中圖分類(lèi)號(hào):P631.4 文獻(xiàn)標(biāo)志碼:A
Abstract: The Yishu fault zone is located in the middle section of the Tanlu fault zone,consisting of multiple nearly north-northeast trending faults. Significant variations in crustal structure are present on both sides of the fault zone. The seismic velocity and velocity variations are important parameters for understanding the deep structural characteristics of the earth and the potential damage of the medium. Based on the continuous seismic waveforms from permanent stations in the Yishu fault zone and surrounding regions from January 20ll to December 20l4,we perform ambient noise tomography to monitor the phase velocity variations of Rayleigh wave. The results show that the velocity variations correlate well with the small earthquake activities. The earthquakes ( ??Mgt;2 )are mainly concentrated near the velocity reduction and velocity transition zones.The velocity variations near the Yishu fault zone are not significant,indicating that the fault activity is relatively weak recently. The velocity variations in the Jiaobei uplift are notable between 2Ol3 and 2014,which is related to surface deformation.It is speculated that the compression effect of regional stress is the main factor for the velocity increase in the Jiaobei uplift.
Key words: Yishu fault zone; ambient noise tomography; velocity variation; small earthquakeactivity
0 引言
地震波速測(cè)量是監(jiān)測(cè)地殼介質(zhì)變化的重要技術(shù),在探究地球內(nèi)部構(gòu)造與動(dòng)力學(xué)方面有著十分重要的作用[1-2]。大量研究表明[3-7],火山和地震等構(gòu)造因素以及降水、氣溫和大氣壓強(qiáng)等非構(gòu)造因素均會(huì)導(dǎo)致地下介質(zhì)地震波速變化。因此,監(jiān)測(cè)地震波速變化有助于認(rèn)識(shí)地下介質(zhì)的應(yīng)力變化狀態(tài),為區(qū)域地震活動(dòng)規(guī)律和危險(xiǎn)性判斷提供重要的地震學(xué)證據(jù)。
目前,地下介質(zhì)地震波速變化研究主要涉及天然重復(fù)地震、人工震源和背景噪聲監(jiān)測(cè)等方面。天然重復(fù)地震主要利用發(fā)生位置幾乎相同、震源機(jī)制和波形相近的重復(fù)地震事件,通過(guò)移動(dòng)窗互譜或移動(dòng)窗互相關(guān)等方法分析重復(fù)地震事件之間的波形差異[8-11],進(jìn)而獲取地震波速度的變化特征。人工震源具有地震波形重復(fù)性較強(qiáng)的優(yōu)點(diǎn),結(jié)合尾波干涉方法可以獲得精度較高的波速變化結(jié)果[3,12]。然而,天然重復(fù)地震監(jiān)測(cè)經(jīng)常受到發(fā)震時(shí)間不連續(xù)和時(shí)空分布不均勻等因素的影響;而人工震源監(jiān)測(cè)工作量較大且觀測(cè)成本較高,主要用于監(jiān)測(cè)地震波速的時(shí)序變化特征。為了獲得地震波速變化的空間特征,Pei等[13利用2000—2014年期間的直達(dá)P波走時(shí)信息對(duì)龍門(mén)山斷裂帶地區(qū)開(kāi)展了區(qū)域性波速變化研究,揭示了汶川地震前的波速降低以及震后波速的恢復(fù)過(guò)程;但是這一方法受區(qū)域震源分布不均的影響較大。隨著背景噪聲處理技術(shù)的發(fā)展,許多學(xué)者[14-20]通過(guò)背景噪聲互相關(guān)或自相關(guān)來(lái)重建經(jīng)驗(yàn)格林函數(shù),并將不同時(shí)段疊加的經(jīng)驗(yàn)格林函數(shù)等效為重復(fù)震源來(lái)監(jiān)測(cè)地下介質(zhì)波速變化,已在火山、強(qiáng)震和工程地質(zhì)等領(lǐng)域開(kāi)展了波速變化時(shí)序監(jiān)測(cè)研究。背景噪聲成像具有可重復(fù)性和時(shí)間穩(wěn)定性等特點(diǎn)[21],可以不依賴于地震或人工爆破源就能獲取精細(xì)的地下速度結(jié)構(gòu)及其變化特征,有助于了解地殼介質(zhì)的應(yīng)力變化狀態(tài)。
沂沭斷裂帶位于郯廬斷裂帶山東段,北起萊州灣,向南沿沂河、沭河延伸至蘇北駱馬湖地區(qū),由多條近于平行的北北東向斷裂組成[22]。斷裂帶兩側(cè)區(qū)域構(gòu)造復(fù)雜,發(fā)育魯西隆起、濟(jì)陽(yáng)凹陷、濟(jì)寧凹陷、膠北隆起和膠萊盆地等多個(gè)構(gòu)造單元。歷史上,受太平洋板塊俯沖作用影響,沂述斷裂帶發(fā)生過(guò)強(qiáng)烈的左旋剪切作用[23-25]。近年來(lái),該區(qū)域的地殼形變和構(gòu)造活動(dòng)仍十分頻繁,被認(rèn)為是郯廬斷裂帶上地震危險(xiǎn)性最高的區(qū)域之一[26-28]。因此,沂述斷裂帶及鄰區(qū)地震波速變化研究對(duì)于了解該區(qū)域的應(yīng)力變化及地震風(fēng)險(xiǎn)性至關(guān)重要。本研究采用背景噪聲成像技術(shù)構(gòu)建不同時(shí)段沂述斷裂帶及鄰區(qū)的瑞利面波相速度結(jié)構(gòu),通過(guò)分析波速變化的時(shí)空特征,探討地震波速變化與不同因素的相關(guān)性以及可能的影響機(jī)制,以期揭示沂述斷裂帶深部介質(zhì)的演化特征。
1 數(shù)據(jù)與方法
選取2011年1月—2014年12月布設(shè)于山東和河南臺(tái)網(wǎng)固定臺(tái)站的垂直分量連續(xù)波形數(shù)據(jù),其中山東臺(tái)網(wǎng)39個(gè)臺(tái)站,河南臺(tái)網(wǎng)4個(gè)臺(tái)站,共計(jì)43個(gè)臺(tái)站(圖1)。理論和實(shí)際應(yīng)用均表明,長(zhǎng)時(shí)間噪聲互相關(guān)函數(shù)疊加可以獲得臺(tái)站對(duì)的經(jīng)驗(yàn)格林函數(shù)[29-32]。本文數(shù)據(jù)預(yù)處理參照 Bensen 等[33]的處理流程。首先,將各臺(tái)站的原始數(shù)據(jù)截成時(shí)間長(zhǎng)度為1d的波形數(shù)據(jù);然后,對(duì)數(shù)據(jù)進(jìn)行降采樣、去儀器響應(yīng)、去均值、去傾斜分量、帶通濾波 (2~40s) ,以及基于滑動(dòng)絕對(duì)平均方法的時(shí)域歸一化和頻譜白噪化等預(yù)處理;最后,對(duì)臺(tái)站對(duì)波形進(jìn)行互相關(guān)計(jì)算和疊加,獲得臺(tái)站對(duì)的互相關(guān)函數(shù)。
利用圖形轉(zhuǎn)換技術(shù)提取瑞利面波相速度頻散曲線[34-36]。考慮到實(shí)際數(shù)據(jù)的信噪比及頻散曲線的連續(xù)性,選取臺(tái)間距大于2倍波長(zhǎng)且信噪比大于8的波形用于頻散曲線的提取。圖2展示了同一臺(tái)站對(duì)(新鄉(xiāng)-安丘)不同年度的相速度頻散曲線。拾取過(guò)程中,本文均采用完全相同的參數(shù)和篩選原則。值得注意的是,盡管這些數(shù)據(jù)來(lái)自不同時(shí)期的觀測(cè),但各年度的頻散曲線呈現(xiàn)出非常高的相似性。最終,我們獲取了不同年度 5~35 s周期范圍內(nèi)、圖1所示所有地震臺(tái)站兩兩成對(duì)臺(tái)站對(duì)的頻散曲線(圖3)。從圖3中可以看出,不同年度間的頻散曲線呈現(xiàn)出較高的相似性,表明研究區(qū)域的地下介質(zhì)結(jié)構(gòu)在觀測(cè)期間保持了較好的穩(wěn)定性。
本研究采用基于射線理論的相速度空間反演方法[37-38]反演區(qū)域瑞利面波相速度結(jié)構(gòu)(圖4)。該方法采用最小二乘準(zhǔn)則,通過(guò)不斷迭代使目標(biāo)函數(shù)值達(dá)到最小。目標(biāo)函數(shù)表達(dá)式為
Φ(s)=(t-tobsT)CD-1(t-tobs)+
(s-sp)TCM-1(s-sp)e
式中: ΨtΨt 和 tobs 分別為預(yù)測(cè)和觀測(cè)走時(shí); s 和 sp 分別代
圖1沂述斷裂帶區(qū)域地質(zhì)構(gòu)造與臺(tái)站分布圖
XX:新鄉(xiāng)臺(tái);TIA:泰安臺(tái);ANQ:安丘臺(tái);YTA:煙臺(tái)臺(tái);SDTA:泰安GPS觀測(cè)點(diǎn);SDCY:昌邑GPS觀測(cè)點(diǎn);SDYT:煙臺(tái)GPS觀測(cè)點(diǎn)。
圖2新鄉(xiāng)(XX)-安丘(ANQ)臺(tái)站對(duì)不同年度的相速度頻散曲線
Fig.2Phase velocity dispersion curves of the Xinxiang (XX)-Anqiu (ANQ) station pair in different years
圖3所有臺(tái)站對(duì)不同年度周期 的瑞利面波相速度頻散曲線
Fig.3Rayleigh wave phase velocity dispersion curves of allstation pairs with a period of 5-35 s in different year
表慢度模型和先驗(yàn)慢度模型; cD 為觀測(cè)數(shù)據(jù)的協(xié)方差矩陣; CM 為反演模型參數(shù)的先驗(yàn)協(xié)方差矩陣。網(wǎng)格點(diǎn) r1 和 r2 之間的協(xié)方差滿足以下公式:
式中: σs 為先驗(yàn)慢度的不確定度; L 表示模型的相關(guān)長(zhǎng)度。
2結(jié)果
不同周期的瑞利面波相速度可以反映不同深度范圍的剪切波速度結(jié)構(gòu)特征。圖4展示了基于不同年度頻散曲線反演獲得的沂沐斷裂帶及其鄰近區(qū)域的相速度結(jié)構(gòu)分布。由于在頻散曲線拾取和相速度結(jié)構(gòu)反演過(guò)程中均采用了相同的篩選原則和參數(shù),因此不同年度的瑞利面波相速度結(jié)果呈現(xiàn)出非常高的相似性。周期為10s的相速度結(jié)果(圖 4a,d,g 、j)主要反映了上地殼的速度結(jié)構(gòu)特征,與地表地質(zhì)單元具有較好的一致性:濟(jì)陽(yáng)凹陷、濟(jì)寧凹陷和膠萊盆地等區(qū)域表現(xiàn)為低波速異常,而魯西隆起和膠北隆起等區(qū)域主要表現(xiàn)為高波速異常。周期為18s瑞利面波相速度結(jié)果(圖 4b,e,h,k) 主要反映了中下地殼的結(jié)構(gòu)特征,魯西隆起和膠北隆起區(qū)域主要呈現(xiàn)出高波速異常。周期為 25s 瑞利面波相速度結(jié)果(圖4c、f、i、1)主要反映了上地幔頂部的結(jié)構(gòu)特征,沂沭斷裂帶附近主要呈現(xiàn)出低波速異常,而濟(jì)陽(yáng)凹陷區(qū)域則表現(xiàn)為高波速異常。
為了分析沂述斷裂帶及鄰區(qū)不同年度之間的波速差異,我們通過(guò)差分計(jì)算獲得相鄰年份瑞利面波相速度隨時(shí)間的變化特征(圖5)。本文主要考慮不確定度小于 1.5% 的區(qū)域(圖5d)。為了更清晰地對(duì)比小震活動(dòng)( 2~5 級(jí))與波速變化的關(guān)系,采用雙差定位方法對(duì)區(qū)域的小震進(jìn)行了重定位。由于該區(qū).瑞利面波相速度均值; Δv .瑞利面波相速度變化量。
圖4不同年度周期為 的瑞利面波相速度結(jié)構(gòu)
Fig.4Phase velocity structures of Rayleigh wave at periods of 10,18,and 25s in different yea
域的小震發(fā)震深度主要集中于 10km 左右,與周期10s的瑞利面波相速度敏感核深度比較相近,而且周期10s的瑞利面波相速度結(jié)構(gòu)與地表構(gòu)造也具有較好的相關(guān)性,可靠性較高(圖5d);因此,本文主要探討周期10s的瑞利面波相速度結(jié)構(gòu)變化特征與小震活動(dòng)的相關(guān)性及可能的影響因素。由圖5可以看出,波速變化呈現(xiàn)出強(qiáng)烈的不均勻性,而小震主要發(fā)生于波速減小以及波速變化的梯度帶附近。2011—2012年期間,膠北隆起和魯西隆起西部主要表現(xiàn)為波速降低,而膠萊盆地和魯西隆起東部表現(xiàn)為波速升高(圖5a),2012—2013年期間的波速變化(圖5b)整體與 2011—2012年波速變化比較相似,但2013—2014年期間膠萊盆地和膠北隆起波速變化幅度較大,形成鮮明對(duì)比(圖5c)。
3 討論
周期10s的相速度結(jié)構(gòu)與區(qū)域地表構(gòu)造密切相關(guān)。魯西隆起和膠北隆起區(qū)表現(xiàn)出相對(duì)高的波速異常,而膠萊盆地區(qū)域則表現(xiàn)為低波速異常,與前人噪聲成像結(jié)果基本一致[39]。不同時(shí)段的相速度結(jié)構(gòu)表現(xiàn)出的高度相似性(圖4)也印證了背景噪聲成像的穩(wěn)定性和可重復(fù)性。在波速差分變化結(jié)果中,膠北隆起區(qū)域在2013—2014年間存在較明顯的波速升高現(xiàn)象(圖5c)。為了驗(yàn)證該波速變化異常的可靠性,選取泰安(TIA)和煙臺(tái)(YTA)兩臺(tái)站間不同年度的經(jīng)驗(yàn)格林函數(shù)進(jìn)行對(duì)比,結(jié)果如圖6所示??梢钥闯觯c2011—2013年相比,2014年的經(jīng)驗(yàn)格林函數(shù)存在明顯的相位提前,表明兩臺(tái)站之間存在波速升高的區(qū)域,這可能與我們觀測(cè)到的膠北隆起波速升高的現(xiàn)象相對(duì)應(yīng)。另外,沂述斷裂帶上的波速差分變化幅度整體較低(圖5a—c),表明近期沂沐斷裂帶活動(dòng)性較弱[40]
圖5周期10s的瑞利面波相速度差分變化(a、b、c)與不確定度分析(d)
Fig.5 Variation (a,b,c) and uncertainty analysis (d)of phase velocity difference of Rayleigh wave at period of
周期10s的瑞利面波相速度結(jié)構(gòu)年度差分變化特征與2級(jí)以上小震活動(dòng)具有明顯的相關(guān)性。小震主要發(fā)生于波速變化減小以及波速變化梯度帶附近(圖5)。實(shí)驗(yàn)表明,巖石應(yīng)力與彈性波速度存在相關(guān)性,巖石會(huì)隨應(yīng)力增加而出現(xiàn)裂隙、擴(kuò)容和壓實(shí)現(xiàn)象[41]。人工源地震[42]也證實(shí)了地震波速度與地應(yīng)力場(chǎng)的相關(guān)性,主要表現(xiàn)為地震波速隨地應(yīng)力的增大而增大。研究區(qū)內(nèi)波速變化減小的區(qū)域可能代表了介質(zhì)的壓實(shí)作用減弱,不穩(wěn)定性上升,較易發(fā)生小震活動(dòng)[43-45];而在波速變化梯度帶附近,應(yīng)力的差異性易在斷層內(nèi)產(chǎn)生剪切作用,進(jìn)而導(dǎo)致小震活動(dòng)增加。
地震波速常常受區(qū)域降水和大氣壓強(qiáng)等因素的影響[12,15,46-48]。區(qū)域降水會(huì)影響地下水的補(bǔ)給條件,改變地下介質(zhì)的孔隙水壓力,減緩淺層地質(zhì)體的孔隙彈性效應(yīng),從而引起地震波速度的下降[49-50]而大氣壓強(qiáng)會(huì)在地表施加荷載,改變介質(zhì)內(nèi)部的裂隙狀態(tài),進(jìn)而引起地震波速度的變化。但是,大量研究表明,降水和大氣壓強(qiáng)主要對(duì)地表淺層波速產(chǎn)生影響,所導(dǎo)致的波速變化大概為0.015%[4,15,48,51],遠(yuǎn)小于2013—2014年期間膠東地區(qū)所觀測(cè)到的波速變化幅度(圖5c)。
研究表明[52-56],地表形變可以反映區(qū)域的構(gòu)造活動(dòng)特征,與地震波速變化存在相關(guān)性。我們分析了泰安(SDTA)、煙臺(tái)(SDYT)和昌邑(SDCY)GPS觀測(cè)點(diǎn)的GPS基線解算結(jié)果。圖7為最小二乘法擬合的東西方向上的基線值及其基線變化速率,可以看出:在東西方向上,2011—2014年期間泰安-昌邑臺(tái)站基線變化速率由 3. 19mm/a 轉(zhuǎn)變?yōu)?0.61mm/a ,表明兩臺(tái)站之間的拉張趨勢(shì)逐漸減緩;而泰安-煙臺(tái)臺(tái)站基線在2011年處于拉張狀態(tài),2012—2014年期間變化速率轉(zhuǎn)為負(fù)值,且擠壓速率逐漸增大,表明泰安-煙臺(tái)之間的擠壓強(qiáng)度遂漸增加,暗示著應(yīng)力不斷積累,這與我們觀測(cè)到的膠北隆起波速升高的現(xiàn)象一致。
圖6泰安(TIA)-煙臺(tái)(YTA)臺(tái)站對(duì)經(jīng)驗(yàn)格林函數(shù)變化 Fig.6 Empirical Green'sfunctionvariations ofTaian(TIA) andYantai(YTA)stationpair
圖7不同GPS觀測(cè)點(diǎn)之間的東西方向基線時(shí)間序列Fig.7 Timeseriesofeast-westbaselinebetweendifferentGPSstations
4結(jié)論
本研究基于2011—2014年期間沂沐斷裂帶及鄰區(qū)43個(gè)地震臺(tái)站的垂直分量連續(xù)波形數(shù)據(jù),利用背景噪聲成像方法反演得到了不同年度的瑞利面波相速度變化結(jié)果,主要獲得以下認(rèn)識(shí):
1)短周期瑞利面波相速度結(jié)構(gòu)與地表構(gòu)造密切相關(guān),隆起區(qū)主要表現(xiàn)為高波速異常,而凹陷區(qū)則表現(xiàn)為低波速異常。
2)波速變化與小震活動(dòng)具有明顯的相關(guān)性,小震主要發(fā)生于波速變化減小以及波速變化的梯度帶附近,可能與區(qū)域的應(yīng)力調(diào)整有關(guān)。
3)膠北隆起2013—2014年期間波速變化尤為顯著,且與GPS基線變化結(jié)果相一致,表明區(qū)域的擠壓應(yīng)力增強(qiáng)可能是導(dǎo)致膠北隆起地區(qū)地震波速顯著升高的主要因素。
參考文獻(xiàn)(References):
[1]Wang Q Y,Yao H J. Monitoring of Velocity ChangesBased on Seismic Ambient Noise:A Brief Review andPerspective[J]. Earth and Planetary Physics,2020,4(5):532-542.
[2]Hutapea F L,Tsuji T,Ikeda T. Real-Time CrustalMonitoring System of Japanese Islands Based onSpatio-Temporal Seismic Velocity Variation[J]. EarthPlanets Space,2020,72(1):1-16.
[3] Niu FL,Silver PG,Daley T M,et al. PreseismicVelocity Changes Observed from Active SourceMonitoring at the Parkfield SAFOD Drill Site[J].Nature,2008,454:204-208.
[4]Wang Q Y,Brenguier F,Campillo M,et al. SeasonalCrustal Seismic Velocity Changes Throughout Japan[J].Journal of Geophysical Research: Solid Earth,2017,122(10):7987-8002.
[5]Cloetingh S,Sternai P,Koptev K,et al. CoupledSurface to Deep Earth Processes:Perspectives fromTOPO-EUROPE with an Emphasis on Climate- andEnergy-Related Societal Challenges[J]. Global andPlanetary Change,2023,226:104140.
[6]Ermert L A,Cano E C,Chaussard E,et al. ProbingEnvironmental and Tectonic Changes UnderneathCiudad de México with the Urban Seismic Field[J].Solid Earth,2023,14(5):529-549.
[7]Fan L F, Sun H Y. Seismic Wave PropagationThrough an In-Situ Stressed Rock Mass[J]. Journal ofApplied Geophysics,2015,121:13-20.
[8]Ratdomopurbo A,Poupinet G. Monitoring a TemporalChange of Seismic Velocity in a Volcano: Applicationto the 1992 Eruption of Mt Merapi (Indonesia)[J].Geophysical Research Letters,1995,22(7):775-778.
L9」Pandolti D, Bean C J, Saccorotti G. Coda WaveInterferometric Detection of Seismic Velocity ChangesAssociated with the 1999 M=3 .6 Event at MtVesuvius[J]. Geophysical Research Letters, 2006,33(6):272-288.
[10]Martini F,Bean C J,Saccorotti G,et al. SeasonalCycles of Seismic Velocity Variations Detected UsingCoda Wave Interferometry at Fogo Volcano, SaoMiguel,Azores,During 2003 - 2004[J]. Journal ofVolcanology and Geothermal Research, 2009,181(3/4):231-246.
[11]Battaglia J,Metaxian JP,Garaebiti E. Earthquake-Volcano InteractionImagedbyCoda WaveInterferometry[J]. Geophysical Research Letters,2012,39(11):L11309.
[12]Silver PG,Daley T M,Niu F L,et al. Active SourceMonitoring of Cross-Well Seismic Travel Time forStress-InducedChanges [J]. BulletinoftheSeismological Society of America,2007,97(1B):281-293.
[13]Pei SP,Niu F L,Ben-Zion Y,et al. Seismic VelocityReduction andAcceleratedRecovery duetoEarthquakes on the Longmenshan Fault [J]. NatureGeoscience,2019,12:387-392.
[14]Campillo M,Paul A.Long-Range Correlations in theDiffuse Seismic Coda[J]. Science,2003,299:547 -549.
[15]Shapiro N M,Campillo M,Stehly L,et al. High-Resolution Surface Wave Tomography from AmbientSeismic Noise[J]. Science,2005,307:1615 - 1618.
[16]Sens-Schonfelder C, Wegler U. Passve ImageInterferometry and Seasonal Variations of SeismicVelocities atMerapiVolcano,Indonesia [J].Geophysical Research Letters,2006,33(21):1-5.
[17]Brenguier F,Shapiro N M,Campillo M,et al.TowardsForecasting Volcanic EruptionsUsingSeismic Noise[J].Nature Geoscience,20o8,1(2):126 -130.
[18]劉志坤,黃金莉.利用背景噪聲互相關(guān)研究汶川地震震源區(qū)地震波速度變化[J].地球物理學(xué)報(bào),2010,53(4):853-863.Liu Zhikun, Huang Jinli. Temporal Changes ofSeismic Velocity Around the Wenchuan EarthquakeFault Zone from Ambient Seismic Noise Correlation[J].Chinese Journal of Geophysics,2O1o,53(4):853-863.
「10]安茄 王佳濤 楊微 笙 利田背昱噪聲研空 2021年An Yanru,Wang Weitao,Yang Wei,et al.UsingAmbient Noise to Study the Co-Seismic and Post-Seismic Velocity Changes of the 2O21 Yangbi MS6.4 (20Earthquake in Yunnan [J]. Chinese Journal ofGeophysics,2023,66(8):3185-3201.
[20]孔慶翰,呂子強(qiáng),張廣偉.基于密集臺(tái)陣的遼寧老虎臺(tái)礦區(qū)微震事件重定位[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024,54(5):1685-1695.Kong Qinghan, Lu Ziqiang, Zhang Guangwei.Microseismic Events Relocation of Laohutai CoalMine in Liaoning Province Based on Dense SeismicArray[J]. Journal of Jilin University (Earth ScienceEdition),2024,54(5):1685-1695.
[21]王智雄,馮晅,侯賀晟,等.基于背景噪聲成像方法的蘿北地區(qū)淺地表速度結(jié)構(gòu)[J].世界地質(zhì),2022,41(2):365-372.Wang Zhixiong,F(xiàn)eng Xuan,Hou Hesheng,et al.Shallow-Surface Velocity Structure in Luobei AreaBased on Ambient Noise Tomography Method[J].World Geology,2022,41(2): 365-372.
[22]劉洪波,吳治國(guó),鄭孝誠(chéng),等.沂沭斷裂帶萊州灣海域重力場(chǎng)特征[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2019,49(5):1438 - 1447.Liu Hongbo,Wu Zhiguo, Zheng Xiaocheng,et al.Gravity Field Characteristics of Yishu Fault Zone inLaizhou Bay[J]. Journal of Jilin University (EarthScience Edition),2019,49(5):1438-1447.
[23]張鵬,王良書(shū),鐘鍇,等.郯廬斷裂帶的分段性研究[J].地質(zhì)論評(píng),2007,53(5):586-591,721,722.Zhang Peng,Wang Liangshu, Zhong Kai, et al.Research on the Segmentation of Tancheng-LujiangFault Zone[J]. Geological Review,2007,53(5):586-591,721,722.
[24]朱成林,甘衛(wèi)軍,李杰,等.日本 Mw9.0 地震后沂述斷裂帶兩側(cè)塊體相對(duì)運(yùn)動(dòng)及對(duì)地震活動(dòng)的影響[J].地球物理學(xué)報(bào),2018,61(3):988-999.Zhu Chenglin,Gan Weijun,Li Jie,et al.RelativeMotion Between the Two Blocks on Either Side of theYishu Fault Zone After the 2Oll Japan Mw9.0 Earthquake and Its Effect on Seismic Activity[J].Chinese Journal of Geophysics, 2018,61(3): 988 -999.
[25]晁洪太,李家靈,崔昭文,等.郯廬斷裂帶中段全新世活斷層的特征滑動(dòng)行為與特征地震[J].內(nèi)陸地震,1994,8(4):297- 304.Characteristic Earthquakes [J]. Inland Earthquake,1994,8(4): 297-304.
[26]嚴(yán)樂(lè)佳,朱光,林少澤,等.沂沭斷裂帶新構(gòu)造活動(dòng)規(guī)律與機(jī)制[J].中國(guó)科學(xué):地球科學(xué),2014,44(7):1452-1467.Yan Lejia, Zhu Guang,Lin Shaoze,et al. The Lawand Mechanism of Neotectonic Activity in the YishuFault Zone[J]. Scientia Sinica (Terrae),2O14,44(7):1452-1467.
[27]李兵,謝富仁,黃金水,等.龍門(mén)山斷裂帶大邑地震空區(qū)地應(yīng)力狀態(tài)與地震危險(xiǎn)性[J].中國(guó)科學(xué):地球科學(xué),2022,52(7):1409-1418.Li Bing,Xie Furen,Huang Jinshui,et al. In-SituStress State and Seismic Hazard of Dayi SeismicEmpty Area in Longmenshan Fault Zone[J]. ScientiaSinica(Terrae),2022,52(7):1409-1418.
[28]鐘大賚,李理,丁增勇,等.魯西北西向斷裂系與沂述斷裂帶晚中生代演化關(guān)系及其動(dòng)力學(xué)背景探討[J].地學(xué)前緣,2010,17(3):166-190.Zhong Dalai, Li Li, Ding Zengyong, etal.Relationship Between NW Faults of West Shandongand Yi-Shu Fault Zone in Late Mesozoic and TheirGeotectonic Setting Operations [J]. Earth ScienceFrontiers,2010,17(3):166-190.
[29]呂子強(qiáng),雷建設(shè).2015年尼泊爾 Ms8.1地震震源區(qū)S波三維速度結(jié)構(gòu)與強(qiáng)震發(fā)生機(jī)理研究[J].地球物理學(xué)報(bào),2016,59(12):4529-4543.Lu Ziqiang,Lei Jianshe. 3 - D S- Wave VelocityStructure Around the 2O15 Ms8.1 Nepal EarthquakeSource Areas and Strong Earthquake Mechanism[J].Chinese Journal of Geophysics,2016,59(12): 4529-4543.
[30]呂子強(qiáng),趙俐紅,李鉑,等.天山造山帶地區(qū)瑞利面波相速度與方位各向異性[J].地球物理學(xué)報(bào),2019,62(9):3354 - 3364.Lu Ziqiang,Zhao Lihong,Li Bo,et al. RayleighWave Phase Velocity and Azimuthal Anisotropy ofTien Shan Orogenic Belt from Ambient NoiseTomography[J]. Chinese Journal of Geophysics,2019,62(9):3354-3364.
[31]夏心茹,江國(guó)明,趙大鵬.郯廬斷裂中南段地殼速度結(jié)構(gòu)與地震活動(dòng)性研究[J].CT理論與應(yīng)用研究,2025,34(2):163-174.Xia Xinru, Jiang Guoming, Zhao Dapeng. CrustalVelocity Structure of the Middle-Southern Segment ofthe Tanlu Fault Zone(China) and Its Correlationwith the Seismic Activity in the Region[J].Computerized Tomography Theory and Applications,2025,34(2):163-174.
[32]王娟娟,姚華建,王偉濤,等.基于背景噪聲成像方法的新疆呼圖壁儲(chǔ)氣庫(kù)地區(qū)近地表速度結(jié)構(gòu)研究[J].地球物理學(xué)報(bào),2018,61(11):4436-4447.Wang Juanjuan,Yao Huajian,Wang Weitao,et al.Study of the Near-Surface Velocity Structure of theHutubi Gas Storage Area in Xinjiang from AmbientNoise Tomography [J]. ChineseJournalofGeophysics,2018,61(11): 4436-4447.
[33]Bensen G D,Ritzwoller M H,Barmin M P,et al.Processing Seismic Ambient Noise Data to ObtainReliable Broad-BandSurfaceWaveDispersionMeasurements[J ].GeophysicalJournalInternational,2007,169(3):1239-1260.
[34]Yao H J,Hilst R D,Hoop M V. Surface-WaveArray Tomography in SE Tibet from AmbientSeismic Noise and Two-Station Analysis: I: PhaseVelocity Maps[J]. Geophysical Journal International,2006,166(2): 732-744.
[35]呂子強(qiáng),雷建設(shè),周智剛,等.環(huán)渤海地區(qū)Pn波速度結(jié)構(gòu)與各向異性[J].地球物理學(xué)報(bào),2016,59(6):2047-2055.Lü Ziqiang,Lei Jianshe, Zhou Zhigang,et al. Pn-Wave Velocity and Anisotropy Around the Bohai SeaAreas[J]. Chinese Journal of Geophysics, 2O16,59(6):2047-2055.
[36]張浩,雷建設(shè),宋曉燕,等.山西斷陷帶及其鄰區(qū)背景噪聲面波直接反演成像[J].CT 理論與應(yīng)用研究,2025,34(2):175 -189.Zhang Hao,Lei Jianshe,Song Xiaoyan,et al. DirectSurface-Wave Tomography from Ambient Noise inthe Shanxi Rift Zone and Adjacent Areas[J].Computerized Tomography Theory and Applications,2025,34(2):175-189.
[37]Tarantola A, Valette B. Generalized’ NonlinearInverse Problem Solved Using the Least SquaresCriterion[J]. Reviews of Geophysics,1982,20(2):219-232.
[38]Tarantola A, Nercessian A. Three-DimensionalInversion Without Blocks[J]. Geophysical JournalInternational,1984,76(2): 299-306.
[39]顧勤平,丁志峰,康清清,等.郯廬斷裂帶中南段及鄰區(qū)其干背昱噪聲的瑞利波群速度層析成像「I地球Gu Qinping,Ding Zhifeng,Kang Qingqing,et al.Group Velocity Tomography of Rayleigh Wave in theMiddle-Southern Segment of the Tan-Lu Fault Zoneand Adjacent Regions Using Ambient Seismic Noise[J]. Chinese Journal of Geophysics,2020,63(4):1505-1522.
[40]杜存鵬,殷海濤,于勝文,等.基于GNSS 及地震活動(dòng)的沂述斷裂帶危險(xiǎn)性分析[J].大地測(cè)量與地球動(dòng)力學(xué),2023,43(1):38-41.Du Cunpeng,Yin Haitao,Yu Shengwen,et al. RiskAnalysis of Yishu Fault Zone Based on GNSS andSeismicity[J]. Journal of Geodesy and Geodynamics,2023,43(1): 38 -41.
[41]張逸凌,劉雷,杜建國(guó).高溫高壓下巖石波速研究進(jìn)展[J].地球物理學(xué)進(jìn)展,2023,38(5):1999-2022.Zhang Yiling, Liu Lei, Du Jianguo.Research Progressof Rock Wave Velocity Under High Temperature andHigh Pressure[J]. Progress in Geophysics, 2023,38(5):1999 -2022.
[42]Furumoto M,Ichimori Y,Hayashi N. Seismic WaveVelocity Changes and Stress Build-up in the Ccrust ofthe Kanto-Tokai Region[J]. Geophysical ResearchLetters,2001,28(19):3737-3740.
[43]祁玉萍,孟令媛,龍鋒,等.錦屏一級(jí)水電站庫(kù)區(qū)中小地震震源機(jī)制解與局部應(yīng)力場(chǎng)特征[J].地球物理學(xué)報(bào),2024,67(1):189-204.Qi Yuping, Meng Lingyuan, Long Feng, et al.Characteristics of Focal Mechanism Solution andLocal Stress Field of Small to Moderate Earthquakesin Jinping Hydropower Station Reservoir Area[J].Chinese Journal of Geophysics,2024,67(1):189 -204.
[44]郭云飛,雷建設(shè),關(guān)鵬虎.海南島及鄰區(qū)中小地震重定位[J].CT理論與應(yīng)用研究,2025,34(2):191-204.Guo Yunfei,Lei Jianshe,Guan Penghu. Relocation ofModerate-to-Small Earthquakesin and AroundHainan Island[J]. Computerized Tomography Theoryand Applications,2025,34(2):191-204.
[45]王天哲,張萬(wàn)佶,祁善博,等.長(zhǎng)短期記憶網(wǎng)絡(luò)在P波初至震相識(shí)別中的實(shí)驗(yàn)研究[J].CT理論與應(yīng)用研究,2025,34(2):205-215.Wang Tianzhe, Zhang Wanji,Qi Shanbo,et al.Experimental Study on Long Short-Term MemoryNetworks for Identifying P-Wave Primary Phase[J].Computerized Tomography Theory and Applications ,2025,34(2):205-215.Variations at TCDP are Controlled by MJO DrivenPrecipitation Pattern and High Fluid DischargeProperties[J]. Earth and Planetary Science Letters,2014,391(2):121-127.
[47]Delouche E, Stehly L. Seasonal Seismic VelocityVariationsMeasuredUsingSeismicNoiseAutocorrelations to Monitor the Dynamic of Aquifersin Greece[J]. Journal of Geophysical Research: SolidEarth,2023,128(12):B026759.
[48]Gradon C,Brenguier F,Stammeijer J,et al. SeismicVelocity Response to Atmospheric Pressure UsingTime-Lapse Passive Seismic Interferometry [J].Bulletin of the Seismological Society of America,2021,111(6):3451-3458.
[49]Gret A,Snieder R, Ozbay U. Monitoringin SitustressChanges in a Mining Environment with Coda WaveInterferometry[J]. Geophysical Journal International,2006,167(2):504-508.
[50]顧悅,裴爍瑾,梁姍姍,等.基于地震背景噪聲監(jiān)測(cè)山東臨沂地區(qū)地下水位變化[J].中國(guó)地震,2021,37(4) :857 -867.Gu Yue, Pei Shuojin, Liang Shanshan, et al.Monitoring of Groundwater Level Change by SeismicAmbient Method in Linyi Area of Shandong Province[J].Earthquake Research in China,2021,37(4):857 -867.
[51]靳宇蓉,魯克新,李鵬,等.基于穩(wěn)定同位素的土壤水分運(yùn)動(dòng)特征[J].土壤學(xué)報(bào),2015,52(4):792-801.Jin Yurong,Lu Kexin,Li Peng,et al. Research onSoil Water Movement Based on Stable Isotopes[J].Acta Pedologica Sinica,2015,52(4): 792-801.
[52]張培震,王琪,馬宗晉.中國(guó)大陸現(xiàn)今構(gòu)造運(yùn)動(dòng)的GPS速度場(chǎng)與活動(dòng)地塊[J].地學(xué)前緣,2002,9(2):430-441.Zhang Peizhen,Wang Qi,Ma Zongjin,et al.GPSVelocity Field andActive Crustal BlocksofContemporary Tectonic Deformation in ContinentalChina[J]. Earth Science Frontiers,2002,9(2):430 -441.
[53]薄萬(wàn)舉.GPS展示的中國(guó)大陸主要相對(duì)變形特征及強(qiáng)震活動(dòng)研究[J].地球物理學(xué)進(jìn)展,2013,28(2):599-606.Bo Wanju. Mainly Relative Deformation Features onChina Continent Revealed by GPS and Researches onStrong Earthquake Activities [J]. ProgressinGeophysics,2013,28(2):599-606.
[54]Castaldo R, Nardis R, DeNovelis V, et al.CoseismicStress and Strain Field ChangesInvestigation Through 3-D Finite Element Modelingof DInSAR and GPS Measurements and Geological/Seismological Data:The L’Aquila (Italy) 2009Earthquake Case Study[J]. Journal of GeophysicalResearch:Solid Earth,2018,123(5):4193-4222.
[55] Kang Y L, Shi Y R, Anderson J L. TectonicMechanism and Evolution of Eastern China During
the Early Cretaceous:A View from Magmatism in the Middle to Southern Tan - Lu Fault Zone[J]. International GeologyReview,2019,13(1):21-46. Cubuk-Sabuncu Y,Jonsdottir K,Caudron C,et al. Temporal Seismic Velocity Changes During the 2020 Rapid Inflation at Mt borbjorn-Svartsengi,Iceland, Using Seismic Ambient Noise[J]. Geophysical ResearchLetters,2021,48(11):GL092265.