亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Extensions of Reduced Rings

        2011-11-23 01:32:14WUHuifeng
        關(guān)鍵詞:冪級數(shù)約化環(huán)上

        WU Hui-feng

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        Extensions of Reduced Rings

        WU Hui-feng

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        A ringRis a reduced ring,provided thata2=0 implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

        reduced ring; power series ring; 3-Armendariz ring.

        1 Introduction

        Condition(P) For alla,b,c∈R,if (abc)2=0,thenabc=0.(see [1])

        Proposition1 IfRis a reduced ring,thenRsatisfies the Condition (P),but the converse is not true.

        ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition (P),there exists a ring that satisfies the Condition (P) but is not a reduced ring.Let

        From [1],we know thatRis 3-Armendariz ring if and only ifR[x] is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]] is a 3-Armendariz ring,thenR[x] is a 3-Armendariz ring,but the converse is not true.

        Theorem1 LetRbe a reduced ring,thenR[[x]] is a 3-Armendariz ring.

        If [f(x)g(x)h(x)]2=0,that is

        (d0+d1x+d2x2+d3x3+…+dn-1xn-1+dnxn)·(d0+d1x+d2x2+d3x3+…+dn-1xn-1+dnxn)=

        dn+1dn-1)x2n+(d0d2n+1+d2n+1d0+d1d2n+d2nd1+d2d2n-1+d2n-1d2+…+dndn+1+dn+1dn)x2n+1+…=0.

        SetAibe the coefficient of [f(x)g(x)h(x)]2.then

        d2n-2d2+…+dn-1dn+1=0;A2n+1=d0d2n+1+d2n+1d0+d1d2n+d2nd1+d2d2n-1+d2n-1d2+…+

        dn-1dn+2+dndn+1=0; ….

        AsA2n=0 andd0=0,d1=0,d2=0,d3=0,…,dn-1=0,

        Continuing in this way we haved0=0,d1=0,d2=0,d3=0,…,dn=0,….

        Corollary1 IfRis a reduced ring,thenR[x] is a 3-Armendariz ring.

        Theorem2 LetRbe a reduced ring,then is a 3-Armendariz ring.

        ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where (xn) is the ideal ofR[x] generated byxn.It is evident thatR[x]/(xn)≌R′,R′ is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]] is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′ is a 3-Armendariz ring.ThereforeSis a 3-Armendariz ring and the proof is complete.

        Theorem3 LetRbe a reduced ring,then

        is a 3-Armendariz ring.

        ProofSinceRis a reduced ring,thenRsatisfies the Condition (P),that is

        if(abc)2=0,thenabc=0.

        InR,since (bca)2=bcabca=bc(abc)a=0,sobca=0.

        We can denote their addition and multiplication by:

        (f0(0),f0(x),f1(x))+(g0(0),g0(x),g1(x))=(f0(0)+g0(0),f0(x)+g0(x),f1(x)+g1(x)).and

        (f0(0),f0(x),f1(x))·(g0(0),g0(x),g1(x))=(f0(0)g0(0),f0(x)g0(x),f0(0)g1(x)+f1(x)g0(x)).

        So every polynomial ofR[y] can be expressed by (f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y) ∈R〈x〉[y],and

        f(y)=(f0(0),f0(y),f1(y)),
        g(y)=(g0(0),g0(y),g1(y)),
        h(y)=(h0(0),h0(y),h1(y)).

        Iff(y)g(y)h(y)=0,we have the following system of equations:

        f0(0)g0(0)h0(0)=0,

        (1)

        f0(y)g0(y)h0(y)=0,

        (2)

        f0(0)g0(0)h1(y)+f0(0)g1(y)h0(y)+f1(y)g0(y)h0(y)=0.

        (3)

        If we multiply (3) on the right side byf0(y),then

        f0(0)g0(0)h1(y)f0(y)+f0(0)g1(y)h0(y)f0(y)=0

        (3′)

        (sincef0(y)g0(y)h0(y)=g0(y)h0(y)f0(y)=0.)

        Also if we multiply (3′) on the right side byg0(y),then

        f0(0)g0(0)h1(y)f0(y)g0(y)=0.

        Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So (f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x] is a reduced ring,and thenR[x][y] is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that (f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

        And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

        Write

        and set

        For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

        we knowR[x][y] is a reduced ring,soR[x][y] is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

        Consequently

        HenceR〈x〉 is a 3-Armendariz ring.

        Example1Z2〈x〉 is a 3-Armendariz ring,henceZ2〈x〉 is a Armendariz ring whereZ2is the field with two elements.

        ProofIn view of Theorem 3,Z2〈x〉 is a 3-Armendariz ring.ButZ2〈x〉 has an identity,and so it is a Armendariz ring.

        [1] Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

        [2] Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

        [3] Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

        [4] Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

        [5] Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

        [6] Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

        [7] Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

        約化環(huán)的推廣

        伍惠鳳

        (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

        稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關(guān)系,證明了不帶單位元的約化環(huán)上的冪級數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz 環(huán).

        約化環(huán); 冪級數(shù)環(huán); 3-Armendariz環(huán).

        date:2011-03-18

        Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

        10.3969/j.issn.1674-232X.2011.05.005

        O153.3MSC2010:16E99; 14F99ArticlecharacterA

        1674-232X(2011)05-0407-04

        猜你喜歡
        冪級數(shù)約化環(huán)上
        素*-環(huán)上可乘混合斜Lie(Jordan)導(dǎo)子的可加性
        約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
        冪級數(shù)的求和方法總結(jié)
        矩陣環(huán)的冪級數(shù)弱McCoy子環(huán)
        冪級數(shù)J-Armendariz環(huán)*
        交換環(huán)上四階反對稱矩陣?yán)畲鷶?shù)的BZ導(dǎo)子
        取繩子
        投射可遷環(huán)上矩陣環(huán)的若當(dāng)同態(tài)
        M-強(qiáng)對稱環(huán)
        關(guān)于強(qiáng)冪級數(shù)McCoy環(huán)
        国产男小鲜肉同志免费| 国产女人高潮的av毛片| 中文字幕人妻激情在线视频| 国产免费三级av在线| 日韩成人无码| 一出一进一爽一粗一大视频免费的| 亚洲福利第一页在线观看| 久久精品一区二区三区蜜桃| 亚洲图片日本视频免费| 又爽又黄无遮挡高潮视频网站| 欧美亚洲另类 丝袜综合网| 国产精品高清国产三级国产av | 精品国产福利一区二区三区| 二区三区日本高清视频| 亚洲 中文 欧美 日韩 在线| 牛牛本精品99久久精品88m| 素人系列免费在线观看| 亚洲另类丰满熟妇乱xxxx| 中文字幕丰满伦子无码| 91精品国产91久久久无码95| 青青青草视频手机在线| 丰满少妇人妻无码| 三级4级全黄60分钟| 国产欧美日韩专区毛茸茸| 国产一区二区三区男人吃奶| 亚洲中文字幕精品久久久久久直播| 国产一区二区高清不卡在线| 变态另类人妖一区二区三区| 日韩成人无码| av无码天堂一区二区三区| 亚洲人av毛片一区二区| 蜜桃一区二区三区视频| 人人妻人人爽人人澡人人| 男人j进女人p免费视频| 国产成人高清亚洲一区二区| 人妻 丝袜美腿 中文字幕| 中文字幕人妻丝袜美腿乱| 老熟女毛茸茸浓毛| 国产精品一区二区久久精品蜜臀| 手机看片自拍偷拍福利| 影音先锋每日av色资源站|