亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        華北克拉通中部造山帶河北良崗榴閃巖變質(zhì)作用演化及其地質(zhì)意義

        2025-08-27 00:00:00董立師郝俊杰侯建軍董立帥郝俊杰侯建軍張梓靖鄭常青侯飛飛
        關(guān)鍵詞:石榴石變質(zhì)礦物

        Abstract: In the vicinity of Wujianfang Village, Lianggang Town within the Trans-North China orogen(TNCO) of the North China craton(NCC), we have discovered a set of garnet amphibolitesduring the 1/50000 regional geologic survey. The garnet amphibolites were exposed as lenses in the paragneisses of Yuanfang Formation of the Fuping Group, showing typical “white-eye socket” structure, indicating that they were probablyretrograded eclogites or high-pressure mafic granulites. In order to gain a deeper understanding of the metamorphic genesis and geological significance of this suite of garnet amphibolites,detailed studies were conducted on their petrology, mineral chemistry, geochemistry,metamorphic evolution,and zircon U-Pb geochronology. The results sugest that they underwent three stages of metamorphic evolution: An early prograde metamorphic stage (M1),a peak high-pressure granulite facies stage (M2),and a retrograde stage (M3). The early prograde stage features mineral assemblages of Am+Pl+Q inclusions within garnet,with metamorphic p-T conditions of approximately 756.0°C/6.0×108Pa ; The peak high-pressure granulite facies stage shows a mineral assemblage of Grt+Cpx+Pl+Q+Melt ,with ?-T conditions of 884.1-987.5°/ (204號(hào) (12.2-14.2)×108Pa ; The retrograde stage is characterized by a “white-eye” structure around garnet and partial replacement of clinopyroxene by late amphibolewith residual ilmenite, forming a mineral assemblage of Am+Pl+Q+Ilm±Grt and showing p-T conditions of 706.6-776.7°C/(3.7-4.2)X 108Pa ; The metamorphic evolution of these garnetamphibolites generally exhibits aclockwise ?P-T (20 includinga near-isothermal decompression (ITD) process. LA-ICP-MS zircon U-Pb dating indicates a retrograde metamorphic age range of 1.86 -1.84 Ga. The geochemical characteristics reveal that their protoliths were tholeitic basalt formed under an island arc environment of convergent plate margin. Combined with previous studies,the garnetamphibolites exposed in the Lianggang region are retrograde products of high-pressure granulites,which are similar to the formation process of the Hengshan-Huai' an-Xuanhua-Chengde high-pressure granulite belt of the TNCO. This suggests they may also be a result of the colision between the eastern and western block that occurred at about 1.85 Ga. This understanding extends the high-pressure granulite and retrograde eclogite belt in the north-central part of the TNCO southeastward to the Yixian-Laiyuan area in Hebei Province.

        Key words: Fuping complex; garnet amphibolite; high-pressure granulite; geochemistry; zircon U - Pb geochronlogy; Trans-North China orogen of North China craton; Lianggang Town, Yixian County, Hebei Province

        0 引言

        古代地殼演化、克拉通化和相關(guān)地球動(dòng)力學(xué)歷史的重要記錄,對(duì)理解早期地球的大陸生長(zhǎng)具有重要意義[1-8]?;谀甏鷮W(xué)、巖石組合、構(gòu)造演化和變質(zhì)作用 ?Tt(?? 代表壓力, T 代表溫度, t 代表時(shí)間)軌跡

        華北克拉通是世界上最古老的克拉通之一,具有約 3.8Ga 漫長(zhǎng)的演化歷史,保存了太古宙至古元將華北克拉通劃分為三個(gè)主要的構(gòu)造單元,包括西部陸塊、東部陸塊和中部造山帶[6-7]。南北走向的中部造山帶基底巖石出露于贊皇、阜平、五臺(tái)、恒山、懷安、宣化和冀北等地區(qū),巖石組合和地球化學(xué)特征表明這些巖石主要形成于大陸邊緣弧環(huán)境。中部造山帶新太古代一古元古代基底巖石的構(gòu)造樣式以線性構(gòu)造帶為特征[10-11],普遍遭受綠片巖相至麻粒巖相變質(zhì)作用。近年來,在中部造山帶中發(fā)現(xiàn)了大量的麻粒巖和退變榴輝巖[12-16],均具有近等溫減壓的順時(shí)針變質(zhì)作用 ?T 軌跡,并記錄了 1.96~1.80Ga 的變質(zhì)年齡[4.11,17-18],反映中部造山帶為東、西部陸塊之間的一個(gè)碰撞造山帶。大陸拼合過程中的俯沖和碰撞通常會(huì)產(chǎn)生高壓變質(zhì)作用,因此,了解中部造山帶中高壓麻粒巖的 ?T 演化,及其與帶中高壓麻粒巖和榴輝巖的關(guān)系,可以為下地殼在大陸碰撞過程中的演化提供重要約束[19]。根據(jù)實(shí)驗(yàn)巖石學(xué)研究,麻粒巖相被細(xì)分為高壓、中壓和低壓麻粒巖相[20-26]。古元古代高壓麻粒巖多見于中部造山帶北部和膠遼吉帶南部,巖石組合中不出現(xiàn)紫蘇輝石,顯示出Grt(石榴石) + Cpy(單斜輝石) + Pl(斜長(zhǎng)石) + Q(石英)(基性系列)和Ky(藍(lán)晶石) + Kfs(鉀長(zhǎng)石) ± Grt(石榴石)(泥質(zhì)系列和長(zhǎng)英質(zhì)系列)的特征礦物組合[27-28]。在中部造山帶北段基底中出露的高壓麻粒巖最早發(fā)現(xiàn)于懷安—蔓菁溝—宣化—西望山一帶,懷安一宣化地體中報(bào)道的高壓麻粒巖多以布丁狀、透鏡體狀或近似層狀產(chǎn)出于太古宙TTG(Trondhjemite-Tonalite-Granodiorite,奧長(zhǎng)花崗巖-英云閃長(zhǎng)巖-花崗閃長(zhǎng)巖)片麻巖中,根據(jù)其野外產(chǎn)狀和巖石接觸關(guān)系,推斷該套高壓麻粒巖原巖可能來自變質(zhì)基性巖墻或巖脈,經(jīng)過后期的地殼剪切變形以透鏡體狀產(chǎn)出于TTG片麻巖中。郭敬輝等[29]在宣化—西望山高壓麻粒巖中識(shí)別出的高壓礦物組合為石榴石核部及其包體 Cpx+Pl ,溫壓條件為 。Zhai等[30]將懷安鎮(zhèn)出露的高壓麻粒巖變質(zhì)礦物組合劃分為3個(gè)階段,高壓麻粒巖相礦物組合為石榴石及其內(nèi)部 Cpx+Pl 包體,變質(zhì)壓力在 (14.0~15.0)× 108Pa 之間。恒山一承德雜巖中出露的高壓麻粒巖同樣以透鏡體狀賦存于強(qiáng)應(yīng)變的均質(zhì)TTG片麻巖、條帶狀花崗片麻巖中,其峰期礦物組合主要為Grt+Pl+Cpy+ΔQ±ΔAm (角閃石)±Ru(金紅石)[30-33]。沿北恒山—懷安—宣化—承德一線,在空間上構(gòu)成一條長(zhǎng)約 500km 、NE向延伸的高壓麻粒巖相帶[30,34-36] 。

        阜平雜巖位于太行山的中段,屬于Zhao 等[37]所劃分的華北克拉通中部造山帶的中段,靠近東部陸塊,主要由早前寒武紀(jì)變質(zhì)巖和少量中生代花崗巖組成,是了解華北克拉通形成和演化的關(guān)鍵部位[38]。程裕淇等[39]將原阜平巖群分為上下兩套,其中下部狹義的阜平巖群出露麻粒巖相到低角閃巖相的變質(zhì)巖,如泥質(zhì)麻粒巖、含夕線石片麻巖、石榴黑云片麻巖和含石榴石片巖等[40-43]。前人[9,44-45]對(duì)阜平麻粒巖的研究大多集中在阜平雜巖中西部?jī)?nèi)中壓麻粒巖相峰期條件上。劉樹文[44]研究阜平雜巖中的鐵鎂質(zhì)麻粒巖變質(zhì)作用演化,得到峰期溫壓條件為 751~833°C , (8.5~10.8)×108Pa ,顯示順時(shí)針 pT 演化軌跡,表明阜平雜巖經(jīng)歷了從早期地殼增厚到后期構(gòu)造拾升的地球動(dòng)力過程。Zhao 等[45]對(duì)片麻巖中出露的鎂鐵質(zhì)麻粒巖峰期礦物組合進(jìn)行研究,計(jì)算其經(jīng)歷的 ?T 條件為 840~940° 、(8.7~9.7)×108Pa ,也得出了順時(shí)針I(yè)TD型 ?T 軌跡,年代學(xué)研究得到變質(zhì)作用發(fā)生在 1.80Ga 左右,表明阜平雜巖經(jīng)歷了地殼增厚、構(gòu)造剝蝕抬升和最后冷卻退變質(zhì)作用。之后,Wei等[46]研究發(fā)現(xiàn),阜平雜巖中麻粒巖保存的“白眼圈\"結(jié)構(gòu)與北恒山中出露的高壓麻粒巖內(nèi)含結(jié)構(gòu)相似,推測(cè)阜平雜巖可能經(jīng)歷了與恒山麻粒巖類似的變質(zhì)演化過程。

        前期地質(zhì)調(diào)查研究發(fā)現(xiàn),阜平雜巖東北部地區(qū)新太古代元坊巖組副片麻巖中出露含 Grt+Cpx+ Pl+Q 特征組合的基性高壓麻粒巖(石榴石角閃巖透鏡體),透鏡體內(nèi)可見特征“白眼圈”反應(yīng)結(jié)構(gòu),表明峰期后存在明顯降壓過程。本次在詳細(xì)野外地質(zhì)工作的基礎(chǔ)上,選擇代表性樣品開展了深入的巖相學(xué)、礦物化學(xué)、變質(zhì)溫壓估算和鋯石U-Pb年代學(xué)工作,研究結(jié)果對(duì)于進(jìn)一步認(rèn)識(shí)華北克拉通中部造山帶的構(gòu)造演化過程具有重要意義。

        1 地質(zhì)背景

        研究區(qū)位于河北省保定市北部易縣良崗鎮(zhèn),大地構(gòu)造位置處于華北克拉通中部造山帶阜平雜巖東北部,總體呈北東—南西向孤立產(chǎn)出(圖1a)。區(qū)內(nèi)地層出露較為廣泛,地層總體呈北東向展布,整體上可分為三個(gè)部分,分別為新太古代變質(zhì)結(jié)晶基底、中一新元古代及古生代沉積地層和新生代第四紀(jì)松散沉積地層。區(qū)內(nèi)新太古代變質(zhì)地層主要為阜平巖群元坊巖組和宋家口巖組。其中元坊巖組主要分布于易縣五間房村附近,區(qū)內(nèi)該巖組多呈較大的、不規(guī)則殘留體賦存于新太古代變質(zhì)深成巖中,其上與新太古代宋家口巖組為構(gòu)造面理平行接觸,局部被元古宙沉積蓋層角度不整合覆蓋(圖1b)。

        良崗高壓麻粒巖(榴閃巖)樣品采自河北易縣良崗鎮(zhèn)五間房村北部(圖 2)5km2 范圍山脊,采樣范圍為 115°0125.18′′E-115°0127.25′′E,39°1419.74′′N- 一39°1426.63′′N 。區(qū)內(nèi)阜平巖群元坊巖組巖性主要為一套副變質(zhì)片麻巖夾含石榴石基性變質(zhì)巖組合,該巖石組合以黑云斜長(zhǎng)片麻巖和黑云角閃斜長(zhǎng)片麻巖為主,并含有斜長(zhǎng)角閃巖、淺粒巖及角閃石巖。區(qū)內(nèi)片麻巖具有明顯的韻律特征,橫向延伸較穩(wěn)定(圖3a),局部可見混合巖化現(xiàn)象(圖3b),含石榴石基性變質(zhì)巖透鏡體以正地形地貌分布在副變質(zhì)片麻巖中,多表現(xiàn)為規(guī)模較大的“石香腸”構(gòu)造,呈透鏡體狀-不規(guī)則狀,延伸方向與片麻理走向基本一致(圖3c、d)。屬于阜平巖群元坊巖組副變質(zhì)片麻巖中的含石榴石基性變質(zhì)巖透鏡體,其內(nèi)部可見粗粒石榴石變斑晶及石榴石外圍的“白眼圈\"結(jié)構(gòu)(圖3d)。

        圖1河北易縣良崗鎮(zhèn)新太古代地質(zhì)簡(jiǎn)圖

        Fig.1Neoarchean tectonic map of Lianggang Town Yixian County of Hebei Province

        圖2河北易縣五間房地區(qū)地質(zhì)簡(jiǎn)圖及采樣位置圖

        Fig.2 Geological map and with sampling locations of representative samples of Wujianfang Vilage, Yixian County of Hebe Province

        2 分析測(cè)試方法

        本次研究對(duì)6件樣品開展了全巖地球化學(xué)分析、礦物化學(xué)分析和鋯石U-Pb年代學(xué)分析。全巖地球化學(xué)分析由實(shí)驗(yàn)室完成。主量元素采用X熒光光譜法(XRF)測(cè)定,誤差范圍: SiO2 為士 10.% , Al2 (20 O3 !Fe2O3 為 ±2.5% ,其他元素為士 4.5% 。微量、稀土元素采用ICAP- Q 電感耦合等離子體質(zhì)譜儀(ICP-MS)測(cè)定,詳細(xì)分析流程參考文獻(xiàn)[47],稀土及微量元素精密度相對(duì)標(biāo)準(zhǔn)偏差(relativestandarddeviation,RSD)在檢出限三倍以內(nèi) ≤17% ,檢出限三倍以上 ?10% 。

        礦物化學(xué)分析由湖北省地質(zhì)實(shí)驗(yàn)測(cè)試中心完成。應(yīng)用EPMA-1720H型電子探針對(duì)石榴石、斜長(zhǎng)石、輝石及角閃石進(jìn)行微區(qū)定量分析。標(biāo)樣為美國(guó)SPI公司的53種標(biāo)準(zhǔn)礦物,數(shù)據(jù)校正采用ZAF程序,礦物成分計(jì)算使用Geokit及AXE_2007程序[48]。測(cè)試誤差范圍:若所測(cè)主元素的質(zhì)量分?jǐn)?shù)大于 5% ,相對(duì)誤差小于 1% ;質(zhì)量分?jǐn)?shù)介于 1%~5% 之間的元素,相對(duì)誤差大致在 5% 左右;質(zhì)量分?jǐn)?shù)小于 1% ,相對(duì)誤差為 10%~50% 。測(cè)試精度為0.01%LA-ICP-MS 鋯石U-Pb年代學(xué)分析由吉林大學(xué)東北亞礦產(chǎn)資源評(píng)價(jià)自然資源部重點(diǎn)實(shí)驗(yàn)室完成。實(shí)驗(yàn)設(shè)備為德國(guó)GeoLasPro型 193nmArF 準(zhǔn)分子激光器和美國(guó)Agilent7900型ICP-MS質(zhì)譜儀。使用標(biāo)準(zhǔn)鋯石 91500(1062Ma) 作為外標(biāo)進(jìn)行同位素比值校正,標(biāo)準(zhǔn)鋯石PLE為監(jiān)控盲樣。元素含量以國(guó)際標(biāo)樣NIST61O為外標(biāo)、Si為內(nèi)標(biāo)元素進(jìn)行計(jì)算,NIST612和NIST614為監(jiān)控盲樣[49]

        a.具有韻律特征的片麻巖;b.條帶狀混合巖化片麻巖;c.含石榴石基性變質(zhì)巖呈透鏡體狀賦存于副變質(zhì)片麻巖中;d.透鏡體內(nèi)部粗粒石相石變斑晶,同時(shí)發(fā)育“白眼圈\"結(jié)構(gòu)。

        圖3研究區(qū)含石榴石基性變質(zhì)巖野外宏觀照片

        Fig.3Field macro-photographs of granet-bearing mafic metamorphic rocks

        數(shù)據(jù)結(jié)果使用Glitter軟件進(jìn)行同位素比值及元素含量計(jì)算。諧和年齡計(jì)算及圖像繪制采用ISOPLOT程序[50]]

        3 巖相學(xué)與礦物化學(xué)特征

        良崗地區(qū)代表性榴閃巖(高壓麻粒巖)樣品的主要礦物組成包括石榴石 (10%~20% 、單斜輝石(20號(hào) (7%~15% )、斜長(zhǎng)石 (15%~20%) 、角閃石 15%~ 30% 和石英 (5%~10% ),部分樣品中可見陽起石、綠簾石和綠泥石,以及少量的鈦鐵礦、楣石、磷灰石和磁鐵礦等副礦物,中一粗粒粒狀變晶結(jié)構(gòu),塊狀構(gòu)造。其中主要變質(zhì)礦物形態(tài)(圖4)與礦物化學(xué)特征(圖5)描述如下:

        3.1 石榴石

        本區(qū)榴閃巖中石榴石主要以變斑晶形式出現(xiàn),具有兩種形態(tài):第一種呈大粒徑變斑晶產(chǎn)出,粒徑可達(dá) 2.0~3.0mm ,晶型完好的石榴石內(nèi)含角閃石和斜長(zhǎng)石包體(圖4a),但多數(shù)石榴石受后期退變質(zhì)作用影響而發(fā)生分解,內(nèi)部存在角閃石、斜長(zhǎng)石等礦物,但因裂隙過于發(fā)育,無法確定其為進(jìn)變質(zhì)階段的礦物組合;第二種石榴石呈細(xì)小粒狀分布在基質(zhì)中,內(nèi)部干凈無包體,粒度為 0.25~0.75mm ,可能為石榴石發(fā)生分解后殘余的邊部石榴石(圖4c)。石榴石邊部發(fā)育由角閃石和斜長(zhǎng)石構(gòu)成的“白眼圈\"結(jié)構(gòu)(圖4a),可能代表構(gòu)造抬升過程中的退變質(zhì)減壓反應(yīng),指示降壓冷卻過程。

        電子探針分析結(jié)果(表1)顯示,榴閃巖中的石榴石成分類型有鐵鋁榴石( ?XAlm=53.36~56.75) 人鈣鋁榴石 ?XGro=26.36~31.43) 、鎂鋁榴石( XPy= 13.88~16.54) 和少量錳鋁榴石( Xsp=1.14~1.69) 。石榴石中的 XFe 變化于 0.77~0.80 之間,對(duì)晶型完好的石榴石進(jìn)行成分剖面分析(圖 4a, ,發(fā)現(xiàn)石榴石成分剖面整體呈現(xiàn)出生長(zhǎng)環(huán)帶特點(diǎn)(圖5a)。從核部到幔部 XGro 增加 (28.28~29.08) )、 XAlm 降低

        圖4研究區(qū)榴閃巖顯微巖相特征照片

        a.石榴石成分剖面點(diǎn)位,周圍發(fā)育由角閃石和斜長(zhǎng)石構(gòu)成的“白眼圈\"結(jié)構(gòu);b.石榴石呈破碎殘余狀;c.細(xì)小粒狀分布在基質(zhì)中的石榴石;d.單斜輝石殘余狀分布在他形角閃石中;e.單斜輝石中的他形角閃石及楔狀石英熔體;f.位于單斜輝石邊部和內(nèi)部的半自形角閃石;g、h.綠簾石、綠泥石和陽起石三者平衡共生,分布在角閃石邊部,屬于角閃石退變邊。Grt.石榴石;Cpx.單斜輝石;Am.角閃石;Pl.斜長(zhǎng)石;Melt.熔體;Ep.綠簾石;Chl.綠泥石;Act.陽起石。

        通常石榴石中 Ca 元素的含量與壓力呈正相關(guān),而 Fe/Mg 值與溫度呈負(fù)相關(guān),石榴石生長(zhǎng)環(huán)帶表明,大部分石榴石核部應(yīng)指示進(jìn)變質(zhì)階段,而從進(jìn)變質(zhì)階段到峰期階段是一個(gè)升溫升壓的過程。從幔部到邊部,XAlm?XPy 顯著增加, XGro 顯著減少,指示退變質(zhì)階段是一個(gè)降壓過程。除此之外,石榴石的邊部呈現(xiàn)出擴(kuò)散環(huán)帶的特點(diǎn),由內(nèi)向外 XAlm 與 XGro 呈負(fù)相關(guān),XAlm 與 XPy 呈正相關(guān),表明石榴石邊部與基質(zhì)中的礦物之間存在 Fe-Mg 相互交換, XGro 的降低說明石榴石邊部的 Ca 在退變質(zhì)反應(yīng)中用于“白眼圈”的形成。石榴石中的 Xsp 變化微弱,這是由于溫度的升高,分異結(jié)晶作用和擴(kuò)散作用之間的競(jìng)爭(zhēng)使得Mn元素達(dá)到均一化,而呈現(xiàn)平坦的石榴石環(huán)帶模式。大量的研究[54]發(fā)現(xiàn),在高級(jí)變質(zhì)巖中,由于變質(zhì)級(jí)別的逐漸升高石榴石的 Mn 環(huán)帶會(huì)出現(xiàn)逐漸平坦的分布特征。樣品中存在的細(xì)粒石榴石成分與大粒徑石榴石邊部成分相似,可能為大顆粒石榴石由核部沿裂隙進(jìn)行分解之后殘留的部分。

        3.2 單斜輝石

        榴閃巖中的單斜輝石部分呈半自形網(wǎng)狀,與內(nèi)部的斜長(zhǎng)石和石英接觸共生,和石榴石變斑晶共同構(gòu)成變質(zhì)峰期礦物組合(圖4a、b)。此外,在樣品中可以觀察到輝石內(nèi)部的楔狀石英熔體(圖4e),與高壓麻粒巖相變質(zhì)作用過程中產(chǎn)生的部分熔融結(jié)構(gòu)特征相匹配。部分樣品中的單斜輝石內(nèi)部及邊部均退變?yōu)榻情W石,過渡部分具有角閃石型解理,單斜輝石呈殘余狀分布在他形角閃石中(圖4d)。

        榴閃巖中的單斜輝石均屬于峰期變質(zhì)階段礦物組合,顯示類似的化學(xué)成分(表2),具有兩種分布形態(tài):板狀的單斜輝石 w(SiO2)=50.54%~52.58% w(Al2O3)=1.65%~2.27% , 0.42% , XMg 值為 0.62~0.68 ! Wo=43.69%~ 44.67% , En=32.55%~35.01% , Fs=20.12%~ 21.71% ,其成分主要為普通輝石和透輝石(圖5b);第二種單斜輝石蝕變程度較強(qiáng),呈殘留狀分布在他形角閃石中, w(SiO2)=50.80%~51.91% . w (Al2O3)= 1.67%~2.39% ?w(Na2O)=0.32%~0.41% Wo=

        表1研究區(qū)榴閃巖中石榴石的電子探針成分

        Table 1Selected microprobe analyses for garnet of garnet amphibole in the study area

        注:主量元素質(zhì)量分?jǐn)?shù)單位為 % 。 XFe .鐵元素指數(shù) (XFe=Fe2+/(Fe2++Mg));X Xi 代表 i 組分在石榴石中的占比, i=Py,Alm,Gro (204號(hào) Sp;Py 為鎂鋁榴石, XPy=Mg/M×100% Alm 為鐵鋁榴石, XAlm=Fe2+/M×100% ;Gro為鈣鋁榴石, XGro=Ca/M×100% ;Sp為錳鋁榴石, XSp=Mn/M×100% ,其中 M=Fe2++Mg+Mn+Ca 。

        44.60%~45.17% En=34.76%~35.60% , Fs= 17.97%~19.42% XMg 值為 0.68~0.69 ,成分均為透輝石。殘留狀單斜輝石受到退變質(zhì)階段的影響更深,相比于板狀單斜輝石 En 端元組分較高,F(xiàn)s端元組分較低。Anovitz[55]研究指出,在化學(xué)成分一樣的情況下,變質(zhì)作用的壓力對(duì)基性高壓麻粒巖中單斜輝石里的 Al2O3 起著決定性的作用,壓力越大, Al2O3 質(zhì)量分?jǐn)?shù)越大,反之,壓力越小, Al2O3 質(zhì)量分?jǐn)?shù)越小。對(duì)榴閃巖中的板狀單斜輝石而言,核部的 Al2O3 質(zhì)量分?jǐn)?shù)高于邊部,說明高壓麻粒巖中的單斜輝石核部所受的壓力大于幔部和邊部位置,故可知高壓麻粒巖在峰值變質(zhì)作用時(shí)對(duì)單斜輝石的核部影響大,對(duì)邊部影響較小,而峰值變質(zhì)作用后期的退變質(zhì)主要影響邊部成分,使核部記錄的峰期變質(zhì)壓力的信息得以保留。

        3.3 角閃石

        榴閃巖中的角閃石存在于兩期變質(zhì)階段礦物組合中。進(jìn)變質(zhì)階段礦物組合( M1 )中的角閃石為石榴石核部的包體(圖4b);退變質(zhì)階段礦物組合( )中的角閃石存在兩種產(chǎn)出狀態(tài):其一位于單斜輝石的邊部和內(nèi)部(圖4d、e、f),其二與斜長(zhǎng)石構(gòu)成“白眼圈\"結(jié)構(gòu)環(huán)繞石榴石邊部(圖 4a) ,其實(shí)這兩種狀態(tài)角閃石都屬于退變質(zhì)階段產(chǎn)物。

        依據(jù) Leake等[52,56]的劃分依據(jù),當(dāng) CaB≥1.50 ,其屬于鈣質(zhì)角閃石,而又可以依據(jù) (Na+K)A?0.50 和 (Na+K)Alt;0.50 劃分成兩組, (Na+K)A≥0.50 依據(jù) 和 Tilt;0.50 細(xì)分兩組,而 (Na+K)Alt; 0.50則是依據(jù) CaA?0.50 和 CaAlt;0.50 細(xì)分成兩組。榴閃巖中三類不同賦存狀態(tài)的角閃石具有類似的成分特征(表3)。以包體形式賦存在石榴石變斑晶中的角閃石, w ( (MgO)=6.93% , w ( FeO)= 17.74% 74%,XMg=0.43,F(xiàn)e3+=0.21 , AlvI=0.70 ,屬于鐵韭閃石(圖 5d, ,屬于麻粒巖相(圖5e),說明進(jìn)變質(zhì)階段的變質(zhì)程度可能相當(dāng)于麻粒巖相變質(zhì)。分布在單斜輝石內(nèi)部和邊部的他形一半自形角閃石,w(MgO)=8.37%~9.58%,w(FeO)=17.71%~ 18.83% , XMg=0.49~0.57 ,主要成分為鐵鎂角閃石、鈣鎂角閃石和鎂綠鈣閃石,變質(zhì)程度屬于麻粒巖相(圖5e)。與斜長(zhǎng)石環(huán)繞石榴石邊部構(gòu)成“白眼圈”結(jié)構(gòu)的角閃石, w(MgO)=8.28%~9.59% w(FeO)=17.29%~19.14% XMg=0.49~0.57 ,其主要成分為鐵鎂角閃石、鎂綠鈣閃石、綠鈣閃石和鈣鎂角閃石,這類角閃石變質(zhì)程度均屬于麻粒巖相(圖5e)。角閃石的 )(大多數(shù)為 2.02%~ 2.48% ,個(gè)別石榴石內(nèi)包體角閃石為 3.18% ,少部分退變邊角閃石為 1.78% )也反映角閃石大部分屬于麻粒巖相峰期殘留物(表3)。

        3.4 斜長(zhǎng)石

        榴閃巖中的斜長(zhǎng)石對(duì)應(yīng)了變質(zhì)演化過程中三個(gè)變質(zhì)階段,具有三種結(jié)構(gòu)形態(tài)。進(jìn)變質(zhì)階段( M1 )的斜長(zhǎng)石為石榴石內(nèi)部包體;第二種與輝石共生分布在基質(zhì)中(圖4f),構(gòu)成峰期階段( Δ?M2 )礦物組合;第三種斜長(zhǎng)石形成于退變質(zhì)階段( ΔM3 ),與退變質(zhì)角閃石共同構(gòu)成“白眼圈\"結(jié)構(gòu)分布在石榴石邊部(圖4a)。

        由于后期蝕變作用的影響,石榴石發(fā)生分解,同時(shí)裂隙發(fā)育顯著,導(dǎo)致本次研究對(duì)斜長(zhǎng)石包體進(jìn)行測(cè)量未能得到有效成分分析結(jié)果。根據(jù)電子探針成分分析研究(表4),發(fā)現(xiàn)構(gòu)成“白眼圈”的斜長(zhǎng)石( An=39.87%~51.09%) 與峰期 M2 變質(zhì)階段的斜長(zhǎng)石 ?An=40.39%~57.17%? 均為中長(zhǎng)石和拉長(zhǎng)石(圖5c)。根據(jù)對(duì)不同階段斜長(zhǎng)石進(jìn)行成分對(duì)比發(fā)現(xiàn), M2 階段An值平均為 46.36% , M3 階段An值平均為 43.55% , An 值隨著變質(zhì)作用演化過程呈現(xiàn)降低趨勢(shì),說明退變質(zhì)階段斜長(zhǎng)石的形成溫度要低于峰期變質(zhì)階段,與變質(zhì)演化過程中溫壓條件變化的一般規(guī)律一致。

        表2研究區(qū)榴閃巖中單斜輝石的電子探針成分

        Table 2 Selected microprobe analyses for clinopyroxene of garnet amphibole in the study area

        表3研究區(qū)榴閃巖中角閃石的電子探針成分

        Table 3 Selected microprobe analyses for amphibole of garnet amphibole in the studyarea

        注:主量元素質(zhì)量分?jǐn)?shù)單位為%。

        3.5 共生礦物組合演化

        根據(jù)良崗高壓麻粒巖的反應(yīng)結(jié)構(gòu)和礦物組合,本區(qū)變質(zhì)作用演化階段可以劃分為早期進(jìn)變質(zhì)階段( M1 )、峰期高壓麻粒巖相階段( )和退變質(zhì)階段( M3 )。

        早期進(jìn)變質(zhì)階段 (M1 ):礦物組合為Grt-c(石榴石核部 )+Am+Pl+Q ,在高壓麻粒巖的變質(zhì)演化過程中,富鐵的石榴石形成于進(jìn)變質(zhì)階段,之后隨著溫度壓力的升高,石榴石中Fe含量下降,Ca含量升高。在進(jìn)變質(zhì)演化過程中,角閃石、斜長(zhǎng)石等礦物逐漸被石榴石包裹。由于石榴石變斑晶核部很難與外部發(fā)生反應(yīng),因此石榴石內(nèi)包體可以視為早期進(jìn)變質(zhì)階段礦物組合[50]

        峰期高壓麻粒巖相變質(zhì)階段( M2 ):礦物組合為Grt-m(石榴石幔部 )+Cpx+Pl+Q+Melt? (熔體),石榴石幔部成分及基質(zhì)中的單斜輝石和斜長(zhǎng)石構(gòu)成了高壓麻粒巖相變質(zhì)階段礦物組合,其中基質(zhì)中的單斜輝石受到后期退變質(zhì)作用的影響,邊部 Al2O3 質(zhì)量分?jǐn)?shù)較核部降低。由于退變質(zhì)階段主要影響輝石邊部成分,核部記錄的峰期變質(zhì)壓力的信息得以保留。

        退變質(zhì)階段( M3 ):礦物組合為 Am+Pl+Q+ Ilm (鈦鐵礦) )±Grt ,在溫度壓力降低的過程中,石榴石邊部Fe含量升高, Ca,Mg 含量降低,形成角閃石和斜長(zhǎng)石,構(gòu)成典型的“白眼圈\"退變質(zhì)結(jié)構(gòu);單斜輝石在退變質(zhì)過程中Fe含量降低, Mg 含量升高,反應(yīng)后殘留的Fe在角閃石內(nèi)部形成鈦鐵礦;部分樣品中石榴石未反應(yīng)完全,以小顆粒變斑晶形態(tài)分布,共同構(gòu)成該階段礦物組合。

        4地球化學(xué)特征

        本文選取了6個(gè)榴閃巖樣品進(jìn)行全巖主量元素和微量元素測(cè)試分析。所有測(cè)試樣品的主量元素、微量元素和稀土元素?cái)?shù)據(jù)見表5。

        4.1 主量元素

        榴閃巖中 w ( SiO2 )為 49.98%~51.98% ,zo(TiO2 )為 1.26%~1.90% , w(Al2O3 )為 12.35%~ 13.88% , w ( MgO 為 4.88%~6.91% , w ( 為8.55%~9.78% , 高于 ,兩者質(zhì)量分?jǐn)?shù)分別為 1.17%~2.33%.0.42%~0.79% , K2O/ Na2O 值為 0.33~0.49 。 XMg MgO ))值為 35.13~46.67 ,低于原生玄武質(zhì)巖漿范圍 ,說明榴閃巖的原巖并不是原生玄武質(zhì)巖漿結(jié)晶的產(chǎn)物,這可能與巖漿中鐵鎂質(zhì)礦物的分離結(jié)晶作用有關(guān)。

        榴閃巖屬于基性巖范疇,樣品具有富鋁、富鈣的特點(diǎn),樣品中CaO含量偏高也與巖石礦物中角閃石含量較多的特征相符。根據(jù)榴閃巖主量元素成分特點(diǎn),其原巖為玄武巖(圖6a、b)。

        4.2 稀土元素

        選取Boynton[58]給定的球粒隕石稀土元素標(biāo)準(zhǔn)含量對(duì)樣品中的稀土元素進(jìn)行標(biāo)準(zhǔn)化。

        榴閃巖樣品 較小,變化范圍為87.10×10-6~111.42×10-6 ,平均為 96.27×10-6 ,其中 ,較為富集輕稀土元素;LREE/HREE介于 1.90~3.43 之間, δEu=0.91~1.05 ,平均為 0.98,(La/Yb)N 值為 1.44~2.20 , ?La/Sm?N 值為 1.16~2.47 ,稀土元素分布模式大部分呈弱 Eu 負(fù)異常,可能與后期變質(zhì)元素作用生成的斜長(zhǎng)石有關(guān)。

        稀土元素配分模式曲線圖(圖7a)顯示,榴閃巖整體表現(xiàn)為右傾型配分模式,輕稀土元素富集,重稀土元素平坦,其稀土元素分布模式稍顯 Eu 負(fù)異常,表明其原巖沒有經(jīng)歷明顯的分異作用。

        4.3 微量元素

        選取Sun等[59]給定的原始地幔微量元素標(biāo)準(zhǔn)含量對(duì)樣品中的微量元素進(jìn)行標(biāo)準(zhǔn)化。

        榴閃巖樣品中具有強(qiáng)烈的U、Nd、Dy正異常和強(qiáng)烈的 Ba,Nb,Sr,Zr,Ti 負(fù)異常。相容元素 Cr 、Ni和 Sc 質(zhì)量分?jǐn)?shù)分別為 65.20×10-6~139.40× 10-6、44.90×10-6~71.90×10-6、34.40×10-6~ 46.40×10-6 ;高場(chǎng)強(qiáng)元素 (Zr,Hf,Nb,Ta,Y,Th U),除個(gè)別樣品Th和U質(zhì)量分?jǐn)?shù)較高,其余樣品的元素質(zhì)量分?jǐn)?shù)均變化不大。樣品中的Ni和 Cr 質(zhì)量分?jǐn)?shù)均較原始巖漿 Δ(w(Ni)=250×10-6 300×10-6 )低,表明其原巖經(jīng)歷過結(jié)晶分離作用,并非原始巖漿直接結(jié)晶形成。

        微量元素蛛網(wǎng)圖(圖7b)顯示,榴閃巖整體表現(xiàn)為“先隆起后凹陷”的模式, Sr 和Ti元素的負(fù)異??赡苁怯捎趲r石后期發(fā)生強(qiáng)烈的變質(zhì)作用生成大量斜長(zhǎng)石與鈦鐵礦,從而導(dǎo)致Sr和Ti元素聚集形成Sr和Ti元素的負(fù)異常。

        5 鋯石年代學(xué)特征

        本文對(duì)2件代表性榴閃巖樣品進(jìn)行 LA-ICP- MS鋯石 U-Pb 同位素測(cè)年分析,測(cè)試結(jié)果見表6。

        榴閃巖測(cè)年鋯石取自樣品 lg-1-01 和 lg- 1-03。鋯石多呈半自形一他形,粒徑 100~240μm .長(zhǎng)短軸比為 3:1 ,少數(shù)呈短軸狀,長(zhǎng)短軸比為 2:1 。樣品 lg-1-01 和 lg-1-03 鋯石 Th/U 值范圍分別為 0.003~0.114 和 0.002~0.027 ,呈現(xiàn)變質(zhì)成因鋯石的特征。在鋯石陰極發(fā)光(CL)圖像(圖8)中,這些鋯石大多數(shù)內(nèi)部結(jié)構(gòu)均勻,主要呈面狀分帶、弱分帶或無分帶的特征,部分鋯石核部和邊部陰極發(fā)光強(qiáng)度不同,核部亮白色或灰白色,邊部呈灰色。核部鋯石的 Th/U 值略高于邊部鋯石,大多數(shù)鋯石無振蕩生長(zhǎng)環(huán)帶,少數(shù)鋯石核部保留有振蕩環(huán)帶,但年齡已重置( (1857±24)Ma) 。

        圖6研究區(qū)榴閃巖原巖分類圖解

        Fig.6 Protolith recovery diagram of garnet amphibole in the study area

        圖7研究區(qū)榴閃巖球粒隕石標(biāo)準(zhǔn)化的稀土元素配分模式圖(a)和原始地幔標(biāo)準(zhǔn)化的微量元素蛛網(wǎng)圖(b)Fig.7Standardizedrareearth element distribution pattern diagram (a)and standardized trace element webdiagram(b)ofeclogitechondritesin thestudyarea

        對(duì)樣品 lg-1-01 和 lg-1-03 分別進(jìn)行了36和30個(gè)測(cè)試點(diǎn)的分析, lg-1-01 和 lg-1-03 樣品的所有測(cè)試點(diǎn)分析結(jié)果在諧和圖中均分布在諧和線上或附近,獲得36 和30 個(gè)測(cè)點(diǎn)的 207Pb/206Pb 年齡加權(quán)平均值分別為 (1852±9)Ma(MSWD=0.28 n=36 (圖9a)和 (1849±10)Ma(MSWD=0.75 .n=30 (圖9b)。表明榴閃巖經(jīng)歷了古元古代末期變質(zhì)作用的改造。

        6變質(zhì) pT 條件與 pT 演化軌跡

        前文述及,榴閃巖變質(zhì)作用演化可以劃分為早期進(jìn)變質(zhì)階段( M1 )、峰期高壓變質(zhì)階段( M2 )和退變質(zhì)階段( M3 )三個(gè)階段。本文依據(jù)礦物共生組合特征,利用傳統(tǒng)地質(zhì)溫壓計(jì)對(duì)各變質(zhì)演化階段的pT 條件進(jìn)行估算。主要使用的傳統(tǒng)地質(zhì)溫壓計(jì)有Grt-Cpx 地質(zhì)溫度計(jì)[60-61]、Grt-Cpx-Pl-Q地質(zhì)溫壓計(jì)[62-63]、Hbl 地質(zhì)溫度計(jì)[64]和 Hbl-Pl地質(zhì)溫壓計(jì)[65]。計(jì)算公式分別為:

        RTlnKD=(2482±845)+(1509±1392)(XFe- 2 YMgGar+(2810±954)XCaGar+(2855±792)X Gar [60];

        式中: R 為摩爾氣體常數(shù),其值為 8.314J/(mol :

        K); T 為熱力學(xué)溫度,單位為 K;KD 是石榴石與單斜輝石之間 Fe、 Mg 的分配系數(shù); XiGar 為石榴石中相應(yīng)元素的摩爾分?jǐn)?shù), i=Fe2+ , Mg,Mn Ca ,若 i 為 Fe2+ ,則 XFeGr=Fe2+/(Fe2++Mg+Ca+Mn) ,其余元素以此類推; XFeCpx 、 XMgCpx 分別為單斜輝石中Fe、 Mg 元素的摩爾分?jǐn)?shù); Gar 為石榴石; Cpx 為單斜輝石。

        10.86?(108Pa)+(WMg-Mn-WFe-Mn)XMnGt (2式中: XiGt 為石榴石中相應(yīng)元素的摩爾分?jǐn)?shù), i= Fe2+ , Mg , Mn , Ca ,若 i 為 Mn ,則 XMnGt=Mn /( (Fe2++Mg+Ca+Mn) ,其余元素以此類推;W代表兩種元素之間相互作用的強(qiáng)度,如 WMg-Mn 代表Mg 和 Mn 元素之間相互作用的強(qiáng)度; Gt 代表石榴石; p 為壓力,單位為 Pa 。

        108Pa) ;

        rlrrrregeergrererleereern

        9華

        6 表 續(xù)

        6 表 續(xù)

        圖8研究區(qū)榴閃巖代表性鋯石陰極發(fā)光圖像

        圖9研究區(qū)榴閃巖鋯石U-Pb諧和圖及加權(quán)平均年齡圖

        Fig.9Concordia diagram and weighted mean age plotof zircon U-Pb dating for garnet amphibolite in the study are

        式中: KB 為反應(yīng)(鈣長(zhǎng)石 + 透輝石 =2/3 鈣鋁榴石 + 1/3 鎂鋁榴石 + 石英)的平衡常數(shù); α 代表礦物的活度; Xi 為石榴石中相應(yīng)元素的摩爾分?jǐn)?shù), i=Fe2+

        Mg,Mn,Ca ,若 i 為 Fe2+ ,則 XFe=Fe2+/(Fe2++ Mg+Ca+Mn) ,其余元素以此類推; Xkj 為單斜輝石中相應(yīng)元素 (k) 在相應(yīng)點(diǎn)位 (j) 的摩爾分?jǐn)?shù),如

        XΔMgM1 為 Mg 在M1點(diǎn)位的占位比例, XCaM2 為 Ca 在M2點(diǎn)位的占位比例; XAn 為斜長(zhǎng)石中鈣長(zhǎng)石分子的摩爾分?jǐn)?shù);Di代表透輝石。

        (204號(hào) ρ(108Pa)=[2543-4.744T+175XMgHbl+ RTln(AlHbl+1.433)]/148.1[64] 。

        式中: XMgHbl 為角閃石中 Mg 的摩爾分?jǐn)?shù), XMgHbl=Mg/ (Mg+Fe2+ ); SiHbl 和 AlHbl 分別為角閃石的Si、Al陽離子數(shù)。

        13.0[65]

        式中: TB 為反應(yīng)為淺閃石 + 鈉長(zhǎng)石 鎂鈉鈣閃石 + 鈣長(zhǎng)石熱力學(xué)溫度, K;YAb-An 為斜長(zhǎng)石中鈉長(zhǎng)石與鈣長(zhǎng)石的活度系數(shù)差,為 kJ ,需依據(jù) XAbPlag 計(jì)算,當(dāng)XAbPlaggt;0.5 ,則 YAb-An=3.0kJ ,當(dāng) XAbPlag?0.5 ,則YAb-An=12(XAb-1)+3.0kJ; XNaM4 表示角閃石在M4點(diǎn)位上的 ΔNa 離子的摩爾分?jǐn)?shù),其他均以此類推, 分別表示角閃石在A、M2、T1點(diǎn)位上的 Na,Al,Si 的摩爾分?jǐn)?shù); XAbPlag?XAnPlag 分別表示斜長(zhǎng)石中鈉長(zhǎng)石分子、鈣長(zhǎng)石分子的摩爾分?jǐn)?shù); cm 為替換量,用于上述計(jì)算角閃石在不同點(diǎn)位上的不同離子的摩爾分?jǐn)?shù)。

        榴閃巖中記錄了三期變質(zhì)作用階段溫壓特征。

        早期進(jìn)變質(zhì)階段( δM1 ):礦物組合為 Grt-c+ Am1+Pl1+Q 包體,根據(jù)早期角閃石(Hbl)成分,利用角閃石溫度計(jì)[64]和角閃石-斜長(zhǎng)石溫壓計(jì)[65]估算溫壓條件 T=756.0%, 0

        峰期變質(zhì)階段( M2 ):礦物組合為 Grt-m+ Cpx2+Pl2+Q+Melt ,在此階段可能發(fā)生的變質(zhì)反應(yīng)為 Am1+Pl1Grt-m+Pl2 m+Cpx2 ,利用 Grt-Cpx 地質(zhì)溫度計(jì)[60-61]、 Cpx-Pl-Q 地質(zhì)溫壓計(jì)[62-63],選用石榴石幔部含量最高的鈣鋁榴石成分,以及基質(zhì)中的單斜輝石、斜長(zhǎng)石成分,估算峰期溫壓條件 T=884.1~987.5°C 7p=(12.2~14.2)×108Pa ,變質(zhì)程度相當(dāng)于高壓麻粒巖相。結(jié)合前人[64-65]實(shí)驗(yàn)巖石學(xué)分析結(jié)果,在該溫壓條件下角閃石可以穩(wěn)定存在,但本次對(duì)樣品中角閃石進(jìn)行礦物分析研究未能明顯識(shí)別峰期高壓麻粒巖相角閃石,參考前人研究成果,峰期高壓麻粒巖相變質(zhì)溫度可能被低估了。

        退變質(zhì)階段( M3 ):礦物組合為 Am3+Pl3+ Q+Ilm±Grt ,可能發(fā)生的變質(zhì)反應(yīng)為 Grt-m+Ω Cpx2+Q+H2OAm3+Pl3+Ilm ,利用Hbl地質(zhì)溫度計(jì)[64]和Hbl-Pl地質(zhì)溫壓計(jì)[65],根據(jù)石榴石周圍構(gòu)成“白眼圈\"結(jié)構(gòu)的角閃石和斜長(zhǎng)石成分,估算退變質(zhì)階段 108Pa ,變質(zhì)程度相當(dāng)于高角閃巖相至麻粒巖相。

        根據(jù)上述溫壓估算結(jié)果,反演變質(zhì)作用 pT 演化軌跡(圖10)[66]總體呈現(xiàn)一條近等溫(ITD)降壓型順時(shí)針 ?T 軌跡。ITD的主要依據(jù)是石榴石外圍發(fā)育的后成合晶反應(yīng)結(jié)構(gòu),溫壓結(jié)果只是提供數(shù)字量化。

        7 討論

        7.1 原巖恢復(fù)及構(gòu)造環(huán)境判別

        Shaw[68]發(fā)文指出,可以利用 X 函數(shù)區(qū)分變質(zhì)巖的原巖類型,這種方法可不使用活動(dòng)性較大的K、ΔNa.Si 等元素,避免交代作用的影響。函數(shù)判別式為

        X=-2.69lgCr-3.18lgV-1.25lgNi+ 10.57lgCo+7.73lgSc+7.5lgSr-1.95lgBa- 1.99lgZr-19.58 。

        式中,微量元素均為質(zhì)量分?jǐn)?shù),單位為 10-6

        對(duì)于變質(zhì)巖來說:當(dāng)巖石中 Xgt;0 ,原巖指示為正變質(zhì)巖; X?0 ,原巖指示為副變質(zhì)巖。根據(jù)函數(shù)判別式計(jì)算得出榴閃巖的 X 值介于 2.21~3.34 之間,由此說明榴閃巖的原巖為火成巖。在TAS圖解(圖6a)中,榴閃巖樣品落于玄武巖范圍內(nèi),在 Zr/ TiO2-Nb/Y 圖解[57](圖6b)中,落于玄武巖和亞堿性玄武巖范圍內(nèi)。

        根據(jù)對(duì)基性巖做的 0)- )圖解[69](圖11a)及 w(Y)-w(Zr) 圖解[70](圖11b),榴閃巖屬于亞堿性拉斑玄武巖系列。

        底圖據(jù)文獻(xiàn)[66]。 Al2SiO5 多型變體(And—Ky—Sil)轉(zhuǎn)變線據(jù)文獻(xiàn)[67]。And.紅柱石;Ky.藍(lán)晶石;Sil.夕線石。

        圖10研究區(qū)榴閃巖變質(zhì)溫壓條件及 pT 軌跡

        對(duì)于原巖形成的構(gòu)造環(huán)境,利用Verma等[71]提出的依據(jù)主量元素線性判別分析函數(shù)進(jìn)行原巖構(gòu)造環(huán)境判別(圖12a、b),榴閃巖落于島弧玄武巖區(qū)域。同時(shí),微量元素由于活動(dòng)性比較弱,也可以用來判斷巖石形成的大地構(gòu)造環(huán)境。如La、Nb、Th這幾種元素活動(dòng)性差,相對(duì)很穩(wěn)定,基本不受后期海水蝕變和變質(zhì)作用的影響。引用 Zr-Th-Nb[72] 和Ti-Zr-Y[73] 構(gòu)造環(huán)境判別圖解(圖12c、d),大部分點(diǎn)落在島弧拉斑玄武巖區(qū)內(nèi)。

        圖11 研究區(qū)榴閃巖原巖分類圖解

        Fig.11 Protolith recovery diagram of garnet amphibolein the study area

        綜合以上圖解,榴閃巖的原巖為亞堿性玄武巖,并具有島弧玄武巖特征,可能形成于板塊匯聚動(dòng)力學(xué)背景之下,島弧巖槳由俯沖板片產(chǎn)生的流體交代地幔楔發(fā)生部分熔融而形成。推測(cè)良崗榴閃巖原巖形成于俯沖環(huán)境下,俯沖過程中形成了具有IAB特征的鐵鎂質(zhì)巖漿,最終巖漿就位形成亞堿性玄武巖,后經(jīng)歷高壓麻粒巖相變質(zhì)條件形成高壓麻粒巖

        7.2 成因探討

        20世紀(jì)90年代起,華北克拉通中部造山帶北緣陸續(xù)有高壓麻粒巖報(bào)道,最早在懷安蔓菁溝一宣化西望山地區(qū)被發(fā)現(xiàn),然后在恒山、赤城、承德、千里山—賀蘭山等地相繼報(bào)道[30-3374-79]。懷安—宣化地區(qū)中高壓麻粒巖多以布丁狀、透鏡體狀或近似層狀產(chǎn)出于太古宙TTG片麻巖中。郭敬輝等[29]在宣化西望山高壓麻粒巖中識(shí)別出的高壓礦物組合為石榴石核部及其包體 Cpx+Pl ,溫壓條件為 670~ 1 050°C.(12.0~14.5)×108Pa ;中壓組合表現(xiàn)為環(huán)繞石榴石邊部發(fā)育的角閃石、斜方輝石及斜長(zhǎng)石后成合晶,發(fā)育典型“白眼圈”結(jié)構(gòu),形成溫壓條件為750~800°C 、 (9.0~10.0)×105Pa 。Guo等[32]將峰

        圖12 研究區(qū)榴閃巖原巖構(gòu)造判別圖解

        Fig.12Tectonic discriminant diagrams in the study area

        期高壓變質(zhì)階段溫壓條件估算為 770~890° 、(8.5~10.5)×108Pa 。魏貴東[80]利用傳統(tǒng)地質(zhì)溫壓計(jì)與相平衡模擬計(jì)算,得到西望山高壓基性麻粒巖中峰期高壓麻粒巖相礦物組合 (Grt+Cpx+Pl+ Am+Ru+Melt+Ilm) 溫壓條件為 990~1012°C 、(14.1~14.7)×108Pa 。恒山一承德雜巖中出露的高壓麻粒巖同樣以透鏡體狀賦存于強(qiáng)應(yīng)變的均質(zhì)TTG片麻巖、條帶狀花崗片麻巖中,其峰期礦物組合主要為 Grt+Pl+Cpx+Qtz±Am±Ru ,通過傳統(tǒng)地質(zhì)溫壓計(jì)及相平衡模擬方法計(jì)算,得到溫壓條件為 770~840°C 、 (13.5~15.5)×108Pa[36],76? 763~ 901°C,(12.7~16.8)×108Pa[81] , 800~810° 、(10.0~12.5)×108Pa[82] ,大地構(gòu)造環(huán)境屬于島弧環(huán)境[83-84]。綜合前人 [12,44-45,77,81,85-91] 研究結(jié)果,華北克拉通中部造山帶內(nèi)的變質(zhì)雜巖體均具有相似的順時(shí)針變質(zhì) pT 軌跡,峰后變質(zhì)階段 ?T 軌跡具有近

        等溫減壓的特征(圖13)。

        部分學(xué)者認(rèn)為阜平地區(qū)至少經(jīng)歷兩期變質(zhì)事件[44,92-93]。阜平雜巖中普遍記錄約 1850Ma 的變質(zhì)變形年齡,通常被解釋為可能與麻粒巖相變質(zhì)事件相對(duì)應(yīng)[10,17,94-105] 。

        除阜平雜巖之外, 1900~1850Ma 的變質(zhì)事件在華北克拉通中部造山帶中北部同樣影響廣泛 [18,44,78-79,91,96-110] 。郭敬輝等[]首先對(duì)宣化雜巖中出露的高壓基性麻粒巖和角閃巖進(jìn)行全巖-單礦物Sm-Nd 等時(shí)線年代學(xué)測(cè)定,得到 1882~1804Ma 的變質(zhì)事件年齡范圍,隨后又通過全巖或單礦物40Ar/39Ar 方法測(cè)得區(qū)內(nèi)高壓麻粒巖變質(zhì)年齡為(1852±8)Ma[74] 。懷安雜巖中高壓基性麻粒巖出露廣泛,不同學(xué)者采用不同的年代學(xué)測(cè)試方法均得到類似約1 850 Ma 的變質(zhì)時(shí)代記錄[33,43,91,112-118],指示該地區(qū)在古元古代末期遭受了一次大規(guī)模的變

        1.恒山數(shù)據(jù)據(jù)文獻(xiàn)[79];2.恒山數(shù)據(jù)據(jù)文獻(xiàn)[81];3.恒山數(shù)據(jù)據(jù)文獻(xiàn)[84];4.懷安黃土窯數(shù)據(jù)據(jù)文獻(xiàn)[85];5.懷安蔓菁溝數(shù)據(jù)據(jù)文獻(xiàn)[73];6.懷安數(shù)據(jù)據(jù)文獻(xiàn)[86];7.宣化大東溝數(shù)據(jù)據(jù)文獻(xiàn)[87];8.宣化西望山數(shù)據(jù)據(jù)文獻(xiàn)[88];9.宣化西望山數(shù)據(jù)據(jù)文獻(xiàn)[89];10.承德數(shù)據(jù)據(jù)文獻(xiàn)[90];11.阜平數(shù)據(jù)據(jù)文獻(xiàn)[91];12.阜平雜巖數(shù)據(jù)據(jù)文獻(xiàn)[45];13.本文數(shù)據(jù)。

        圖13華北克拉通中部造山帶高壓麻粒巖 pT 軌跡

        Fig.13Metamorphic pT paths of the high-pressure granulites from the TNCO

        質(zhì)事件,可能與東西部陸塊間的俯沖碰撞過程有關(guān)。Liu等[119]對(duì)界河口群中石榴石二云母片巖進(jìn)行獨(dú)居石定年分析,得到四組年齡數(shù)據(jù),其中 1.88~ 1.85Ga 的年齡范圍被解釋為東西陸塊碰撞引起的區(qū)域變質(zhì)作用時(shí)代。呂梁雜巖中多數(shù)變質(zhì)巖石普遍記錄了 1.96~1.82Ga 時(shí)期的變質(zhì)年齡信息,該年齡與華北中部造山帶廣泛經(jīng)歷的 1.98~1.80Ga 變質(zhì)事件一致[13,120-121]。五臺(tái)雜巖中大多記錄了 1.89~1.82Ga 的變質(zhì)年齡,前人研究表明五臺(tái)雜巖同樣參與了古元古代東西陸塊之間漫長(zhǎng)的俯沖碰撞過程[106-119,122-123] 。

        綜上所述,華北克拉通中部造山帶中北段各變質(zhì)雜巖區(qū)普遍存在 1900~1800Ma 的變質(zhì)事件。本次對(duì)阜平雜巖東部良崗榴閃巖進(jìn)行年代學(xué)研究,得到了 1.86~1.84Ga 的變質(zhì)年齡范圍,與華北克拉通中北段變質(zhì)雜巖普遍報(bào)道的 1900~1850Ma 范圍的麻粒巖相一角閃巖相退變質(zhì)事件相似[37,114-116,124-126]

        冀東地區(qū)所報(bào)道的高壓麻粒巖相變質(zhì)作用,主要見于靠近中部造山帶的灑河橋線性構(gòu)造帶內(nèi)變質(zhì)基性巖墻中。這些巖墻多呈大小不等的塊體產(chǎn)出于TTG片麻巖內(nèi),前人[127]研究從中識(shí)別出高壓麻粒巖相變質(zhì)礦物組合為石榴石、單斜輝石、斜長(zhǎng)石和石英,并形成環(huán)繞二輝石集合體分布的類似“紅眼圈”結(jié)構(gòu)[128],說明巖石中存在變質(zhì)疊加的情況。利用THERMOCAL相平衡模擬,得到高壓麻粒巖變質(zhì)組合形成溫壓條件為 790~810°C,1.1~1.3GPa, 構(gòu)成順時(shí)針 ?T 軌跡。對(duì)其進(jìn)行鋯石U-Pb定年分析,得到約 1.83Ga 或 1.97Ga 的古元古代變質(zhì)年齡。除此之外,Yang 等[129]進(jìn)行石榴石全巖Lu -Hf同位素分析,得到了 1.78~1.77Ga 的變質(zhì)年齡,解釋為變質(zhì)冷卻過程。結(jié)合變質(zhì)演化過程及地球化學(xué)特征,推測(cè)冀東地區(qū)灑河橋線性構(gòu)造帶中出露的高壓麻粒巖應(yīng)形成于古元古代以地殼增厚為特征的碰撞造山事件中,冀東地區(qū)發(fā)生的古元古代變質(zhì)事件可能為中部造山帶中古元古代變質(zhì)事件的延伸。

        良崗地區(qū)新元古代地層阜平巖群元坊巖組中出露的榴閃巖,無論是在變質(zhì)作用演化上還是年代學(xué)上均與中部造山帶內(nèi)高壓麻粒巖特征相符。區(qū)內(nèi)榴閃巖經(jīng)歷的變質(zhì)演化過程可以分為三個(gè)階段,其中高壓麻粒巖相變質(zhì)礦物組合為 Grt+Cpx+Pl+Q 與高壓基性麻粒巖典型變質(zhì)礦物組合一致。根據(jù)傳統(tǒng)地質(zhì)溫壓計(jì)估算結(jié)果,峰期高壓麻粒巖相變質(zhì)溫壓條件 108Pa ,變質(zhì)程度相當(dāng)于高壓麻粒巖相;退變質(zhì)階段的變質(zhì)條件相當(dāng)于高角閃巖相到麻粒巖相,由此推斷出一條近等溫降壓(ITD)型順時(shí)針 ?T 軌跡。結(jié)合中部造山帶中北段高壓麻粒巖帶變質(zhì)演化過程,推測(cè)本次所研究的良崗榴閃巖所經(jīng)歷的變質(zhì)演化過程為:早期進(jìn)變質(zhì)階段,陸塊間的俯沖碰撞作用導(dǎo)致地殼發(fā)生增厚。碰撞停止后,隨俯沖過程深埋地下的巖石由于地殼均衡、地表剝蝕等因素折返上升[64,130],同時(shí),巖石中的石榴石和基質(zhì)中的單斜輝石發(fā)生反應(yīng),沿石榴石邊部形成 Am+Pl 共生組合,構(gòu)成“白眼圈”結(jié)構(gòu)[122]。結(jié)合本次研究結(jié)果,對(duì)華北克拉通中部造山帶內(nèi)阜平雜巖的高壓變質(zhì)作用演化過程提出了如下假設(shè):古元古代末(約 1.85Ga) ,東西陸塊之間的俯沖一碰撞作用導(dǎo)致地殼加厚,造成了變質(zhì)溫度緩慢升高的同時(shí)變質(zhì)壓力迅速升高,遭受高壓麻粒巖相變質(zhì)作用,而后碰撞停止;由于快速的構(gòu)造剝蝕作用,地體開始快速折返上升,發(fā)生伸展、陸殼減薄和造山后期垮塌作用,從而使變質(zhì)溫度來不及大幅度變動(dòng)的同時(shí)壓力迅速下降,隨后高壓麻粒巖遭受剝蝕出露于地表。

        8結(jié)論

        1)河北良崗地區(qū)發(fā)現(xiàn)基性高壓麻粒巖 榴閃巖,其變質(zhì)演化可以劃分為三個(gè)階段:早期進(jìn)變質(zhì)階段礦物組合為 Grt-c+Am+Pl+Q ,溫壓條件約為756°C,6.0×108Pa ,變質(zhì)程度相當(dāng)于高角閃巖相;峰期高壓麻粒巖相階段的礦物組合為 Grt-m+ Cpx+Pl+Q+Melt ,溫壓條件為 884.1~987.5°C 、( (12.2~14.2)×108Pa ,相當(dāng)于高壓麻粒巖相;退變質(zhì)階段礦物組合為 Am+Pl+Q+Ilm±Grt ,溫壓條件為 706.6~776.7°C ! (3.7~4.2)×108Pa ,相當(dāng)于麻粒巖相至高角閃巖相。根據(jù)溫壓估算結(jié)果,變質(zhì)作用 ?T 演化軌跡總體呈現(xiàn)一條近等溫降壓(ITD)型順時(shí)針 ?T 軌跡,表明本區(qū)經(jīng)歷了碰撞造山作用。

        2)榴閃巖的原巖為亞堿性玄武巖,并具有島弧玄武巖特征,可能形成于板塊匯聚動(dòng)力學(xué)背景俯沖環(huán)境之下,俯沖過程中,俯沖板片產(chǎn)生的流體交代地幔楔發(fā)生部分熔融而形成具有IAB特征的鐵鎂質(zhì)巖漿,最終巖漿就位形成亞堿性玄武巖,之后經(jīng)歷高壓麻粒巖相變質(zhì)條件形成高壓麻粒巖

        3)LA-ICP-MS鋯石U-Pb定年結(jié)果顯示, 榴閃巖樣品中獲得了 (1852±9)Ma 和 (1849± 10)Ma的變質(zhì)年齡,與中部造山帶內(nèi)普遍記錄的約 1850Ma 的變質(zhì)年齡相符。

        4)良崗高壓麻粒巖與華北克拉通中部造山帶中北段出露的高壓麻粒巖帶的形成過程相似,其變質(zhì)作用演化與約 1.85Ga 華北克拉通東西陸塊的碰撞拼合有關(guān)。

        參考文獻(xiàn)(References):

        [1]Gao P,Santosh M. Building the Wutai Arc:Insights into the Archean-Paleoproterozoic Crustal Evolution of the North China Craton[J]. Precambrian Reaserch, 2019,333:129.

        [2]Kusky T M,Li J H. The Paleoproterozoic North Hebei Orogen: North China Craton’s Collisional SuturewiththeColumbia Supercontinent[J]. Gondwana Research,2007,12:4-28.

        [3]Santosh M. Assembling North China Craton Within the Columbia Supercontinent: The Role of DoubleSided Subduction[J]. Precambrian Research,2010, 178:149 -167.

        [4]Tang L,Santosh M,Tsunogae T,et al. Petrology, Phase Equilibia Modelling and Zircon U-Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex,North China Craton[J]. Journal of Metamorphic Geology,2017,35(5): 517 - 540.

        [5]Zhai M G, Santosh M. The Early Percambrian Odyssey of the North China Craton: A Synoptic Overview[J].Gondwana Research,2011,20(1):6 - 25.

        [6]Zhao G C,Li S Z, Sun M,et al. Assembly,Accretion, and Break-Up of the Palaeo-Mesoproterozoic Columbia Supercontinent,Record in the North China Craton Revisited[J]. International Geology Review,2011,53 (11/12):1331-1356.

        [7]Zhao G C,Zhai M G. Lithotecttonic Elements of Precambrian Basement in the North China Craton: Review and TectonicImplications[J]. Gondwana Research,2013,23(4):1207-1240.

        [8]Yang F,Sontosh M,Kim S W,et al. Late Neoarchean to Paleoproterozoic Arc Magmatism in the Shandong Peninsula, North China Craton and Its Tectonic Implications[J].Precambrian Research,2021,358: 106188.

        [9]Tang L, Santosh M. Neoarchean Granite-Greenstone Unna Craton: AII Uverview_J」: Geo scieiice Frontiers,2017,9(3):751-768.

        [10]Trap P,F(xiàn)aure M,Lin W,et al. Contrasted Tectonic Styles for the Paleoproterozoic Evolution of the North China Craton:Evidence for a ~2.1 Ga Thermal and Tectonic Event in the Fuping Massif[J]. Journal of Structural Geology, 2008,30(9):1109-1125.

        [11] Zhao G C,Cawood P A,Li S Z,et al. Amalgamation of the North China Craton: Key Issues and Discussion[J]. Precambrian Research, 2012,222/ 223:55-76.

        [12] Guo J H,Zhai M G,Xu R. Timing of the Granulite Facies Metamorphism in the Sanggan Area,North China Craton: Zircon U - Pb Geochronology[J]. Science in China:Series D:Earth Sciences,2O01,44 (11):1010-1018.

        [13]Zeng L,Xu C,Li Y X,et al. Petrogenesis and Tectonic Implication of Paleoproterozoic Granites and Granulites in the Fengzhen Area of North China Craton[J]. Precambrian Research,2017,302:298 - 311.

        [14] Xu C,Kynicky J, Tao R,et al. Recovery of an Oxidized Majorite Inclusion from Earth’s Deep Asthenosphere[J]. Science Advances,2Ol7,3(4): el601589.

        [15]Xu C,Kynicky J, Song W, et al.Cold Deep SubductionRecordedbyRemnantsofa PaleoproterozoicCarbonatedSlab[J]. Nature Communications,2018,9(1):1-8.

        [16]張立飛,王楊.俯沖帶高壓-超高壓變質(zhì)地體的抬升折 返機(jī)制:?jiǎn)栴}和探討[J].中國(guó)科學(xué):地球科學(xué),2020, 50 (12):1727-1747. Zhang Lifei,Wang Yang. The Exhumation of Highand Ultrahigh-Pressure Metamorphic Terranesin Subduction Zonne: Questions and Discussions[J]. Scientia Sinica(Terrae),2020,50 (12):1727-1747.

        [17]Liu JH,Zhang Q W,Wang J,et al. Metamorphic Evolution and SIMS U - Pb Geochronology of Orthopyroxene-Bearing High-P Semipelitic Granulite in the Fuping Area, Middle Trans-North China Orogen[J]. Journal of Metamorphic Geology,2021, 39(3):297-320.

        [18] Zhang X H,Su Y P,Zheng JP,et al. Late Neoarchean and Paleoproterozoic Tectonothermal and Metamorphic Evolution Recorded in High-Pressure Granulites: Evidence from the Xuanhua Complex,

        [19」張建新,于勝堯,孟累聰,寺.造山帶中成對(duì)出現(xiàn)的高 壓麻粒巖與榴輝巖及其地球動(dòng)力學(xué)意義[J].巖石學(xué) 報(bào),2009,25(9):2050-2066. Zhang Jianxin,Yu Shengyao,Meng Fancong,et al. Paired High-Pressure Granulite and Eclogitein Collision Orogens and Their Geodynamic Implications [J].Acta Petrologica Snica,2009,25(9): 2050 - 2066.

        [20] Green D H,Ringwood A E. An Experimental InvestigationoftheGabbrotoEclogite Transformation and Its Petrological Applications[J]. Geochimica Cosmochim Acta,1967,31: 767 -833.

        [21]Hansen B. The Transition from Pyroxene Granulite Facies to Garnet Clinopyroxene Granulite Facies: Experiments in the System CaO - MgO - Al2 O3- (20 SiO2 [J]. Contributions to Mineralogy and Petrology, 1981,76:234-242.

        [22]Ito K,Kennedy G C. An Experimental Study of the Basalt-Garnet Granulite-Eclogite Transition [M]// Heacock J G. The Structure and Physical Properties of the Earth’s Crust. Washington: American Geophysical Union,1971:303-314.

        [23]翟明國(guó),劉文軍.麻粒巖的形成及其對(duì)大陸地殼演化 的貢獻(xiàn)[J].巖石學(xué)報(bào),2001,17(1):28-38. Zhai Mingguo, Liu Wenjun. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust[J]. Acta Petrologica Sinica, 2001, 17(1):28-38.

        [24]翟明國(guó).華北克拉通兩類早前寒武紀(jì)麻粒巖(HTHP和HT-UHT)及其相關(guān)問題[J].巖石學(xué)報(bào), 2009,25(8):1753-1771. Zhai Mingguo. Two Kinds of Granulites (HT - HP and HT -UHT)in North China Craton:Their Genetic Relation and Geotectonic Implications[J]. Acta Petrologica Sinica,2009,25(8):1753-1771.

        [25]趙國(guó)春.華北克拉通基底主要構(gòu)造單元變質(zhì)作用演化 及其若干問題討論[J].巖石學(xué)報(bào),2009,25(8): 1772 -1792. Zhao Guochun. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion [J]. Acta Petrologica Sinica,2009,25(8):1772-1792.

        [26]魏春景,張媛媛,董杰.麻粒巖的研究進(jìn)展與方法[J]. 巖石學(xué)報(bào),2021,37(1):52-64. Wei Chunjing, Zhang Yuanyuan, Dong Jie. Some Acta Petrologica Sinica,2021,37(1): 52-64.

        [27]O'Brien J P,Rotzler J. High-Pressure Granulites: Formation, Recovery ofPeak Conditionsand ImplicationsforTectonics[J]. Journalof Metamorphic Geology,2003,21(1):3-20.

        [28]Pattison D R M,Chacko T,F(xiàn)arquhar J,et al. Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equililbria and Thermobarometry CorrectedforRetrograde Exchange[J]. Journal of Petrology,2003,44(5): 867-900.

        [29]郭敬輝,翟明國(guó),李永剛,等.華北太古宙高壓基性麻 粒巖的兩類PT 軌跡及其構(gòu)造意義:礦物化學(xué)和變 質(zhì)作用研究[J].巖石學(xué)報(bào),1998,14(4):430-448. Guo Jinghui, Zhaii Mingguo, Li Yonggang, et al. Contrasting Metamorphic P-T Paths of Archaean High-Pressure Granulites from the North China Craton: Metamorphism and Tectonic Significance[J]. Acta Petrologica Sinica,1998,14(4):430-448.

        [30]Zhai MG,Guo J H,Yan Y H,et al. Discovery of High-Pressure Basic Granulite Terrain in North China Archaean Craton and Preliminary Study[J]. Science in China:Series B,1993,36(11):1402.

        [31]Zhai M G,Guo JH,Li J H,et al. Retrograded Eclogites in the Archean North China Craton and Their Geological Implication[J]. Chinese Sci Bull, 1996,41: 315-326.

        [32]Guo JH,O'Brien P J,Zhai M G.High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution,P - T Paths and Geotectonic Significance[J]. Journal of Metamorphic Geology,2002,20:741-756.

        [33]Guo JH,Sun M,Chen F K,et al. Sm - Nd and SHRIMP U - Pb Zircon Geochronology of HighPressure Granulites in the Sanggan Area,North ChinaCraton:TimingofPaleoproterozoic Continental Collision[J]. J Metamorph Geol,2005, 24:629-642.

        [34]郭敬輝,翟明國(guó),李江海,等.華北克拉通早前寒武紀(jì) 桑干構(gòu)造帶的巖石組合特征和構(gòu)造性質(zhì)[J].巖石學(xué) 報(bào),1996,12(2):27-41. Guo Jinghui, Zhai Mingguo, Li Jianghai, et al. Nature of the Early Precambrian Sanggan Structure Zone in North China Craton: Evidence from Rock Association[J]. Acta Petrologica Sinica,1996,12 (2): 27-41.

        [35]翟明國(guó),郭敬輝,閻月華,等.太古宙克拉通型下地殼 剖面:華北懷安-豐鎮(zhèn)-尚義的麻粒巖-角閃巖系[J]. 巖石學(xué)報(bào),1996,12(2):56-72. Zhai Mingguo,Guo Jinghui,Yan Yuehua,et al. An Oblique Cross Section of Archaean Continental Crust in Shanxi-Hebei-Nei Mongol Jnnctnve Area,North China Craton[J]. Acta Petrologica Sinica,1996,12 (2):56-72.

        [36]Zhao G C,Cawood P A,Wilde S A,et al.HighPressure Granulites(Retrograded Eclogites) from the Hengshan Complex,North China Craton: Petrology and Tectonic Implications[J]. Journal of Petrology, 2001,42(6):1141-1170.

        [37] Zhao G C, Sun M,Wilde S A,et al. Late Archean to Paleoproterozoic Evolution ofthe North China Craton: Key IssuesRevisited[J]. Precambrian Research,2005,136(2):177-202.

        [38]路增龍,楊崇輝,宋會(huì)俠,等.華北克拉通阜平雜巖 中 ~2.7 Ga TTG片麻巖的厘定及其地質(zhì)意義[J].巖 石學(xué)報(bào),2014,30(10):2872-2884. Lu Zenglong,Yang Chonghui, Song Huixia,et al. Delineation of the ca 2.7 Ga TTG Gneisses in the Fuping Complex, North China Craton and Its Geological Significance[J]. Acta Petrologica Sinica, 2014,30(10):2872-2884.

        [39]程裕淇,高吉鳳,萬渝生,等.河北平山阜平群兩種巖 石類型的初步熔融實(shí)驗(yàn)及其啟示[J].中國(guó)地質(zhì), 1998,46(3):18-23. Cheng Yuqi,Gao Jifeng, Wan Yusheng,et al. Preliminary Melting Experiments on Two Types of Rocks in the Fuping Group of Pingshan, Hebei Province and Their Implications[J].Geology in China,1998,46(3):18-23.

        [40]Liu J H,Wang J,Li Z M,et al. Paleoproterozoic Medium to High Pressure Metamorphism in the Wanzi Supracrustal Association,Trans-North China Orogen: New Insights from the Gedrite-Bearing Gneiss,Gedrite-Free Gneiss,and Amphibolite[J]. Precambrian Research,2021,360:106248.

        [41] Tam P Y, Zhao G,Liu F,et al. Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U - Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton[J]. Gondwana Research,2011,19(1) :150-162.

        [42]Tang L, Santosh M, Teng X M. Paleoproterozoic(ca (20 2.1-2.0Ga ) arc Magmatism in the Fuping Complex: Implications for the Tectonic Evolution of the TransNorth China Orogen[J]. Precambrian Research, 2015,268:16-32.

        [43]Xia X P,Sun M, Zhao G C,et al.U-Pb and Hf Isotope Study of Detrital Zircons from the Wanzi Supracrustals:Constraints on the Tectonic Setting and Evolution of the Fuping Complex,Trans-North China Orogen[J]. Acta Geologica Sinica (English Edition), 2006,80:844-863.

        [44]劉樹文.阜平地區(qū)麻粒巖的P-T 路徑研究[J].高校 地質(zhì)學(xué)報(bào),1996,2(1):75-84. Liu Shuwen. Study to P-T Paths of Granulites in the Fu-Ping Area [J].Geological Journal of China Universities,1996,2(1):75-84.

        [45]Zhao G C,Wilde S A,Cawood P A,et al. Petrology and P - T Path of the Fuping Mafic Granulites: Implications for Tectonic Evolution of the Central Zone of the North China Craton[J]. Journal of Metamorphic Geology,2000,18:375-391.

        [46]Wei C J,Qian J H,Zhou X W. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, NorthChina Craton[J]. Geoscience Frontiers,2014,5: 485-497.

        [47]靳新娣,朱和平.巖石樣品中43 種元素的高分辨等 離子質(zhì)譜測(cè)定[J].分析化學(xué),2000,28(5):563-567. Jin Xindi, Zhu Heping. High-Resolution Plasma Mass Spectrometry Determination of 43 Elements in Rock Samples[J].Analytical Chemistry, 2000,28 (5):563-567.

        [48] Zhang Z J, Zheng C Q, Liang C Y,et al. Metamorphism and P-T Evolution of High-Pressure Granulites from the Fuping Complex, North China Craton[J].Minerals,2024,14(2):138.

        [49]Song Z W,Liang C Y,Neubauer F,et al. Multistage Evolution of the Keluo Complex in the Northern Da Hinggan Mountains:Implications for the Mesozoic Tectonic History of the Eastern Central Asian Orogenic Belt[J]. Gondwana Research, 2022,107: 339-369.

        [50]Ludwig K R. User's Manual for Isoplot/ Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel [J].BerkeleyGeochronologyCenterSpecial Publications,2003,4:72.

        [51]吳雙鵬,張澤明,田作林,等.東喜馬拉雅構(gòu)造結(jié)高壓 基性麻粒巖成因與構(gòu)造意義[J].地質(zhì)學(xué)報(bào),2024,98 (1):96-115. Wu Shuangpeng, Zhang Zeming, Tian Zuolin,et al. 96-115.

        [52]Leake B E,Woolley A R,Arps C E S,et al. Nomenclature ofAmphiboles: Reportofthe Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names [J]. The Canadian Mineralogist,1997,35:219-246.

        [53]靳是琴.不同區(qū)域變質(zhì)相中鈣質(zhì)角閃石的成分特征 [J].科學(xué)通報(bào),1991,42(11):851-854. Jin Shiqin. The Compositional Characteristics of Calcareous Hornblende in Different Metamorphic Facies of Different Regions[J]. Chinese Science Bulletin,1991,42(11):851-854.

        [54]夏瓊霞,鄭永飛.高壓-超高壓變質(zhì)巖石中石榴石的環(huán) 帶和成因[J].巖石學(xué)報(bào),2011,27(2):433-450. Xia Qiongxia, Zheng Yongfei. Zonation and Genesis of Garnet in High-Pressure and Ultrahigh-Pressure Metamorphic Rocks [J]. Acta Petrologica Sinica, 2011,27(2):433-450.

        [55]Anovitz L. Al Zoning in Pyroxene and Plagioclase: Windows on Late Prograde to Early Retrograde P-T PathsinGranuliteTerranes[J].American Mineralogist,1991,76:1328-1343.

        [56]Leake B E, Wooley A, Birch W D,et al. NomenclatureofAmphiboles:Additionsand Revisions to International Mineralogical Association' s 1997 Recommendations[J]. Canadian Mineralogist, 2003,41:1355-1362.

        [57]Winchester J A, Floyd PA. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements [J].Chemical Geology,1977,20:325-343.

        [58]Boynton W V. Cosmochemistry of the Rare Earth Elements:Meteorite Studies[M]// Henderson P, Clark A M, Boynton W V, et al. Rare Earth Element Geochemistry.New York:Elsevier,1984:63 -114.

        [59] Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes [J]. Geological Society Special Publication,1989,42: 313 - 345.

        [60]Dahl P S. The Thermal-Compositional Dependence of (204號(hào) Fe2+-Mg Distributions Between Coexisting Garnet and Pyroxene: Applications to Geothermometry[J]. American Mineralogist,1980,65: 852-866. andanExtended EllisandGreen GarnetClinopyroxene Geothermometer[J]. Contributions to Mineralogy and Petrology,1989,103(2): 223-227.

        [62]Eckert JO,Jr Newton R C,Kleppa O J. The ΔH of Reaction and Recalibration of Garnet-Pyroxene Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry[J]. American Mineralogist,1991,76(1/2):148-160.

        [63]Wood B J, Banno S. Gamet-Orthopyroxene and Orthopyrox-ene-ClinopyroxeneRelationships in Simple and Complex Systems[J]. Contributions to Mineralogy and Petrology,1972,42:109-124.

        [64]Gerya T V,Perchuk L L,Triboulet C,et al. Petrology of the Tumanshet Zonal Metamorphic Complex,Eastern Sayan[J]. Petrology,1997,5(6): 503-533.

        [65]Holland T,Blundy J. Non-Ideal Interactions in Calcic Amphi-Boles and Their Bearing on AmphibolePlagioclaseThermometry[J]. Contributionsto Mineralogy and Petrology,1994,116: 433- 447.

        [66]Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths[R]. Washington D C :Mineralogical Society of America,1993 :13 - 24.

        [67]Bucher K,F(xiàn)rey M. Petrogenesis of Metamorphic Rocks[M]. 7th Ed. Berlin Heidelberg:SpringerVerlag,2002.

        [68]Shaw D M. Trace Element Fractionation During Anatexis[J]. Geochimica et Cosmochimica Acta, 1970,34(2):237-243.

        [69]Irvine T N,Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences,1971,8:523 548.

        [70]Ross P,Bedard J. Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace Element Discriminant Diagrams[J].Canadian Journal of Earth Sciences,2009,46(11):823-839.

        [71]Verma S P,Guevara M,Agrawal S. Discrimination Four Tectonic Settings: Five New Geochemical Diagrams for Basic and Ultrabasic Volcanic Rocks Based on Log-Ritio Transformation of Major-Element Data[J]. Journal of Earth System Science, 2006, 115: 485-528.

        [72] Wood D A. The Application of a Th - Hf - Ta Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters,1980,50(1):11-30.

        [73] Pearce J A,Cann J R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses[J]. Earth and Planetary Science Letters, 1973,19(2):290-300.

        [74]郭敬輝,王松山,桑海清,等.變斑晶石榴石 40Ar-39Ar 年齡譜的含義與華北高壓麻粒巖變質(zhì)時(shí)代[J].巖石 學(xué)報(bào),2001,17(3):436 -442. Guo Jinghui,Wang Songshan, Sang Haiqing,et al. (20 40Ar-39 Ar Age Spectra of Garnet Porphyroblast: Implications for Metamorphic Age of High-Pressure Granulite in the North China Craton[J]. Acta Petrologica Sinica,2001,17(3): 436 -442.

        [75] Zhang J,Zhao G C,Sun M,et al. High-Pressure Mafic Granulites in the Trans-North China Orogen: TectonicSignificanceandAge[J]. Gondwana Research,2006,9:349-362.

        [76]毛德寶,鐘長(zhǎng)汀,陳志宏,等.承德北部高壓基性麻粒 巖的同位素年齡及其地質(zhì)意義[J].巖石學(xué)報(bào),1999, 15(4): 524-531. Mao Debao,Zhong Changting,Chen Zhihong,et al. The Isotope Ages and Theirgeological Implications of High-Pressure Basic Granulites in North Region to Chengde, Hebei Province[J]. Acta Petrologica Sinica,1999,15(4):524-531.

        [77] Zhao GC,Wilde S A,Cawood P A,et al. Thermal Evolution of Two Types of Mafic Granulites from the North China Craton:Implications for Both Mantle Plume and Collisional Tectonics[J]. Geological Magazine,1999,136:223-240.

        [78] Zhao G C,Wilde S A,Cawood P A,et al. Archean Blocksand Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonicevolution[J]. Precambrian Research,2001,107(1/2):45-73.

        [79]銀雪琴.冀北赤城、宣化高壓麻粒巖的巖石學(xué)特征及 原巖恢復(fù)[D].成都:成都理工大學(xué),2016. Yin Xueqin. The Petrological Characteristics and the Protolith of High-Pressuregranulite of Chicheng and Xuanhua, North Hebei Province[D]. Chengdu: Chengdu University of Technology,2016.

        [80]魏貴東.華北克拉通宣化西望山高壓基性麻粒巖變質(zhì) 作用研究[D].青島:山東科技大學(xué),2020. Pressure Mafic Granulites from Xiwangshan Area, the Xuanhua Terrane, North China Craton [D]. Qingdao: ShandongUniversity of Scienceand Technology,2020.

        [81]王仁民,陳珍珍,陳飛.恒山灰色片麻巖和高壓麻粒巖 包體及其地質(zhì)意義[J].巖石學(xué)報(bào),1991,7(4):36 45. Wang Renmin,Chen Zhenzhen,Chen Fei. Hengshan Gray Gneiss and High-Pressure Granulite Xenoliths andTheirGeologicalSignificance[J].Acta Petrologica Sinica,1991,7(4): 36 -45.

        [82]郭敬輝,翟明國(guó),李永剛,等.恒山西段石榴石角閃巖 和麻粒巖的變質(zhì)作用、PT軌跡及構(gòu)造意義[J].地質(zhì) 科學(xué),1999,42(3):311-325,397-398. Guo Jinghui, Zhai Minggguo,Li Yonggang,et al. Metamorphic Processes, PT Paths, and Tectonic Significance of Garnet Amphibolite and Granulite in the Western Section of Hengshan Mountains [J]. Scientia Geologica Sinica,1999,42(3):311 -325, 397-398.

        [83]李江海,黃雄南,劉樹文,等.恒山地區(qū)變基性巖墻群 的發(fā)現(xiàn)及“五臺(tái)群\"綠巖地層的解體[J].中國(guó)科學(xué):D 輯:地球科學(xué),2001,31(11):902-910. Li Jianghai, Huang Xiongnan,Liu Shuwen, et al. The Discovery of Metamorphic Rock Wall Groups in the Hengshan Area and the Disintegration of the Greenstone Strata in the Wutai Group[J]. Scientia Sinica(Terrae),2001,31(11):902-910.

        [84]魏春景.華北中部造山帶五臺(tái)-恒山地區(qū)古元古代變 質(zhì)作用與構(gòu)造演化[J].地球科學(xué),2018,43(1):24 - 43. Wei Chunjing. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen[J]. Earth Science,2018, 43(1): 24-43.

        [85]O'Brien P J,Walte N, Li JH. The Petrology of Two Distinct Granulite Types in the Hengshan Mts, China, and Tectonic Implications [J]. Journal of Asian Earth Sciences,2005,24:615-627.

        [86]Liao Y, Wei C. Ultrahigh-Temperature Mafic Granulite in the Huai’an Complex, North China Craton:Evidence from Phase Equilibria Modelling and Amphibole Thermometers[J]. Gondwana Res, 2019,76:62-76.

        [87]翟明國(guó),郭敬輝,閻月華,等.中國(guó)華北太古宙高壓基 性麻粒巖的發(fā)現(xiàn)及初步研究[J].中國(guó)科學(xué):B輯, 199Z,43 (1Z): 13Z5 -1330. Zhai Mingguo,Guo Jinghui, Yan Yuehua, et al. Discovery and Preliminary Study of High-Pressure Mafic Ganulites from the Paleozoic of North China [J].Scientia Sinica:B Section 1992,43(12):1325 1330.

        [88]李陽.河北宣化基性高壓麻粒巖P-T軌跡及其地質(zhì) 意義[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2020. Li Yang. P- T Path and Geological Significance of High-Pressure Mafic Granulites in Xuanhua,Hebei Province[D]. Beijing:China University of Geosciences (Beijing),2020.

        [89]Huang G Y,Brown M,Guo J,et al. Challenges in Constraining the P - T Conditions of Mafic Granulites:An Example from the Northern TransNorth China Orogen[J]. Journal of Metamorphic Geology,2018,36(6):739-768.

        [90] Wei G D,Kong F,Liu H,et al. Petrology, Metamorphic P-T Paths and Zircon U-Pb Ages for Paleoproterozoic Mafic Granulites from Xuanhua, North China Craton[J]. Journal of Earth Science, 2019,30(6): 1197-1214.

        [91]張華鋒,翟明國(guó),彭澎.華北克拉通桑干地區(qū)高壓麻粒 巖的鋯石 SHRIMPU-Pb年齡及其地質(zhì)含義[J].地 學(xué)前緣,2006,13(3):190-199. Zhang Huafeng,Zhai Mingguo,Peng Peng. Zircon SHRIMP U -Pb Age of the Paleoproterozoic HighPressure Granulites from the Sanggan Area, the North China Craton and Its Geologic Implications[J]. Earth Science Frontiers, 2006,13(3): 190-199.

        [92]劉樹文,梁海華.太行山太古宙變質(zhì)雜巖中富鋁片麻 巖的變質(zhì)作用[J].巖石學(xué)報(bào),1997,13(3):303-312. Liu Shuwen,Liang Haihua. Metamorphism of AlRich Gneissesin Taihang Mountain Archean Metamorphic Complex [J]. Acta Petrologica Sinica, 1997,13(3):303-312.

        [93]Liu S W,Pan Y M,Li J H,et al. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton[J]. Precambrian Research,2002,117(1/2):41-56.

        [94]Liu D Y,Page R W,Compston W,et al. U-Pb Zircon Geochronology of Late Archean Metamorphic Rocks in the Taihangshan-Wutaishan Area, North China[J]. Precambrian Research,1985,27:85 - 109.

        [95]李江海,翟明國(guó),李永剛,等.冀北灤平-承德一帶晚太 Li Jianghai, Zhai Mingguo,Li Yonggang,et al. The Discovery of Neoarchean High-Pressure Granulites in Luanping-Chengde Area,Northern Hebei,and Their Tectono-Geological Implication [J].Acta Petrologica Sinica,1998,14(1):35-41.

        [96]Guan H,Sun M,Wilde S A,et al. SHRIMP U-Pb Zircon Geochronology of the Fuping Complex: Implications for Formation and Assembly of the North China Craton[J]. Precambrian Research, 2002,113(1/2):1-18.

        [97]孫敏,關(guān)鴻.阜平雜巖年齡及其地質(zhì)意義:兼論前寒武 高級(jí)變質(zhì)地體的定年問題[J].巖石學(xué)報(bào),2001,17 (1):145-146. Sun Min,Guan Hong. Zircon U - Pb Ages of the Fuping Complex and Their Implications: Some Comments on the Geochronological Study of the Precambrian High-Grade Metamorphic Terranes[J]. Acta Petrologica Sinica,2001,17(1):145-156.

        [98]楊崇輝,杜利林,萬渝生,等.河北平山英云閃長(zhǎng)質(zhì)片 麻巖鋯石 SHRIMP 年代學(xué)[J].高校地質(zhì)學(xué)報(bào),2004, 10(4): 514-522. Yang Chonghui, Du Lilin, Wan Yusheng, et al. SHRIMP Zircon U - Pb Chronology of Tonalitic Geneiss in Banqiaogou Area, Pingshan County, Hebei Province [J]. Geological Journal of China Universities,2004,10(4):514-522.

        [99]趙蘭,張進(jìn)江,劉樹文.龍泉關(guān)韌性剪切帶同變形花崗 巖的構(gòu)造特征及其獨(dú)居石定年[J].巖石礦物學(xué)雜志, 2006,25(3): 210-218. Zhao Lan, Zhang Jinjiang, Liu Shuwen. SynDeformatonal Granites of the Longquanguan Ductile Shear Zone and Their Monazite Electronic Microprobe Dating[J]. Acta Petrologica et Mineralogica,2006, 25(3):210-218.

        [100]Zhang J,Zhao G C,Li S Z,et al.Polyphase Deformation of the Fuping Complex,Trans-North China Orogen: Structures,SHRIMP U - Pb Zircon Ages and Tectonic Implications[J]. Journalof Structural Geology,2009,31(2):177-193.

        [101] Li Q,Santosh M,Li SR,et al. The Formation and Rejuvenation of Continental Crust in the Central North China Craton: Evidence from Zircon U - Pb Geochronology and Hf Isotope [J]. Journal of Asian Earth Sciences,2014,95:17 -32.

        [102]Meng J,Peng T,Liu J,et al. Metamorphic Evolution and SIMS Zircon U -Pb Geochronology of 75-90.

        [103]Qian JH,Yin CQ,Zhang J,et al. High-Pressure Granulites in the Fuping Complex of the Central North China Craton: Metamorphic P-T-t (20 Evolution and Tectonic Implications[J]. Journal of Asian Earth Sciences,2018,154:255-270.

        [104]王建龍,宋會(huì)俠,段慶松,等.河北阜平雜巖中阜平巖 群淺粒巖鋯石U-Pb-Hf同位素特征及其地質(zhì)意 義[J].巖石礦物學(xué)雜志,2020,39(3):267-282. Wang Jianlong, Song Huixia,Duan Qingsong,et al. Zircon U-Pb- Hf Isotopic Characteristic of Leptite inFuping Group, HebeiProvince, andIts Geological Significance [J]. Acta Petrologicaet Mineralogica,2020,39(3):267-282.

        [105]Liu J H, Zhang W Q, Zhang C H,et al. Metamorphic Evolution and SHRIMP U - Pb Geochronology of Mafic Granulites with Double Symplectites in the Fuping Metamorphic Complex, Middle Palaeoproterozoic Trans-North China Orogen [J].Precambrian Research,2019,32(6):142 - 154.

        [106] Wang M X, Santosh M, Yang C X, et al. Trondhjemites from the Qianxi Complex,North China Craton: Implications for Neoarchean Crustal Growth[J]. Geological Journal, 2022,57(8): 3158-3177.

        [107]劉樹文,舒桂明,潘元明,等.電子探針獨(dú)居石定年法 及五臺(tái)群的變質(zhì)時(shí)代[J].高校地質(zhì)學(xué)報(bào),2004,10 (3):356-363. Liu Shuwen,Shu Guiming,Pan Yuanming,et al. Electron-MicroprobeDatingofMonaziteand Metamorphic Age of Wutai Group,Wutai Mountain [J]. Geological Journal of China Universities,2004, 10(3):356-363.

        [108]Liu C H, Zhao GC,Liu F L,et al. Constraints of Volcanic Rocks of the Wutai Complex (Shanxi Province, Northern China) on aGiant Late Neoarchean Intraoceanic Arc System in the TransNorth China Orogen[J]. Journal of Asian Earth Sciences,2016,123:178-212.

        [109] Trap P, Faure M, Lin W, et al.Late Paleoproterozoic(1900 - 1800 Ma) Nappe Stacking and Polyphase Deformation in the HengshanWutaishan Area: Implications for the Understanding

        [110]Liu J H, Zhang Q W L,Li Z M,et al. Metamorphic Evolution and U- Pb Geochronology of Metapelite, Northeastern Wutai Complex: Implicationsfor Paleoproterozoic Tectonic Evolution of the TransNorth China Orogen [J]. Precambrian Research, 2020,350:105928.

        [111]郭敬輝,翟明國(guó).華北克拉通桑干地區(qū)高壓麻粒巖變 質(zhì)作用的 Sm-Nd 年代學(xué)[J].科學(xué)通報(bào),2000,45 (19):2055-2061. GuoJinghui,ZhaiMingguo. Sm Nd GeochronologyofHigh-Pressure Granulite Metamorphism in the Sanggan Area of the North China Craton[J]. Chinese Science Bulletin,2000,45 (19):2055-2061.

        [112]郭敬輝,翟明國(guó),張毅剛,等.懷安蔓菁溝早前寒武紀(jì) 高壓麻粒巖混雜巖帶地質(zhì)特征、巖石學(xué)和同位素年 代學(xué)[J].巖石學(xué)報(bào),1993,9(4):329-341. Guo Jinghui, Zhai Mingguo, Zhang Yigang,et al. Geological Characteristics, Petrology,and Isotopic Chronology of the Early Precambrian High-Pressure Granulite Mixed Rock Belt in Manjinggou,Huai'an [J].Acta Petrologica Sinica,1993,9(4):329-341.

        [113]Zhao GC,Wilde SA,Sun M,et al. SHRIMP UPb Zircon Geochronology of the Huai'an Complex: Constrains on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the TransNorth China Orogen[J]. American Journal of Science,2008,308(3):270-303.

        [114]Zhao G C,Wilde S A,Guo J H,et al. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton [J]. Precambrain Research,2010,177:266-276.

        [115]Wang Z H,Wilde S A,Wan J L. Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans-North China Orogen: New Constraints from the Yanmenguan Mafic-Ultramafic Intrsion in the Hengshan-Wutai-Fuping Area[J]. Precambrian Research,2010,178:27-42.

        [116]Liu F,Guo J H,Peng P,et al. Zircon U-Pb Ages Andgeochemistry of the Huai’an TTG Gneisses Terrane: Petrogenesis and Implications for ~2.5 Ga Crustal Growth in the North China Craton[J]. Precambrian Research,2012,212/213:225-244.

        [117] Santosh M, Liu D Y, Shi Y R, et al. Paleoproterozoic Accretionary Orogenesis inthe North China Craton: A SHRIMP Zircon Study[J]. Precambrian Research,2013,227:29-54.

        [118]張家輝,田輝,王惠初,等.華北克拉通懷安雜巖中早 前寒武紀(jì)兩期變質(zhì)表殼巖的重新厘定:巖石學(xué)及鋯 石U-Pb 年代學(xué)證據(jù)[J].地球科學(xué),2019,44(1): 1-22. Zhang Jiahui,Tian Hui,Wang Huichu,et al. ReDefinition of the Two-Stage Early-Precambrian Mrta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U - Pb Geochronology[J]. Earth Science, 2019,44(1):1- 22.

        [119] Liu J Z, Zhang F Q, Ouyang Z Y, et al. Geochemistry and Chronology of the Jiehekou Group Metamorphic Basic Volcanic Rocks in the Lüliang Mountain Area,Shanxi, China[J]. Science in China: Series D:Earth Sciences,2003(11) :1171-1181.

        [120]劉樹文,李秋根,張立飛.呂梁山前寒武紀(jì)野雞山群 火山巖的地質(zhì)學(xué)、地球化學(xué)及其構(gòu)造意義[J].巖石 學(xué)報(bào),2009,25(3):547 - 560. Liu Shuwen,Li Qiugeng, Zhang Lifei. Geology, Geochemistry of Metamorphic Volcanic Rock Suite Precambrian Yejishan Group,Lüliang Mountains and Its Tectonic Implications[J]. Acta Petrologica Sinica,2009,25(3):547-560.

        [121]肖玲玲,牛路偉,王國(guó)棟.呂梁界河口群變質(zhì)巖石的 構(gòu)造指示:來自地球化學(xué)和同位素年代學(xué)的證據(jù) [J].巖石學(xué)報(bào),2021,37(4):1015-1043. Xiao Lingling, Niu Luwei, Wang Guodong. Geochemistry,Geochronology and Its Geological Implication of Metamorphic Rocks of the Jiehekou Group in the Lüliang Complex[J]. Acta Petrologica Sinica,2021,37(4):1015-1043.

        [122]Qian JH,Wei C J, Zhou XW,et al. Metamorphic P- T Paths and New Zircon U - Pb Age Data for Garnet-Mica Schist from the Wutai Group,North China Craton[J].Precambrian Research, 2013, 233:282-296.

        [123]孟潔,彭濤,張繼軍,等.山西義興寨巖體和車廠-北 臺(tái)巖體的變質(zhì)程度及變質(zhì)作用K-Ar定年[J].巖石 礦物學(xué)雜志,2015,34(6):991-1004. Meng Jie, Peng Tao, Zhang Jijun, et al. Metamorphic Pressure-Temperature Conditions and K- Ar Geochronology of the Yixingzhai and Chechang-Baitai Plutons,Shanxi Province[J]. Acta Petrologica et Mineralogica,2015,34(6):991 - 1004. 粒巖的變質(zhì)演化歷史:鋯石年代學(xué)和地球化學(xué)證據(jù) [J].地球?qū)W報(bào),2012,33(6):977-987. Chu Hang,Wang Huichu,Wei Chunjing,et al. The Metamorphic Evolution History of High Pressure Granulitesin Chengde Area, Northern Margin of North China: Zircon Chronology and Geochemical Evidence[J].Acta Geoscientica Sinica, 2012,33 (6): 977 -987.

        [125] Cai J,Liu F,Liu P. Paleoproterozoic Multistage Metamorphic Events in Jining Metapelitic Rocks from the Khondalite Belt in the North China Craton: EvidencefromPetrology,PhaseEquilibria Modelling and U- Pb Geochronology[J]. Journal of Asian Earth Sciences,2017,138:515-534.

        [126]王惠初,張家輝,任云偉,等.華北克拉通中北部麻粒 巖帶基礎(chǔ)地質(zhì)調(diào)查進(jìn)展及相關(guān)問題討論[J].華北地 質(zhì),2022,45(1):18-41. Wang Huichu, Zhang Jiahui,Ren Yunwei,et al. Geological Survey of Granulite Belt in the NorthCentral Part of North China Craton: Progress and Discussion on Related Problems[J]. North China Geology,2022,45(1):18-41.

        [127]陳曼云.高級(jí)變質(zhì)區(qū)變基性巖脈群的研究:以太平 鎮(zhèn)-金廠峪地區(qū)為例[J].地質(zhì)學(xué)報(bào),1990,64(2): 157-169,189. Chen Manyun. A Study on Metamorphic Basic Rock Vein Groups in Advanced Metamorphic Regions: A Case Study of Taipingzhen-Jinchangyu Area [J]. Acta Geologica Sinica,1990,64(2):157-169,189.

        [128]魏春景.冀東地區(qū)新太古代麻粒巖相變質(zhì)作用及其 大地構(gòu)造意義[J].巖石學(xué)報(bào),2018,34(4):895-912. WeiChunjing. NeoarcheanGranuliteFacies Metamorphism and Its Tectonic Implications from the East Hebei Terrane[J]. Acta Petrologica et Mineralogica,2018,34(4): 895-912.

        [129]Yang C,Wei C J. Two Phases of Granulite Facies MetamorphismDuringtheNeoarcheanand Paleoproterozoic in the East Hebei,North China Craton: RecordsfromMaficGranulites[J]. Precambrian Research,2017,30l: 49 -64.

        [130] England P C, Thompson A B. Pressure Temperature-Time Paths of Regional Metamorphism: I: Heat Transfer During the Evolution of Regions of Thickened Continental Crust [J]. Journal of Petrology,1984,25(4) :894- 928.

        猜你喜歡
        石榴石變質(zhì)礦物
        Li7La3Zr2O12 固態(tài)電解質(zhì)致密度提升策略研究進(jìn)展
        遼寧化工(2025年7期)2025-08-18 00:00:00
        大蒜片并非西瓜“保鮮神器”
        火星上有水?一場(chǎng)跨越400年的探索故事
        大自然探索(2025年7期)2025-08-03 00:00:00
        礦物也在進(jìn)化嗎?
        大自然探索(2025年7期)2025-08-03 00:00:00
        格致書架
        中亞難處理含砷含碳金精礦的提金試驗(yàn)研究
        国产成年无码久久久免费| 337p人体粉嫩胞高清视频| 国产中文欧美日韩在线| 东北无码熟妇人妻AV在线| 国产精品美女久久久久浪潮AVⅤ | 精品无码一区二区三区亚洲桃色 | 亚洲偷自拍另类图片二区| 国产女人高潮的av毛片| 后入丝袜美腿在线观看| 国产高清av首播原创麻豆 | 无码一区二区三区在| 国产亚洲精品一区二区在线观看| 日韩人妻不卡一区二区三区| 亚洲一区二区三区尿失禁| 国产精品三级在线观看无码| 亚洲午夜福利精品久久| 91亚洲夫妻视频网站| 成熟人妻换xxxx| 午夜成人精品福利网站在线观看| 国产亚洲sss在线观看| 日韩亚洲国产中文字幕| 伊人久久大香线蕉av波多野结衣| 国产男女猛烈视频在线观看| 99久久久无码国产精品动漫| 亚洲精品美女久久久久网站| av一区二区在线网站| 在线观看成人无码中文av天堂| 最新69国产成人精品视频免费| 日本精品网| av免费在线播放一区二区| 日韩国产人妻一区二区三区| 国产午夜三级一区二区三| 亚欧视频无码在线观看| 日本刺激视频一区二区| 日本高清视频xxxxx| 午夜三级网| 人妻少妇激情久久综合| 欧洲乱码伦视频免费| 久久久久国产精品免费免费搜索| 欧美人与动牲交片免费| 黄片视频大全在线免费播放|