亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Extensions of Reduced Rings

        2011-12-22 07:35:02WUHuifeng
        關鍵詞:杭州

        WU Hui-feng

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        Extensions of Reduced Rings

        WU Hui-feng

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        A ringRis a reduced ring,provided thata2=0implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

        reduced ring;power series ring;3-Armendariz ring.

        1 Introduction

        Condition(P) For alla,b,c∈R,if(abc)2=0,thenabc=0.(see[1])

        Proposition 1IfRis a reduced ring,thenRsatisfies the Condition(P),but the converse is not true.

        ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition(P),there exists a ring that satisfies the Condition(P)but is not a reduced ring.Let

        From[1],we know thatRis 3-Armendariz ring if and only ifR[x]is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]]is a 3-Armendariz ring,thenR[x]is a 3-Armendariz ring,but the converse is not true.

        Theorem 1LetRbe a reduced ring,thenR[[x]]is a 3-Armendariz ring.

        Corollary 1IfRis a reduced ring,thenR[x]is a 3-Armendariz ring.

        Theorem 2LetRbe a reduced ring,then is a 3-Armendariz ring.

        ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where(xn)is the ideal ofR[x]generated byxn.It is evident thatR[x]/(xn)≌R′,R′is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]]is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′is a 3-Armendariz ring.ThereforeSis a 3- Armendariz ring and the proof is complete.

        Theorem 3LetRbe a reduced ring,then

        is a 3-Armendariz ring.

        ProofSinceRis a reduced ring,thenRsatisfies the Condition(P),that is

        InR,since(bca)2=bcabca=bc(abc)a=0,sobca=0.

        We can denote their addition and multiplication by:

        So every polynomial ofR[y]can be expressed by(f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y)∈R〈x〉[y],and

        Iff(y)g(y)h(y)=0,we have the following system of equations:

        If we multiply(3)on the right side byf0(y),then

        Also if we multiply(3′)on the right side byg0(y),then

        Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So(f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x]is a reduced ring,and thenR[x][y]is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that(f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

        And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

        Write

        and set

        For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

        we knowR[x][y]is a reduced ring,soR[x][y]is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

        Consequently

        HenceR〈x〉is a 3-Armendariz ring.

        Example 1Z2〈x〉is a 3-Armendariz ring,henceZ2〈x〉is a Armendariz ring whereZ2is the field with two elements.

        ProofIn view of Theorem 3,Z2〈x〉is a 3-Armendariz ring.ButZ2〈x〉has an identity,and so it is a Armendariz ring.

        [1]Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

        [2]Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

        [3]Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

        [4]Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

        [5]Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

        [6]Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

        [7]Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

        約化環(huán)的推廣

        伍惠鳳

        (杭州師范大學理學院,浙江杭州 310036)

        稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關系,證明了不帶單位元的約化環(huán)上的冪級數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz環(huán).

        約化環(huán);冪級數(shù)環(huán);3-Armendariz環(huán).

        O153.3 MSC2010:16E99;14F99 Article character:A

        1674-232X(2011)05-0407-04

        10.3969/j.issn.1674-232X.2011.05.005

        date:2011-03-18

        Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

        猜你喜歡
        杭州
        走,去杭州亞運會逛一圈兒
        科學大眾(2023年17期)2023-10-26 07:38:38
        杭州
        幼兒畫刊(2022年11期)2022-11-16 07:22:36
        杭州明達玻璃纖維有限公司
        玻璃纖維(2022年1期)2022-03-11 05:36:12
        杭州亥迪
        杭州復工復產(chǎn)進行時
        杭州(2020年6期)2020-05-03 14:00:51
        杭州宣言
        G20 映像杭州的“取勝之鑰”
        傳媒評論(2017年12期)2017-03-01 07:04:58
        杭州
        汽車與安全(2016年5期)2016-12-01 05:21:55
        杭州江干區(qū)的醫(yī)養(yǎng)護一體化
        杭州舊影
        看天下(2016年24期)2016-09-10 20:44:10
        在线a亚洲视频播放在线播放| 亚洲国产精品久久久天堂不卡海量 | 成午夜福利人试看120秒| a级特黄的片子| 亚洲国产麻豆综合一区| 中文字幕国产精品专区| 国产精品一区二区三区在线免费 | 久久综网色亚洲美女亚洲av| 欧美俄罗斯40老熟妇| 成人爽a毛片一区二区免费| 日本骚色老妇视频网站| 亚洲av不卡一区男人天堂| 免费久久人人爽人人爽av| 亚洲一区二区在线| 福利视频自拍偷拍视频| 亚洲av免费手机在线观看| 国产成年女人特黄特色毛片免| 国产成人免费高清激情明星| 国产一区二区三区在线影院| 中文字幕亚洲欧美在线不卡| 国产三级在线观看免费| 日本熟妇中文字幕三级| 中国男男女在线免费av| 无码尹人久久相蕉无码| 久久精品这里只有精品| 日本一区二区三区在线观看视频| 麻豆国产精品久久人妻| 女女女女bbbbbb毛片在线| 69堂在线无码视频2020| 欧美末成年videos在线观看| 国产一区二区三区亚洲天堂| 亚洲精品国产成人久久av| 一本无码av中文出轨人妻| 国产午夜亚洲精品理论片不卡| 看中文字幕一区二区三区| 一本久道综合色婷婷五月| 国内精品久久久久久久影视麻豆| 元码人妻精品一区二区三区9| 国产在线观看自拍av| 欧美人与动牲猛交xxxxbbbb | av网站在线观看二区|