[摘要] 目的 基于網(wǎng)絡(luò)藥理學(xué)及分子對接技術(shù)探究楓蓼腸胃康治療腸易激綜合征的作用靶點(diǎn)及機(jī)制。方法 通過數(shù)據(jù)挖掘篩選楓蓼腸胃康的有效成分,構(gòu)建藥物–靶點(diǎn)網(wǎng)絡(luò),識別與腸易激綜合征相關(guān)的關(guān)鍵靶點(diǎn)及其通路。對主要活性成分與核心作用靶蛋白進(jìn)行分子對接驗(yàn)證,評估結(jié)合能并進(jìn)行結(jié)果可視化處理。結(jié)果 得到楓蓼腸胃康24個潛在活性成分,134個活性成分作用靶點(diǎn),2353 個疾病相關(guān)靶點(diǎn),取交集后得到70個潛在作用靶點(diǎn),共涉及生物學(xué)過程898個,分子功能96個及細(xì)胞成分66種。京都基因與基因組百科全書富集分析表明楓蓼腸胃康治療腸易激綜合征的作用機(jī)制可能通過作用于核心靶點(diǎn)參與調(diào)控癌癥通路、PI3K/Akt信號通路、磷脂酶D通路等關(guān)鍵信號通路實(shí)現(xiàn)。分子對接分析結(jié)果顯示,楓蓼腸胃康的核心化合物與核心受體蛋白結(jié)合活性良好。結(jié)論 楓蓼腸胃康通過多信號通路發(fā)揮療效,通過多靶點(diǎn)機(jī)制治療腸易激綜合征。
[關(guān)鍵詞] 網(wǎng)絡(luò)藥理學(xué);腸易激綜合征;分子對接;靶點(diǎn)預(yù)測
[中圖分類號] R966" """"[文獻(xiàn)標(biāo)識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.20.013
Exploring the molecular mechanism of fengliao changweikang in the treatment of irritable bowel syndrome based on network pharmacology and molecular docking technology
CAI Xinxin1, HONG Suru2, WU Xiayang1
1.Department of Pharmacy, Xiamen Children’s Hospital, Xiamen 361006, Fujian, China; 2.Department of Radiology, Xiamen Children’s Hospital, Xiamen 361006, Fujian, China
[Abstract] Objective To explore the target and mechanism of Fengliao Changweikang in treating irritable bowel syndrome (IBS) based on network pharmacology and molecular docking technology. Methods The effective components of Fengliao Changweikang were screened by data mining, and the drug-target network was constructed to identify the key targets and their pathways related to IBS. The molecular docking verification of the main active ingredients and core target proteins was carried out, and the binding energy was evaluated and the results were visualized. Results Fengliao Changweikang contained 24 potential active ingredients, 134 active ingredient targets, and 2353 disease-related targets. After intersecting these, 70 potential target points were identified, involving 898 biological processes, 96 molecular functions, and 66 cellular components. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that its mechanism of action in treating IBS may involve regulating key signaling pathways such as cancer pathways, PI3K/Akt signaling pathways, and phospholipase D pathways through interactions with core targets. Molecular docking analysis indicated that the core compounds in Fengliao Changweikang exhibit good binding activity with core receptor proteins. Conclusion Fengliao Changweikang works through multiple signaling pathways and multiple target mechanisms to treat IBS.
[Key words] Network pharmacology; Irritable bowel syndrome; Molecular docking; Target prediction
腸易激綜合征(irritable bowel syndrome,IBS)是消化系統(tǒng)中最常見的功能性疾病,主要表現(xiàn)為患者腹痛或腹部不適及排便習(xí)慣的改變,其臨床癥狀在排除器質(zhì)性疾病后仍缺乏明確的形態(tài)學(xué)或生化指標(biāo)異常[1]。研究顯示IBS發(fā)病機(jī)制涉及多種因素,包括痛覺敏感性改變、腸道菌群失衡、腦–腸軸功能紊亂、腸黏膜免疫激活過度、膽酸吸收異常及心理因素等[2-3]。目前臨床主要采用以瀉藥、止痙劑及抗抑郁藥物為主的對癥治療方案,但療效局限。
楓蓼腸胃康是由牛耳楓與辣蓼(2∶1)配伍的經(jīng)典復(fù)方制劑,主要活性成分包括補(bǔ)身烷倍半萜類、黃酮類、生物堿、有機(jī)酸類等[4]。研究證實(shí)楓蓼腸胃康具有胃腸黏膜保護(hù)、抗?jié)冃越Y(jié)腸炎及急慢性腸胃炎治療功效,并在治療IBS相關(guān)癥狀方面亦顯現(xiàn)臨床潛力[5-6]。本研究基于網(wǎng)絡(luò)藥理學(xué)方法及分子對接技術(shù),探討其治療IBS的分子作用機(jī)制。
1 "資料與方法
1.1 "活性成分及相關(guān)靶點(diǎn)的篩選
通過相關(guān)文獻(xiàn)獲取牛耳楓和辣蓼的主要成分并匯總,使用SwissADME工具[7]進(jìn)行ADME分析,以胃腸道吸收度高且至少通過Lipinski、Ghose、Veber、Egan、Muegge 5種類藥性評估中的任意3項(xiàng)作為篩選條件,將篩選得到的活性成分通過Swiss Target Prediction預(yù)測分析工具[8]進(jìn)行靶點(diǎn)預(yù)測,獲取活性成分的作用靶點(diǎn),去除重復(fù)靶點(diǎn),得到活性成分的作用靶點(diǎn)。
1.2 "疾病相關(guān)靶點(diǎn)篩選
以“irritable bowel syndrome”“IBS”為關(guān)鍵詞,檢索Gene Cards 數(shù)據(jù)庫[9]、OMIM數(shù)據(jù)庫[10]、TTD數(shù)據(jù)庫[11]、DisGeNet數(shù)據(jù)庫[12]獲取IBS相關(guān)疾病靶點(diǎn),并通過DrugBank數(shù)據(jù)庫[13]補(bǔ)充臨床一線治療藥物的靶點(diǎn)信息。整合上述疾病數(shù)據(jù)庫的靶點(diǎn)數(shù)據(jù),獲得IBS潛在基因靶點(diǎn)。將活性成分的作用靶點(diǎn)與之匹配取交集,篩選楓蓼腸胃康治療IBS的潛在作用靶點(diǎn)。
1.3 "蛋白質(zhì)相互作用分析
利用String數(shù)據(jù)庫[14]對潛在作用靶點(diǎn)進(jìn)行分析,輸出蛋白質(zhì)相互作用關(guān)系。在Cytoscape3.10.2中加載構(gòu)建蛋白質(zhì)相互作用(protein-protein interaction,PPI)網(wǎng)絡(luò),利用 Network Analysis工具對網(wǎng)絡(luò)圖的拓?fù)鋮?shù)進(jìn)行分析。
1.4 "生物過程和通路分析與分子對接驗(yàn)證
將潛在作用靶點(diǎn)通過Metascape平臺[15]進(jìn)行基因本體論(Gene Ontology,GO)功能和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析。根據(jù)富集程度對獲得的生物過程(biological processes,BP)、細(xì)胞組分(cellular components,CC)、分子功能(molecular functions,MF)和KEGG信號通路分別進(jìn)行排序。以主要活性成分作為配體,從Pubchem 數(shù)據(jù)庫[16]獲取其2D結(jié)構(gòu)。核心作用靶點(diǎn)的三維結(jié)構(gòu)源自PDB 數(shù)據(jù)庫[17]。使用CB-Dock2在線分子對接工具[18]進(jìn)行分子對接,并使用 Pymol 3.0.4軟件對結(jié)果進(jìn)行可視化分析。
2 "結(jié)果
2.1 "活性成分及靶點(diǎn)的獲取
初步提取牛耳楓化學(xué)成分35種、辣蓼化學(xué)成分82種,經(jīng)ADME篩選,共獲得7種牛耳楓和22種辣蓼的活性成分,包括山柰酚、槲皮素、木犀草素等。得到牛耳楓的活性成分作用靶點(diǎn)265個、辣蓼的活性成分作用靶點(diǎn)376個,經(jīng)合并去重,最終獲得134個活性成分的作用靶點(diǎn)。見圖1。
2.2 "IBS相關(guān)靶點(diǎn)的獲取
Gene Cards數(shù)據(jù)庫中獲得4099個靶點(diǎn),篩選Relevance Score高于中位數(shù)的靶點(diǎn)(即Relevance Scoregt;7.03)的靶點(diǎn)為疾病相關(guān)靶點(diǎn),最終從Gene Cards數(shù)據(jù)庫提取2049個靶點(diǎn)。DisGeNet數(shù)據(jù)庫中提取429個靶點(diǎn),OMIM 數(shù)據(jù)庫中提取38個靶點(diǎn),TTD數(shù)據(jù)庫中提取39個靶點(diǎn),DrugBank數(shù)據(jù)庫中提取西藥作用靶點(diǎn)87個。通過對5個疾病數(shù)據(jù)庫的靶點(diǎn)數(shù)據(jù)進(jìn)行整合,在去除重復(fù)值后,最終獲得2353個疾病相關(guān)靶點(diǎn)。對活性成分的作用靶點(diǎn)與疾病相關(guān)靶點(diǎn)取交集,最終得出70個潛在作用靶點(diǎn)。
2.3 "PPI網(wǎng)絡(luò)構(gòu)建
利用 Network Analysis 工具分析PPI網(wǎng)絡(luò)圖的拓?fù)鋮?shù),篩選得到degree值大于中位數(shù)兩倍以上(即degree值gt;20)的核心作用靶點(diǎn):SRC、EGFR、ERBB2、PIK3R1、ESR1、AKT1,見圖2。
2.4 "GO功能富集分析
GO功能富集分析篩選得到898個BP條目,66個CC條目,96個MF條目。對獲得的BP、CC、MF條目分別根據(jù)富集程度進(jìn)行排序,并選取排名前10位的條目,見圖3。
2.5 "KEGG通路富集分析
KEGG通路富集分析篩選得到信號通路132條,根據(jù)富集分析結(jié)果對信號通路進(jìn)行排序,并選取排名前20,位見圖4。
2.6 "分子對接驗(yàn)證
選取PPI中degree值前5位的靶點(diǎn)作為受體,“活性成分–作用靶點(diǎn)”網(wǎng)絡(luò)中degree值前5的活性成分作為配體,進(jìn)行分子對接驗(yàn)證。根據(jù)分子對接結(jié)果分析,核心蛋白與主要活性成分的結(jié)合能均≤–6kcal/mol,表示楓蓼腸胃康中主要活性成分可與核心受體蛋白穩(wěn)定結(jié)合發(fā)揮治療IBS的作用,其中EGFR和ERBB2與活性成分的對接結(jié)合能最為顯著,提示這兩個靶點(diǎn)在IBS發(fā)病機(jī)制中具有關(guān)鍵調(diào)控作用,見圖5。
3 "討論
本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)方法發(fā)現(xiàn),楓蓼腸胃康治療IBS的主要活性成分包括槲皮素、山奈酚、6-羥基木犀草素、鞣花酸、木犀草素等。研究顯示槲皮素可通過抑制核因子-κB(nuclear factor kappa-B,NF-κB)信號通路及減少腫瘤壞死因子-α、白細(xì)胞介素(interleukin,IL)-6等促炎因子的分泌緩解炎癥反應(yīng)。此外,槲皮素通過上調(diào)緊密連接蛋白的表達(dá),增強(qiáng)腸道屏障功能,降低腸道通透性,從而減輕IBS癥狀[19]。山奈酚和6-羥基木犀草素通過類似抗炎機(jī)制發(fā)揮作用,并調(diào)節(jié)腸道菌群平衡[20-21]。鞣花酸通過抑制環(huán)氧合酶-2活性減少炎癥介質(zhì)生成,而木犀草素則通過調(diào)控NF-κB/絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路,降低炎癥因子的水平,并通過調(diào)節(jié)腸道神經(jīng)傳導(dǎo)緩解腹痛[22-23]。分子對接驗(yàn)證結(jié)果亦證明,以上活性成分與EGFR 、ERBB2等核心蛋白結(jié)合穩(wěn)定,提示楓蓼腸胃康可通過槲皮素、山奈酚、6-羥基木犀草素等活性成分調(diào)控IBS。
IBS的發(fā)病機(jī)制涉及炎癥、神經(jīng)內(nèi)分泌及免疫調(diào)節(jié)異常。研究顯示,IBS患者血漿促炎因子IL-6、IL-8水平顯著升高,這些因子通過上調(diào)色氨酸代謝限速酶活性,導(dǎo)致5-羥色胺系統(tǒng)功能紊亂,從而影響胃腸道的病理生理改變[24];且IBS患者胃腸黏膜中分化簇(cluster of differentiation,CD)3+、CD4+及CD8+T淋巴細(xì)胞浸潤增加,也提示腸道的適應(yīng)性免疫應(yīng)答參與病理進(jìn)程[25]。這些免疫細(xì)胞活化及炎性介質(zhì)失衡,進(jìn)一步支持IBS的炎癥免疫發(fā)病機(jī)制。SRC可通過磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)和MAPK通路介導(dǎo)調(diào)控腸道炎癥反應(yīng)及平滑肌收縮[26]。ERBB2作為EGFR家族成員,與EGFR功能相似,可調(diào)節(jié)腸道上皮增殖、分化及炎癥反應(yīng),其異常表達(dá)可破壞腸道屏障功能并加劇IBS癥狀[27]。PI3KR1與AKT1是PI3K/Akt信號通路的核心調(diào)控因子,其異常表達(dá)可通過PI3K/Akt通路失調(diào)加劇腸道屏障損傷及炎癥[27]。ESR1在調(diào)節(jié)多種生理過程(如生殖、骨骼健康和心血管功能)中起著關(guān)鍵作用,其通過調(diào)控調(diào)節(jié)腸道屏障功能及炎癥反應(yīng)影響IBS的癥狀。本研究所得楓蓼腸胃康治療IBS的核心靶點(diǎn)反映其在治療IBS時可對炎癥反應(yīng)起調(diào)節(jié)作用,并改善腸道屏障功能,有助于減輕IBS后的炎癥所致?lián)p傷[28]。
本研究通過GO富集分析結(jié)果可見楓蓼腸胃康治療IBS可通過影響磷酸化正調(diào)節(jié)、對氮化合物的細(xì)胞反應(yīng)等生物過程,受體復(fù)合物、膜筏等細(xì)胞組分,蛋白激酶活性、酪氨酸激酶活性、激素結(jié)合等分子功能,進(jìn)而發(fā)揮作用。KEGG富集分析表明,楓蓼腸胃康治療IBS的通路主要有癌癥通路,PI3K/Akt信號通路,內(nèi)分泌抵抗相關(guān)的信號通路,前列腺癌信號通路,磷脂酶D(phospholipase D,PLD)信號通路等,這些信號通路均與炎癥反應(yīng)和免疫反應(yīng)密切相關(guān)。PI3K/Akt通路通過調(diào)控NF-κB活性及緊密連接蛋白表達(dá),維持腸道屏障完整性并平衡細(xì)胞增殖與凋亡[29]。PLD通路可激活5’-磷酸腺苷活化蛋白激酶調(diào)控巨噬細(xì)胞極化,調(diào)節(jié)炎癥因子釋放及腸道黏膜屏障穩(wěn)定性[30]。前列腺癌通路涉及雄激素受體(androgen receptor,AR)信號、自噬調(diào)控及Wnt通路,其中AR可通過抑制Wnt/β-catenin信號間接影響IBS發(fā)展[31]??梢姉鬓つc胃康通過上述信號通路發(fā)揮療效可能涉及多個生物學(xué)過程,包括炎癥調(diào)節(jié)、免疫反應(yīng)、細(xì)胞增殖與凋亡平衡、腸道屏障修復(fù)、內(nèi)臟感知調(diào)控及菌群穩(wěn)態(tài)維持等。
本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)與分子對接技術(shù),初步探索楓蓼腸胃康治療IBS的多靶點(diǎn)機(jī)制。然而,現(xiàn)有數(shù)據(jù)庫的局限性可能導(dǎo)致部分有效成分未能被識別,預(yù)測結(jié)果存在不確定性。此外,隨著數(shù)據(jù)庫的不斷更新,或?qū)⒃谖磥戆l(fā)現(xiàn)新的化合物、靶點(diǎn)及通路??紤]到中藥成分的復(fù)雜性和多樣性,結(jié)合網(wǎng)絡(luò)藥理學(xué)分析已有資料仍是探索中藥復(fù)方藥理機(jī)制的有效途徑。未來應(yīng)設(shè)計(jì)相應(yīng)實(shí)驗(yàn)進(jìn)一步驗(yàn)證這些預(yù)測結(jié)果,為臨床應(yīng)用提供更加有力的理論支持。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" SEBASTI N, DOMINGO J J. Irritable bowel syndrome[J]. Med Clin (Barc), 2022, 158(2): 76–81.
[2]"" TILLISCH K, MAYER E A, LABUS J S. Quantitative Meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome[J]. Gastroenterology, 2011, 140(1): 91–100.
[3]"" ZISIMOPOULOU S, GUESSOUS I. Irritable bowel syndrome: An exclusion diagnosis?[J]. Rev Med Suisse, 2012, 8(355): 1821–1825.
[4]"" 趙丹, 安妮, 陳常玉, 等. 楓蓼腸胃康的研究進(jìn)展[J]. 現(xiàn)代藥物與臨床, 2014, 29(12): 1446–1450.
[5]"" 陳賜琴. 阿奇霉素聯(lián)合楓蓼腸胃康治療急性腸炎的療效分析[J]. 海峽藥學(xué), 2021, 33(12): 190–191.
[6]"" 孫亞峰, 朱素華, 常超, 等. 楓蓼腸胃康顆粒聯(lián)合阿爾維林治療腹瀉型腸易激綜合征的臨床研究[J]. 現(xiàn)代藥物與臨床, 2020, 35(10): 1994–1997.
[7]"" DAINA A, MICHIELIN O, ZOETE V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep, 2017, 7: 42717.
[8]"" DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(1): 357–364.
[9]"" STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1301–1303.
[10] MCKUSICK V A. Mendelian inheritance in man and its online version, OMIM[J]. Am J Hum Genet, 2007, 80(4): 588–604.
[11] ZHOU Y, ZHANG Y, ZHAO D, et al. TTD: Therapeutic Target Database describing target druggability information[J]. Nucleic Acids Res, 2024, 52(1): 1465–1477.
[12] PI ERO J, RAM REZ-ANGUITA J M, SA CH-PITARCH J, et al. The DisGeNET knowledge platform for disease genomics: 2019 Update[J]. Nucleic Acids Res, 2020, 48(1): 845–855.
[13] WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5. 0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(1): 1074–1082.
[14] SZKLARCZYK D, KIRSCH R, KOUTROULI M. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(1): 638–646.
[15] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523.
[16] KIM S, CHEN J. PubChem 2023 update[J]. Nucleic Acids Res, 2023, 51(D1): 1373–1380.
[17] BERMAN H M, WESTBROOK J, FENG Z, et al. The protein data bank[J]. Nucleic Acids Res, 2000, 28(1): 235–242.
[18] LIU Y, YANG X. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting[J]. Nucleic Acids Res, 2022, 50(1): 159–164.
[19] SUL O J, RA S W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells[J]. Molecules, 2021, 26(22): 6949.
[20] HERRERA T E S, TELLO I P S, MUSTAFA M A, et al. Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation[J]. Cytokine, 2025, 186: 156846.
[21] WANG X, WANG Z, SIDHU P S, et al. 6-Hydroxyflavone and derivatives exhibit potent anti-inflammatory activity among mono-, di- and polyhydroxylated flavones in kidney mesangial cells[J]. PLoS One, 2015, 10(3): e0116409.
[22] EL-SHITANY N A, EL-BASTAWISSY E A, EL-DESOKY K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism[J]. Int Immunopharmacol, 2014, 19(2): 290–299.
[23] ZHU M, SUN Y, SU Y, et al. Luteolin: A promising multifunctional natural flavonoid for human diseases[J]. Phytother Res, 2024, 38(7): 3417–3443.
[24] CLARKE G, FITZGERALD P, CRYAN J F, et al. Tryptophan degradation in irritable bowel syndrome: Evidence of indoleamine 2, 3-dioxygenase activation in a male cohort[J]. BMC Gastroenterol, 2009, 9: 6.
[25] SPILLER R C, JENKINS D, THORNLEY J P, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute campylobacter enteritis and in post-dysenteric irritable bowel syndrome[J]. Gut, 2000, 47(6): 804–811.
[26] HAN Y, GUO S, LI Y, et al. Berberine ameliorate inflammation and apoptosis via modulating PI3K/AKT/NFκB and MAPK pathway on dry eye[J]. Phytomedicine, 2023, 121: 155081.
[27] 田文國, 陳金鵬, 王春芳, 等. 基于網(wǎng)絡(luò)藥理學(xué)和分子對接探究腸炎寧顆粒治療功能性腹瀉和腹瀉型腸易激綜合征的作用機(jī)制[J]. 中草藥, 2022, 53(22): 7135–7147.
[28] 龍麗, 單可人, 任錫麟. 雌激素受體(ESR)基因多態(tài)性與疾病相關(guān)性的研究進(jìn)展[J]. 國際遺傳學(xué)雜志, 2008, 31(2): 124–128.
[29] 李雨芹, 趙美丹, 張迪, 等. 中醫(yī)藥治療腸易激綜合征相關(guān)信號通路的研究進(jìn)展[J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2023, 29(9): 243–251.
[30] 旺建偉, 王一鳴, 趙清玉, 等. 腸道微生態(tài)紊亂與肝脾不和之腸易激綜合征的關(guān)聯(lián)性分析[J]. 醫(yī)學(xué)研究雜志, 2022, 51(3): 1–4.
[31] 焉秀章, 夏文龍, 夏俊偉, 等. Wnt/β-catenin信號通路在結(jié)直腸癌中的研究進(jìn)展[J]. 中國實(shí)驗(yàn)診斷學(xué), 2021, 25(12): 1856–1861.
(收稿日期:2025–03–15)
(修回日期:2025–06–13)