?jǐn)?shù)階微分方程

        在文獻(xiàn)[10]中,白等研究分?jǐn)?shù)階微分方程

        目前,結(jié)合第一特征值研究分?jǐn)?shù)階微分方程積分邊值問題正解存在性的結(jié)果較少。

        本文利用不動(dòng)點(diǎn)指數(shù)理論結(jié)合相應(yīng)線性算子的第一特征值研究下面的分?jǐn)?shù)階微分方程積分邊值問題正解的存在性。

        1 預(yù)備知識(shí)

        其中

        證 應(yīng)用引理1.2,將(1)中微分方程轉(zhuǎn)化為等價(jià)的積分方程

        因此得到

        將(1.3)式從0到1積分得

        因此,

        證畢。

        證畢。

        .

        定義

        由Krein-Rutmann定理,引入下面的引理。

        2 主要結(jié)果及其證明

        定理2.1設(shè)

        則邊值問題(1)至少有一個(gè)正解。

        我們斷言

        下面證明是有界的。

        則是有界的。

        由引理1.9知

        由(2.3)、(2.6) 得

        證畢。

        [1] 王永慶, 劉立山. Banach空間中分?jǐn)?shù)階微分方程點(diǎn)邊值問題的正解[J]. 數(shù)學(xué)物理學(xué)報(bào), 2012(32):246-256.

        [2] Xu Xiaojie, Jiang Daqing, Yuan Chengjun. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J]. Nonlinear Analysis, 2009(71): 4676-4688.

        [3] Bai Zhanbing. On positive solutions of a nonlocal fractional boundary value problem [J]. Nonlinear Analysis, 2010 (72):916-924.

        [4] Li C F, Luo X N, Yong Zhou. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Computers and Mathematics with Applications, 2010(59):1363-1375.

        [5] Zhao Yige, Sun Shurong, Han Zhenlai, et al. The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2011(16):2086-2097.

        [6] Christopher S Goodrich. Existence of a positive solution to a class of fractional differential equations[J]. Applied Mathematics Letters, 2010(23):1050-1055.

        [7] Wang Yongqing, Liu Lishan, Wu Yonghong. Positive solutions for a nonlocal fractional differential equation[J]. Nonlinear Analysis, 2011(74):3599-3605.

        [8] Babakhani A, Varsha Daftardar-Gejji. Existence of positive solutions of nonlinear fractional differential equations[J]. J. Math. Anal. Appl., 2003(278) :434-442.

        [9] Zhao Yige, Sun Shurong, Han Zhenlai, et al. Positive solutions for boundary value problems of nonlinear fractional differential equations[J].Applied Mathematics and Computation,2011(217):6950-6958.

        [10] Bai Zhanbing, LüHaishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J. Math. Anal. Appl.,2005(311): 495-505.

        [11] Guo D, Lakshmikantham V. Nonlinear problems in abstract cones[M]. New York :Academic Press, 1988.

        [12] 郭大鈞. 非線性泛函分析[M]. 濟(jì)南:山東科學(xué)技術(shù)出版社, 2004.

        EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY VALUE PROBLEM

        *WANG Lin,ZHANG Xing-qiu

        (Department of Mathematics, Liaocheng University ,Liaocheng , Shangdong 252059, China )

        In this paper, we are concerned with the existence of positive solutions for a class of fractional differential equations with integral boundary value problem. Furthermore, we obtain the existence of positive solutions by fixed point index theory under some conditions concerning the first eigenvalue with respect to the relevant linear operator.

        fractional differential equations; integral boundary problem; the first eigenvalue; positive solution; fixed point index

        O175.8

        A

        10.3969/j.issn.1674-8085.2012.06.001

        1674-8085(2012)06-0001-05

        2012-06-12;

        2012-07-28

        國家自然科學(xué)基金項(xiàng)目(10971179);山東省優(yōu)秀中青年科學(xué)家獎(jiǎng)勵(lì)基金項(xiàng)目(BS2010SF004);山東省高等學(xué)??萍及l(fā)展計(jì)劃項(xiàng)目(J10LA53)

        *王 林(1985-),男,山東茌平人,碩士生,主要從事非線性系統(tǒng)理論及應(yīng)用研究(E-mail:15020608675@163.com);

        張興秋(1975-),男,山東濟(jì)寧人,副教授,博士,主要從事微分方程理論及應(yīng)用研究(E-mail:zhxq197508@163.com).

        猜你喜歡
        王永慶邊值問題不動(dòng)點(diǎn)
        非線性n 階m 點(diǎn)邊值問題正解的存在性
        凌晨三點(diǎn)的面試
        凌晨三點(diǎn)的面試
        帶有積分邊界條件的奇異攝動(dòng)邊值問題的漸近解
        一類抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
        活用“不動(dòng)點(diǎn)”解決幾類數(shù)學(xué)問題
        凌晨三點(diǎn)的面試
        雜文選刊(2019年1期)2019-01-14 02:23:58
        Research on inter-satellite measurement technique in high dynamic environment
        不動(dòng)點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對(duì)合
        非線性m點(diǎn)邊值問題的多重正解
        成人艳情一二三区| 五月天亚洲av优女天堂| 青草草视频在线观看华人免费| 久久人人爽人人爽人人片av高请 | 香蕉网站在线| 日本无吗一区二区视频| 成人免费在线亚洲视频| 大肉大捧一进一出视频| 草莓视频一区二区精品| 亚洲精品国产一区av| 国产一区二区精品亚洲| 中文无码日韩欧| 国产欧美精品一区二区三区,| 中文字幕亚洲精品一二三区| 亚洲av网一区二区三区| 天天鲁一鲁摸一摸爽一爽| 久久天堂av色综合| 少妇精品偷拍高潮少妇在线观看| 日韩视频在线观看| 国产香蕉97碰碰视频va碰碰看| 国产精品女丝袜白丝袜| 手机在线观看av资源| 国产成人精品午夜二三区波多野| 亚洲地址一地址二地址三| 日本精品一区二区三区在线播放| 在线免费观看黄色国产强暴av | 国产实拍日韩精品av在线| 蜜桃久久精品成人无码av| 欧美日韩亚洲成色二本道三区| 激情免费视频一区二区三区| 熟妇人妻无乱码中文字幕真矢织江| 精品亚洲欧美无人区乱码| 日本嗯啊在线观看| 一区二区三区国产内射| 老少配老妇老熟女中文普通话 | 中文字幕亚洲精品专区| 久久天天躁狠狠躁夜夜躁2014| 国产区福利| 亚洲情精品中文字幕99在线| 男人的天堂中文字幕熟女人妻| 国产精品午睡沙发系列|