摘""要:本研究以大粒種咖啡(Coffea"liberica)、中粒種咖啡(C."canephora)、小粒種咖啡(C."arabica)、丁香咖啡(C."eugenioides)及總狀咖啡(C."racemosa)5種咖啡屬植物的葉綠體基因組為研究對(duì)象,對(duì)其進(jìn)行統(tǒng)計(jì)和比較分析。結(jié)果表明:葉綠體基因組長(zhǎng)度在154"751~155"189"bp之間,最長(zhǎng)的是小粒種咖啡,最短的是中粒種咖啡,GC平均含量為34.98%;大粒種咖啡和小粒種咖啡葉綠體基因組均編碼130個(gè)基因,丁香咖啡葉綠體基因組編碼基因最多,為138個(gè),總狀咖啡葉綠體基因組編碼基因最少,為121個(gè);比較5種咖啡植物葉綠體基因組邊界區(qū)域發(fā)現(xiàn),方向順序排列一致,體現(xiàn)了葉綠體基因組結(jié)構(gòu)的高度保守性;SSR序列分析表明,5種咖啡植物具有較強(qiáng)的AT偏向性,且SSR類型和數(shù)目均不相同;經(jīng)核苷酸多樣性變異位點(diǎn)分析,篩選出了5個(gè)核苷酸變異較大的區(qū)段,包括PetN-PsbM、accD、accD-PsaI、rpl16和ndhF-rpl32。進(jìn)一步基于葉綠體基因組和5個(gè)核酸高變區(qū)的聯(lián)合分析,構(gòu)建19種咖啡屬植物的系統(tǒng)發(fā)育樹(shù),揭示其親緣關(guān)系。本研究可為咖啡屬植物的種質(zhì)資源鑒定、起源進(jìn)化及雜交育種提供參考依據(jù)。
關(guān)鍵詞:咖啡屬;葉綠體基因組;系統(tǒng)發(fā)育;高變區(qū)中圖分類號(hào):S571.2""""""文獻(xiàn)標(biāo)志碼:A
Comparative"Analysis"of"Chloroplast"Genome"Sequences"of"Five"Coffee"Species"and"Its"Related"Species
LIU"Cheng,"MA"Guanrun,"ZHAO"Mingzhu,"LI"Meifang,"CHEN"Tianming,"WANG"Jingmin,"JIANG"Xinlei,"BAI"Xuehui,"ZHOU"Hua*
Dehong"Tropical"Agricultural"Research"Institute"of"Yunnan,"Ruili,"Yunnan"678600,"China
Abstract:"Taking"the"chloroplast"genomes"of"five"coffea"plants,"namely"Coffea"liberica,"C."canephora,"C."arabica,"C."eugenioides,"and"C."racemosa,"as"the"research"objects,"a"series"of"statistical"and"comparative"analyses"were"carried"out."The"results"demonstrated"that"the"lengths"of"the"chloroplast"genomes"varied"from"154"751"bp"to"155"189"bp,"with"C."arabica"a"possessing"the"longest"genome"and"C."canephora"having"the"shortest."The"average"GC"content"was"determined"to"be"34.98%."Both"C."liberica"and"C."arabica"encoded"130"genes,"while"C."eugenioides"had"the"largest"number"of"genes,"totaling"138,"and"C."racemosa"had"the"least,"with"only"121."Upon"comparing"the"border"regions"of"the"chloroplast"genomes"of"the"five"coffee"plants,"it"was"observed"that"the"directional"sequence"arrangements"were"consistent,"thereby"reflecting"the"high"conservation"of"the"chloroplast"genome"structure."The"analysis"of"SSR"sequences"indicated"that"the"five"coffee"plants"exhibited"a"pronounced"AT"bias,"and"the"types"and"quantities"of"SSRs"differed"among"them."Through"the"analysis"of"nucleotide"diversity"variation"sites,"five"segments"with"relatively"significant"nucleotide"variations"were"identified,"namely"PetN-PsbM,"accD,"accD-PsaI,"rpl16"and"ndhF-rpl32."Furthermore,"based"on"the"combined"analysis"of"the"chloroplast"genomes"and"the"five"highly"variable"nucleotide"regions,"a"phylogenetic"tree"of"19"Coffea"plants"was"successfully"constructed,"which"shed"light"on"their"genetic"relationships."This"study"can"serve"as"a"valuable"reference"for"the"identification"of"germplasm"resources,"the"exploration"of"origin"and"evolution,"as"well"as"the"hybrid"breeding"of"Coffea"plants.
Keywords:"Coffea;"chloroplast"genome;"phylogenetic;"hypervariable"region
DOI:"10.3969/j.issn.1000-2561.2025.05.003
咖啡是全球重要的經(jīng)濟(jì)作物,包括大粒種咖啡(Coffea"liberica)、中粒種咖啡(C."canephora)、小粒種咖啡(C."arabica)、丁香咖啡(C."eugenioides)和總狀咖啡(C."racemosa)等,其中以小粒種、中粒種咖啡及大粒種為主要栽培種[1-2]。近年來(lái),伴隨咖啡市場(chǎng)的快速發(fā)展,人們對(duì)咖啡品質(zhì)和產(chǎn)量的要求越發(fā)嚴(yán)格[3]??Х鹊钠焚|(zhì)和產(chǎn)量受自身遺傳特性的限制[4],在遺傳特性上,葉綠體發(fā)揮著重要作用[5]。葉綠體在植物體內(nèi)的重要性不言而喻,其基因組小且結(jié)構(gòu)簡(jiǎn)單,自主擁有一套母系遺傳系統(tǒng)[6],其DNA是由4部分組成的環(huán)狀結(jié)構(gòu),長(zhǎng)度在120~217"kb之間,因植物種類不同而長(zhǎng)短不一[7]。由于這種特殊性,葉綠體基因組在植物分子進(jìn)化研究中被學(xué)者們所偏愛(ài),廣泛用于植物系統(tǒng)進(jìn)化和遺傳等研究中[8]。隨著測(cè)序技術(shù)的迅猛發(fā)展,大量物種的葉綠體基因組信息被公布[9],使得依托于葉綠體基因組的相關(guān)研究得以開(kāi)展。
目前,關(guān)于咖啡葉綠體基因組的研究主要集中在大粒種、中粒種、小粒種咖啡及丁香咖啡上。LI等[10]對(duì)大粒種咖啡、中粒種咖啡、小粒種咖啡、小粒咖啡波邦及小??Х辱F皮卡進(jìn)行了葉綠體基因組密碼子使用模式分析,結(jié)果表明,大粒種咖啡、中粒種咖啡、小粒種咖啡具有高度的相似性,均表現(xiàn)出相似的堿基組成,密碼子偏好以A/T結(jié)尾;小??Х炔ò钊~綠體基因組密碼子的偏性較弱,傾向于A/T結(jié)尾[11];小??Х辱F皮卡葉綠體基因組密碼子的偏性較弱,偏好AU結(jié)尾[12]。TESFAYE等[13]對(duì)丁香咖啡葉綠體基因組進(jìn)行研究,表明其是小粒種咖啡的一個(gè)重要親本物種,結(jié)構(gòu)與中粒種咖啡相似,長(zhǎng)度約為155"kb,基因結(jié)構(gòu)較為保守。此外,總狀咖啡(C.nbsp;racemosa)被發(fā)現(xiàn)于莫桑比克,是一個(gè)二倍體咖啡屬植物,由于其耐干旱、抗性強(qiáng)、低咖啡因,常被用于雜交中間材料來(lái)進(jìn)行抗性育種選擇,在葉綠體基因組方面的研究鮮見(jiàn)[14-15]。
而當(dāng)前咖啡研究主要以小粒種咖啡為主,缺乏多個(gè)物種之間比較研究。這不僅對(duì)其他咖啡種的研究存在一定的局限性,也不利于持續(xù)開(kāi)展咖啡雜交育種。因此,本研究通過(guò)比較基因組學(xué)手段,以大粒種咖啡、中粒種咖啡、小粒種咖啡、丁香咖啡和總狀咖啡為對(duì)象,進(jìn)行葉綠體基因組比較分析,明確5種咖啡屬植物葉綠體基因組序列基本信息,包括LSC區(qū)(large"single"copy"region,大單拷貝區(qū))、SSC區(qū)(small"single"copy,小單拷貝區(qū))和IR區(qū)(inverted"repeat,反向重復(fù)區(qū))的長(zhǎng)度,GC含量、gene類型及數(shù)目;了解LSC、SSC和IR邊界區(qū)域之間的變化;分析SSR位點(diǎn);確定高變區(qū)片段;重建5種咖啡及其近緣種的系統(tǒng)進(jìn)化樹(shù),以闡明它們之間的親緣關(guān)系,并為該屬的系統(tǒng)進(jìn)化研究提供有效的分子標(biāo)記。
1.1""材料
從NCBI數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih."gov/)下載大粒種咖啡(MW970411.1)、中粒種咖啡(KU500324.1)、小粒種咖啡(EF044213.1)、丁香咖啡(NC083907.1)和總狀咖啡(MK577911."1)等5種咖啡屬植物的葉綠體基因組序列。
1.2""方法
1.2.1"葉綠體基因組序列組成和編碼基因""利用IR"Scope(https://irscope.shinyapps.io/irapp/)在線工具確定5種咖啡屬植物葉綠體基因組序列LSC區(qū)、SSC區(qū)和IR區(qū)的長(zhǎng)度;利用Geneious軟件確定其GC含量、gene類型及數(shù)目。
1.2.2""IR區(qū)邊界的收縮與擴(kuò)張分析""利用IR"Scope工具分析5個(gè)葉綠體基因組3個(gè)區(qū)(LSC、SSC和IR)的連接邊緣位點(diǎn),了解邊界區(qū)域之間的變化。
1.2.3""SSR分析""利用MISA(https://webblast."ipk-gatersleben.de/misa/)在線工具分析5種植物葉綠體基因組SSR位點(diǎn),單核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸重復(fù)次數(shù)分別設(shè)置為10、6、5、5、5、5。
1.2.4""葉綠體基因組高變區(qū)分析""利用DnaSP"5軟件計(jì)算咖啡屬19個(gè)葉綠體基因組(表1)的核苷酸多態(tài)性(nucleotide"diversity,Pi)。設(shè)置滑動(dòng)窗口參數(shù)為:長(zhǎng)度600"bp,步長(zhǎng)200"bp,得到高變區(qū)片段,同時(shí)結(jié)合mVISTA(http://genome.lbl."gov/vista/in)在線工具確定咖啡屬植物葉綠體基因組內(nèi)高變區(qū)片段。
1.2.5""咖啡屬植物的系統(tǒng)進(jìn)化樹(shù)構(gòu)建""經(jīng)NCBI數(shù)據(jù)庫(kù)另外獲取咖啡屬14種植物的葉綠體基因組序列,以茜草科梔子屬(Gardenia)的梔子花(G."jasminoides)為外內(nèi)群,采用phylosuite軟件中的MAFFT和Gblocks工具對(duì)葉綠體基因組序列進(jìn)行比對(duì)分析,選擇ModelFinder篩選最佳模型,用IQ-TREE進(jìn)行建樹(shù),經(jīng)Figtree軟件美化后得到19種咖啡屬植物的進(jìn)化樹(shù)結(jié)果。而后基于上述高變區(qū)片段區(qū)域,同樣采用phylosuite軟件中的MAFFT和Gblocks對(duì)高變區(qū)序列進(jìn)行比對(duì)分析后,用Concatenate"Sequence進(jìn)行序列拼接,選擇Partition"Finder2進(jìn)行模型篩選,最后用IQ-TREE進(jìn)行建樹(shù),經(jīng)Figtree軟件美化后得到咖啡屬高變區(qū)的進(jìn)化樹(shù)結(jié)果。
2.1""葉綠體基因組大小與結(jié)構(gòu)
通過(guò)對(duì)丁香咖啡、總狀咖啡、大粒種咖啡、中粒種咖啡、小粒種咖啡的葉綠體基因組信息進(jìn)行統(tǒng)計(jì)和比較分析(表2)。結(jié)果顯示:葉綠體基因組長(zhǎng)度在154"751~155"189"bp之間;最長(zhǎng)的是小粒種咖啡(155"189"bp),最短的是中粒種咖啡(154"751"bp),二者之間相差438"bp;而中粒種咖啡和大粒種咖啡之間僅相差48"bp,丁香咖啡和小粒種咖啡之間僅相差66"bp。這5種咖啡屬植物葉綠體基因組的GC平均含量均為34.98%。此外,LSC區(qū)長(zhǎng)度為84"868~86"474"bp;SSC區(qū)長(zhǎng)度為18"114~53"243"bp,中粒種咖啡最長(zhǎng)(53"543"bp);IR區(qū)長(zhǎng)度為7517~25"943"bp,中粒種咖啡最短(7517"bp);IR區(qū)GC含量除中粒種咖啡外,其余均高于LSC區(qū)和SSC區(qū)。
大粒種咖啡和小粒種咖啡葉綠體全基因組均編碼130個(gè)基因,都包含8個(gè)rRNA基因、37個(gè)tRNA基因及85個(gè)蛋白編碼基因;丁香咖啡葉綠體全基因組共編碼138個(gè)基因,包含8個(gè)rRNA基因、45個(gè)tRNA及85個(gè)蛋白編碼基因;總狀咖啡葉綠體全基因組共編碼121個(gè)基因、36個(gè)tRNA及85個(gè)蛋白編碼基因,無(wú)rRNA基因;中粒種咖啡葉綠體全基因組共編碼131個(gè)基因,包含8個(gè)rRNA基因、37個(gè)tRNA及86個(gè)蛋白編碼基因,比大粒種咖啡和小粒種咖啡少1個(gè)蛋白編碼基因。
2.2""IR區(qū)邊界的收縮與擴(kuò)張
葉綠體基因組長(zhǎng)度的變化與IR區(qū)邊界的擴(kuò)張、收縮相關(guān)[16-17]。比較分析5種咖啡植物葉綠體基因組的邊界區(qū)域(圖1)發(fā)現(xiàn),5種咖啡屬植物葉綠體基因組方向順序排列一致,4個(gè)邊界除中??Х确N和大??Х确N存在不同基因外,丁香咖啡、小粒種咖啡、總狀咖啡的基因一致,表現(xiàn)出基因的擴(kuò)張或收縮,中粒種咖啡的JLA和JLB位于rpl2基因內(nèi)部,且向IR區(qū)擴(kuò)張的長(zhǎng)度均為824"bp;而JSB和JSA均位于ycf2基因內(nèi)部,且向IR"a區(qū)擴(kuò)張的長(zhǎng)度為6067"bp,向IR"b區(qū)擴(kuò)張的長(zhǎng)度為6065"bp;丁香咖啡、總狀咖啡、大粒咖
啡種、小粒種咖啡4種植物的JLB均位于rps"19基因內(nèi)部,且向IR擴(kuò)張的長(zhǎng)度分別為90、92、94、88"bp。JSB與ycf1的距離均為1"bp,JSA與ndhF的距離均為8"bp,其中丁香咖啡的JLA與trnH的距離為2"bp,表明5種咖啡屬之間的葉綠體基因組結(jié)構(gòu)表現(xiàn)出高度保守性以及基因多樣性。
2.3""SSR分析
5種咖啡屬植物葉綠體基因組的SSR序列分析(圖2)發(fā)現(xiàn),3種類型的SSR序列重復(fù)序列,JLA:LSC與IR"a的連接點(diǎn),即junction"of"LSC/IR"a;JLB:LSC與IR"b的連接點(diǎn),即junction"of"LSC/IR"b;JSB:SSC與IR"b的連接點(diǎn),即junction"of"SSC/IR"b;JSA:SSC與IR"a的連接點(diǎn),即junction"of"SSC/IR"a。
JLA:"The"connection"point"between"LSC"and"IRa,"namely"junction"of"LSC/IRa;"JLB:"The"connection"point"between"LSC"and"IRb,"namely"junction"of"LSC/IRb;"JSB:"The"connection"point"between"SSC"and"IRb,"namely"junction"of"SSC/IRb;"JSA:"The"connection"point"between"SSC"and"IRa,"namely"junction"of"SSC/IRa.
分別是單核苷酸(P1)、二核苷酸(P2)和復(fù)合型(C)。其中,單核苷酸重復(fù)類型最多,主要由A和T堿基重復(fù)組成,二核苷酸重復(fù)類型相同且均為AT堿基重復(fù),表明這5種咖啡屬植物具有較強(qiáng)的AT偏向性。此外,5種植物的SSR類型和數(shù)目均不相同,其中,總狀咖啡3個(gè)SSR類型,包含29個(gè)P1、3個(gè)P2、1個(gè)C,數(shù)目共計(jì)33個(gè);小粒種咖啡3個(gè)SSR類型,包含27個(gè)P1、1個(gè)P2、2個(gè)C,數(shù)目共計(jì)30個(gè);中粒種咖啡2個(gè)SSR類型,包含23個(gè)P1、1個(gè)C,數(shù)目共計(jì)24個(gè);大粒咖啡種2個(gè)SSR類型,包含32個(gè)P1、2個(gè)C,數(shù)目共計(jì)34個(gè);丁香咖啡3個(gè)SSR類型,包含24個(gè)P1、1個(gè)P2、3個(gè)C,數(shù)目共計(jì)28個(gè);其中,中粒種咖啡和大??Х确N中只有P1和C兩種SSR類型,沒(méi)有P2類型。
2.4""核苷酸多樣性
采用DnaSP軟件對(duì)19個(gè)咖啡屬植物的葉綠體基因組進(jìn)行變異位點(diǎn)分析(圖3)發(fā)現(xiàn),共有4069個(gè)多態(tài)位點(diǎn),不同區(qū)段的葉綠體基因組Pi為0~0.01879,平均值為0.00454。以Pigt;0.014為閾值,篩選出5個(gè)核苷酸變異較大的區(qū)段,包括PetN-PsbM、accD、accD-PsaI、rpl16和ndhF-rpl32。5個(gè)高變區(qū)片段中,3個(gè)為基因間隔片段,2個(gè)為蛋白編碼基因片段。這說(shuō)明基因間隔區(qū)域表現(xiàn)出比編碼區(qū)更高的核苷酸多樣性。
2.5""系統(tǒng)發(fā)育分析
本研究基于葉綠體全基因組和高變區(qū)片段聯(lián)
合矩陣,利用ML法分別構(gòu)建19種咖啡屬植物的系統(tǒng)發(fā)育樹(shù)(圖4,圖5)。結(jié)果均表明,中粒種咖啡和大??Х确N以100%支持率聚為一支,總狀咖啡和假桑給巴爾咖啡以100%支持率聚為一支。在基于葉綠體全基因組建樹(shù)結(jié)果中,小粒種咖啡和小粒種咖啡紅波邦以84%的支持率聚為一支,丁香咖啡則單獨(dú)聚成一支;而在基于高變區(qū)的建樹(shù)結(jié)果中,小粒種咖啡和丁香咖啡以93%的支持率聚為一支,小粒種咖啡紅波邦單獨(dú)聚成一支,2種建樹(shù)結(jié)果說(shuō)明丁香咖啡與小粒種咖啡具有更近的親緣關(guān)系,而小粒種咖啡和小粒種咖啡紅波邦的親緣關(guān)系更近。由此可見(jiàn),基于高變區(qū)片段聯(lián)合矩陣構(gòu)建的系統(tǒng)發(fā)育樹(shù)與基于葉綠體全基因組構(gòu)建的系統(tǒng)發(fā)育樹(shù)的拓?fù)浣Y(jié)構(gòu)存在一定差異,也在一定程度上揭示了咖啡屬物種親緣關(guān)系。
本研究對(duì)5種咖啡屬植物的葉綠體基因組進(jìn)行了比較分析,揭示了其在基因組大小、結(jié)構(gòu)、SSR分布、核苷酸多樣性以及系統(tǒng)發(fā)育關(guān)系方面的保守性和差異性。研究表明,5種咖啡的葉綠體基因組大小為154"751~155"189"bp,整體表現(xiàn)較為保守,其大小的變化主要與反向重復(fù)區(qū)(IR區(qū))的擴(kuò)張和收縮有關(guān),這在其他植物中同樣普遍存在[16-17]。其中,小粒種咖啡的葉綠體基因組最長(zhǎng),而中粒種咖啡的基因組最短,二者的基因組差異主要集中在IR區(qū)和LSC區(qū)。這種基因組長(zhǎng)度的差異可能與物種的特異性進(jìn)化、環(huán)境適應(yīng)性或基因組重組有密切關(guān)聯(lián)[18-21]。中粒種咖啡的IR區(qū)擴(kuò)展尤為顯著,JLA和JLB邊界位于rpl2基因內(nèi)部,擴(kuò)展了824"bp,而JSB和JSA邊界則分別向IRa和IRb區(qū)域擴(kuò)展了6067"bp和6065"bp。這表明中粒種咖啡的IR區(qū)擴(kuò)展性強(qiáng),與其他咖啡屬植物相比,其葉綠體基因組結(jié)構(gòu)發(fā)生了明顯變化。IR區(qū)的擴(kuò)張可能在基因穩(wěn)定性、基因復(fù)制和環(huán)境適應(yīng)性中發(fā)揮了重要作用,這一現(xiàn)象在其他植物中也有廣泛報(bào)道[22-25]。
此外,通過(guò)MISA軟件分析發(fā)現(xiàn),5種咖啡屬植物的葉綠體基因組中存在不同數(shù)量的SSR序列,且單核苷酸重復(fù)序列(P1)占據(jù)主導(dǎo)地位,顯示出明顯的AT偏向性。這種偏向與葉綠體基因組中A和T堿基的高復(fù)制效率有關(guān),且通常不易受到外部環(huán)境的影響[26-27]。不同物種的SSR數(shù)量差異顯著,例如總狀咖啡具有33個(gè)SSR位點(diǎn),而中粒種咖啡僅有24個(gè)。這些差異可能反映了物種在進(jìn)化歷史、生態(tài)適應(yīng)性和基因重組方面的不同[28],可用于咖啡遺傳多樣性、種質(zhì)資源鑒定等研究中,并為咖啡育種提供重要的分子工具[29-30]。
本研究經(jīng)分析核苷酸多樣性后發(fā)現(xiàn),咖啡屬植物葉綠體基因組的整體多樣性較低,平均值為0.004"54。然而,在特定基因間隔區(qū)(如PetN-PsbM、accD和rpl16)中,核苷酸多樣性顯著增加。這些高變區(qū)主要位于非編碼區(qū),表明這些區(qū)域在物種分化過(guò)程中發(fā)生了較多的突變和重組,類似現(xiàn)象在花生和虎杖植物中也有所觀察[31-32]。為物種間的遺傳多樣性提供了參考,可作為分子標(biāo)記應(yīng)用于物種鑒定和系統(tǒng)發(fā)育研究中[33]。此外,非編碼區(qū)的變異率通常高于編碼區(qū),在調(diào)控基因表達(dá)和環(huán)境適應(yīng)中可能具有重要作用[34-35]。本研究基于葉綠體基因組和高變區(qū)的聯(lián)合分析,成功構(gòu)建了咖啡屬植物的系統(tǒng)發(fā)育樹(shù)。結(jié)果顯示,中粒種咖啡與大??Х确N聚為一支,支持率為100%,表明它們?cè)谶M(jìn)化上具有緊密的親緣關(guān)系,可能共享相似的生態(tài)適應(yīng)性[36]。此外,總狀咖啡與假桑給巴爾咖啡也聚為一支,支持率同樣為100%,這進(jìn)一步說(shuō)明它們?cè)谶M(jìn)化上具有高度的相似性。對(duì)于小粒種咖啡,其與丁香咖啡聚為一支,支持率較高,這與小粒種咖啡作為中粒種咖啡和丁香咖啡的雜交后代的異源四倍體起源假說(shuō)一致。這一結(jié)果與之前關(guān)于小粒種咖啡起源的研究相吻合[37]。此外,小粒種咖啡紅波邦在高變區(qū)分析中表現(xiàn)出與小粒種咖啡和丁香咖啡之間較近的親緣關(guān)系,也表明不同咖啡品種之間存在復(fù)雜的遺傳背景和進(jìn)化歷史[38]。通過(guò)以上研究,最終可為咖啡屬植物的種質(zhì)資源鑒定、進(jìn)化研究及雜交育種提供重要的參考依據(jù),咖啡屬植物的遺傳改良和種質(zhì)資源保護(hù)將迎來(lái)新的機(jī)遇。
參考文獻(xiàn)
[1]"AARON"P"D,"RAFAEL"G,"DIANE"M"B,"PIET"S."An"annotated"taxonomic"conspectus"of"the"genus"Coffea"(Ru biaceae)"[J]."Botanical"Journal"of"the"Linnean"Society,"2006,"152(4):"465-512.
[2]"周華,"張洪波,"夏紅云,"楊積忠,"郭鐵英,"李錦紅,"白學(xué)慧."咖啡種質(zhì)資源多樣性研究[J]."中國(guó)熱帶農(nóng)業(yè),"2015(5):"23-27.ZHOU"H,"ZHANG"H"B,"XIA"H"Y,"YANG"J"Z,"GUO"T"Y,"LI"J"H,"BAI"X"H."Study"on"the"diversity"of"coffee"germplasm"resources[J]."China"Tropical"Agriculture,"2015(5):"23-27."(in"Chinese)
[3]"何紅艷,"程金煥,"張曉芳,"熊賢坤,"楊陽(yáng),"畢曉菲,"余鎖姝."云南小??Х绕焚|(zhì)影響因素研究與分析[J]."中國(guó)熱帶農(nóng)業(yè),"2014(4):"8-10.HE"H"Y,"CHENG"J"H,"ZHANG"X"F,"XIONG"X"K,"YANG"Y,"BI"X"F,"YU"S"S."Research"and"analysis"on"the"factors"influencing"the"quality"of"Yunnan"Arabica"coffee[J]."China"Tropical"Agriculture,"2014(4):"8-10."(in"Chinese)
[4]"閆林,"陳婷,"黃麗芳,"李錦紅,"馬關(guān)潤(rùn),"王曉陽(yáng),"董云萍,"龍宇宙,"李學(xué)俊."小粒種咖啡種質(zhì)資源重要農(nóng)藝性狀遺傳多樣性分析[J]."福建農(nóng)業(yè)學(xué)報(bào),"2019,"34(12):"1379-1387.YAN""L,""CHEN""T,""HUANG""L""F,""LI"J"H,"MA"G"R,"WANG"X"Y,"DONG"Y"P,"LONG"Y"Z,"LI"X"J."Genetic""diversity""on""selected""agronomic""traits""of""arabica""coffee""germplasm[J]."Fujian"Journal"of"Agricultural"Sciences,"2019,"34(12):"1379-1387."(in"Chinese)
[5]"ZHOU"H."The"applications"of"chloroplast"genome"analysis"in"plant"system"development[J]."Botanical"Research,"2014,"3(1):"1-9.
[6]"DANIELL"H,"LIN"C"S,"YU"M,"CHANG"W"J."Chloroplast"genomes:"diversity,"evolution,"and"applications"in"genetic"engineering[J]."Genome"Biology,"2016,"17(1):"134.
[7]"趙玉芬."葉綠體基因組在植物學(xué)研究中的應(yīng)用進(jìn)展[J]."生物學(xué)教學(xué),"2022(3):"47.ZHAO"Y"F."Advances"in"the"application"of"chloroplast"genome"in"botanical"research[J]."Biology"Teaching,"2022(3):"47."(in"Chinese)
[8]"樊守金,"郭秀秀."植物葉綠體基因組研究及應(yīng)用進(jìn)展[J]."山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),"2022,"37(1):"22-31.FAN"S"J,"GUO"X"X."Advances"in"research"and"application"of"plant"chloroplast"genome[J]."Journal"of"Shandong"Normal"University"(Natural"Science),"2022,"37(1):"22-31."(in"Chinese)
[9]"RAVI"V,"KHURANA"J"P,"TYAGI"A"K,"KHURANA"P."An"update"on"chloroplast"genomes[J]."Plant"Systematics"and"Evolution,"2008,"271(1/2):"101-122.
[10]"LI"Y"Q,"HU"X,"XIAO"M"K,"H"J"X,"LOU"Y"Q,"HU"F"G","FU"X"F,"LI"Y"N,"HE"H"Y,"CHENG"J"H."An"analysis"of"codon"utilization"patterns"in"the"chloroplast"genomes"of"three"species"of"Coffea[J]."BMC"Genomic"Data,"2023,"24(1):"42.
[11]"李亞麒,"李貴平,"李亞男,"付興飛,"黃家雄,"畢曉菲,"喻好好,"劉德欣,"胡發(fā)廣."‘波邦’咖啡葉綠體基因組密碼子使用特征研究[J]."種子,"2024,"43(4):"27-36."LI"Y"Q,"LI"G"P,"LI"Y"N,"FU"X"F,"HUANG"J"X,"BI"X"F,"YU"H"H,"LIU"D"X,"HU"Fnbsp;G."Study"on"codon"usage"characteristics"in"chloroplast"genome"of"Coffea"arabica"‘Bourbon’[J]."Seed,"2024,"43(4):"27-36."(in"Chinese)
[12]"李亞麒,"黃家雄,"婁予強(qiáng),"付興飛,"王健敏,"李亞男,"呂玉蘭,"李貴平,"程金煥.小??Х辱F皮卡葉綠體基因組密碼子偏好性分析[J]."西北林學(xué)院學(xué)報(bào),"2023,"38(2):"92-99.LI"Y"Q,"HUANG"J"X,"LOU"Y"Q,"FU"X"F,"WANG"J"M,"LI"Y"N,"LYU"Y"L,"LI"G"P,"CHENG"J"H."Codon"usage"bias"of"the"chloroplast"genome"in"Coffea"arabica"‘Typica’[J]."Journal"of"Northwest"Forestry"University,"2023,"38(2):"92-99."(in"Chinese)
[13]"TESFAYE"K,"BORSCH"T,"GOVERS"K,"BEKELE"E."Characterization"of"Coffea"chloroplast"microsatellites"and"evidence"for"the"recent"divergence"of"C."arabica"and"C."eugenioides"chloroplast"genomes[J]."Genome,"2007,"50(12):"1112-1129.
[14]"LOPES"M"H"C."Caffeine"content"of"indigenous"coffees"in"Mozambique.[Coffea"racemosa][J]."Agron"Mocambicana,"1971,"30(8):"157-165.
[15]"DAVIS"A"P,"GARGIULO"R,"ALMEDIA"I"N"D"M,"CARAVELA"M"I,"DENISON"C,"MOAT"J."Hot"Coffee:"the"identity,"climate"profiles,"agronomy,"and"beverage"characteristics"of"Coffea"racemosa"and"C."zanguebariae[J]."Frontiers"in"Sustainable"Food"Systems,"2021:"239041741".
[16]"縱丹,"黃嘉城,"段曉盟,"張曉琳,"馮家玉,"甘沛華,"何承忠."無(wú)籽刺梨及其近緣種葉綠體基因組序列比較分析[J]."福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),"2024,"53(1):"39-47.ZONG"D,"HUANG"J"C,"DUAN"X"M,"ZHANG"X"L,"FENG"J"Y,"GAN"P"H,"HE"C"Z.Comparative"analyses"on"chloroplast"genome"sequence"of"Rosa"sterilis"and"its"related"species[J]."Journal"of"Fujian"Agriculture"and"Forestry"University"(Natural"Science"Edition),"2024,"53(1):"39-47."(in"Chinese)
[17]"WICKE"S,"SCHNEEWEISS"G"M,"DEPAMPHILIS"C"W,"MüLLER"K"F,"QUANDT"D."The"evolution"of"the"plastid"chromosome"in"land"plants:"gene"content,"gene"order,"gene"function[J]."Plant"Molecular"Biology,"2011,"76(3/4/5):"273-"297.
[18]"胥富強(qiáng),"王海洋,"師春娟,"辛培堯,"段利武,"王齊."9種狼尾草屬植物葉綠體基因組特征分析[J]."西部林業(yè)科學(xué),"2024,"53(1):"88-98.XU"F"Q,"WANG"H"Y,"SHI"C"J,"XIN"P"Y,"DUAN"L"W,"WANG"Q."Chloroplast"genome"characteristics"of"nine"Pennisetum"plants"species[J]."Journal"of"West"China"Forestry"Science,"2024,"53(1):"88-98."(in"Chinese)
[19]"陳曉穎,"胡本祥,"史嘉周,"楊冰月,"張崗,"彭亮."茜草葉綠體全基因組序列及其系統(tǒng)發(fā)育分析[J]."西北植物學(xué)報(bào),"2023,"43(11):"1855-1865.CHEN"X"Y,"HU"B"X,"SHI"J"Z,"YANG"B"Y,"ZHANG"G,"PENG"L."Complete"chloroplast"genome"and"phylogenetic"analysis"of"Rubia"cordifolia[J]."Acta"Botanica"Boreali-"Occidentalia"Sinica,"2023,"43(11):"1855-1865."(in"Chinese)
[20]"禿玉翔,"趙文植,"沈偉祥,"王飛,"曹正英,"辛培堯,"胡青,"郝佳波."紫麻屬葉綠體全基因組特征及系統(tǒng)發(fā)育分析[J]."種子,"2023,"42(12):"24-30,"37.TU"Y"X,"ZHAO"W"Z,"SHEN"W"X,"WANG"F,"CAO"Z"Y,"XIN"P"Y,"HU"Q,"HAO"J"B."Characterization"of"complete"chloroplast"genome"and"phylogenetic"analysis"of"Oreocnide[J]."Seed,"2023,"42(12):"24-30,"37."(in"Chinese)
[21]"張靖雯."瀕危植物羽葉丁香葉綠體全基因組及系統(tǒng)發(fā)育研究[D]."楊凌:"西北農(nóng)林科技大學(xué),"2019.ZHANG"J"W."The"complete"chloroplast"genome"and"phylogenetic"analysis"of"the"endangered"species"Syringa"pinnatifolia"(Oleaceae)[D]."Yangling:"Northwest"Aamp;F"University,"2019."(in"Chinese)
[22]"劉群."菊科天名精屬的系統(tǒng)發(fā)育基因組學(xué)研究[D]."昆明:"云南師范大學(xué),"2022."LIU"Q."Phylogenomics"study"of"Carpesium"(Asteraceae)[D]."Kunming:"Yunnan"Normal"University,"2022."(in"Chinese)
[23]"尚曉嵐."‘太行’扁蓿豆葉綠體基因組結(jié)構(gòu)及系統(tǒng)發(fā)育研究[D]."太原:"山西農(nóng)業(yè)大學(xué),"2022.SHANG"X"L."Chloroplast"genome"structure"and"phylogenetic"relationships"of"Medicago"ruthenica"cv"Taihang[D]."Taiyuan:"Shanxi"Agricultural"University,"2022."(in"Chinese)
[24]"CHENG"L"L,"HUANG"W"G,"LAN"Y"P,"CAO"Q"C,"SU"S"C, ZHOU"Z"J,"WANG"J"B,"LIU"J"L,"HU"G"L."The"complete"chloroplast"genome"sequence"of"the"wild"Chinese"chestnut"(Castanea"mollissima)[J]."Conservation"Genetics"Resources,"2017,"10(3):"291-294.
[25]"馬闖,"賈民隆,"王杰,"彭丹,"邢國(guó)芳,"武志強(qiáng)."玉蜀黍?qū)僦参锶~綠體基因組進(jìn)化及變異研究[J]."東北農(nóng)業(yè)大學(xué)學(xué)報(bào),"2024,"55(5):"13-27.MA"C,"JIA"M"L,"WANG"J,"PENG"D,"XING"G"F,"WU"Z"Q."Study"on"evolution"and"variation"of"chloroplast"genomes"in"Zea[J]."Journal"of"Northeast"Agricultural"University,"2024,"55(5):"13-27."(in"Chinese)
[26]"馬海霞,"張亞穎,"張玉婉,"益西卓瑪,"梁焯森,"李欣冉,"郭云濤,"封爍."角蒿屬藥用植物葉綠體基因組比較及系統(tǒng)發(fā)育分析[J]."中草藥,"2024,"55(17):"5972-5981.MA"H"X,"ZHANG"Y"Y,"ZHANG"Y"W,"YI"XI"ZHUO"MA,"LIANG"Z"S,"LI"X"R,"GUO"Y"T,"FENG"S."Chloroplast"genome"comparison"and"phylogenetic"analysis"of"five"medicinal"plants"of"Incarvillea[J]."Chinese"Traditional"and"Herbal"Drugs,"2024,"55(17):"5972-5981."(in"Chinese)
[27]"龔秋怡,"董姝潔,"許琴,"葛宇清."牛茄子葉綠體全基因組特征及系統(tǒng)發(fā)育分析[J]."中草藥,"2024,"55(12):"4150-4158.GONG"Q"Y,"DONG"S"J,"XU"Q,"GE"Y"Q."Complete"chloroplast"genome"and"phylogenetic"analysis"of"Solanum"capsicoides[J]."Chinese"Traditional"and"Herbal"Drugs,"2024,"55(12):"4150-4158."(in"Chinese)
[28]"JIANG"D"Z,"CAI"X"D,"GONG"M,"XIA"M"Q,"XING"H"T, DONG"S"S,"TIAN"S"M,"LI"J,"LIN"J"Y,"LIU"Y"Q,"LI"H"L."Complete"chloroplast"genomes"provide"insights"into"evolution"and"phylogeny"of"Zingiber"(Zingiberaceae)[J]."BMC"genomics,"2023,"24(1):"30.
[29]"羅兵,"孫海燕,"徐港明,"揚(yáng)志剛,"沈宗根,"顧雯雯,"高陽(yáng),"鄭佳亮."SSR分子標(biāo)記研究進(jìn)展[J]."安徽農(nóng)業(yè)科學(xué),"2013,"41(12):"5210-5212,"5246."LUO"B,"SUN"H"Y,"XU"G"M,"YANG"Z"G,"SHEN"Z"G,"GU"W"W,"GAO"Y,"ZHENG"J"L."Research"progress"of"SSR"molecular"marker[J]."Journal"of"Anhui"Agricultural"Sciences,"2013,"41(12)":"5210-5212,"5246."(in"Chinese)
[30]"宋蕓,"張?chǎng)稳穑?賀嘉欣,"李政,"孫哲,"李澳旋,"喬永剛."基于葉綠體SSR分子標(biāo)記的苦參種質(zhì)資源遺傳多樣性分析[J]."作物雜志,"2023(1):"30-37.SONG"Y,"ZHANG"X"R,"HE"J"X,"LI"Z,"SUN"Z,"LI"A"X,"QIAO"Y"G."Genetic"diversity"analysis"of"Sophora"flavescens"Ait."germplasm"resources"based"on"cpSSR"markers[J]."Crops,"2023(1):"30-37."(in"Chinese)
[31]"王娟,"李春娟,"石大川,"劉宇,"唐榮華,"賀梁瓊,"趙小波,"苑翠玲,"孫全喜,"閆彩霞,"單世華."花生區(qū)組葉綠體高突變區(qū)驗(yàn)證及遺傳關(guān)系分析[J]."中國(guó)油料作物學(xué)報(bào),"2021,"43(3):"495-501.WANG"J,"LI"C"J,"SHI"D"C,"LIU"Y,"TANG"R"H,"HE"L"Q,"ZHAO"X"B,"YUAN"C"L,"SUN"Q"X,"YAN"C"X,"SHAN"S"H."Verifying"high"variation"regions"based"on"sect."Arachis"chloroplast"genome"and"revealing"the"interspecies"genetic"relationship[J]."Chinese"Journal"of"Oil"Crop"Sciences,"2021,"43(3):"495-501."(in"Chinese)
[32]"孫孟濤,"張峻鑫,"黃體冉,"楊明峰,"馬蘭青,"段留生."虎杖葉綠體基因組結(jié)構(gòu)與變異分析[J]."生物工程學(xué)報(bào),"2022,"38(5):"1953-1964.SUN"M"T,"ZHANG"J"X,"HUANG"T"R,"YANG"M"F,"MA"L"Q,"DUAN"L"S."Genome"structure"and"variation"of"Reynoutria"japonica"Houtt."chloroplast"genome[J]."Chinese"Journal"of"Biotechnology,"2022,"38(5):"1953-1964."(in"Chinese)
[33]"靳媛茜,"王鈺雙,"高永巍,"周立威,"汪奕衡,"袁慶軍,"董文攀."中藥女貞子的葉綠體基因組及高變分子標(biāo)記開(kāi)發(fā)[J]."中國(guó)中藥雜志,"2022,"47(7):"10.nbsp;JIN"Y"X,"WANG"Y"S,"GAO"Y"W,"ZHOU"L"W,"WANG"Y"H,"YUAN"Q"J,"DONG"W"P."Complete"chloroplast"genome"of"Ligustrum"lucidum"and"highly"variable"marker"identification"for"Ligustrum[J]."China"Journal"of"Chinese"Materia"Medica,"2022,"47(7):"10."(in"Chinese)
[34]"CROS"J,"COMBES"M"C,"TROUSLOT"P,"ANTHONY"F,"HAMON"S,"CHARRIER"A,"LASHERMES"P."Phylogenetic"analysis"of"chloroplast"DNA"variation"in"Coffea"L.[J]."Molecular"Phylogenetics"amp;"Evolution,"1998,"9(1):"109-117."(in"Chinese)
[35]"KUMAGAI"M,"WANG"L,"UEDA"S."Genetic"diversity"and"evolutionary"relationships"in"genus"Oryza"revealed"by"using"highly"variable"regions"of"chloroplast"DNA[J]."Gene,"2010,"462(1/2):"44-51.
[36]"SHAO"H"F,"BAI"M,"RIAVS"G"I,"XIE"D,"SEARS"K,"GAITAN"E"J,"NESPOLO"R,"JOHNSON"W,"YANG"W,"ZHANG"G."Incomplete"lineage"sorting"and"phenotypic"evolution"in"marsupials[J]."Cell,"2022,"185(10):"1646-1680.
[37]"SALOJ?RVI"J,"RAMBANI"A,"YU"Z,"GUYOT"R,"STRICKLER"S,"LEPELLEY"M,"WANG"C,"RAJARAMAN"S,"RASTAS"P,"ZHENG"C,"MU?OZ"D"S,"MEIDANIS"J,"PASCHOAL"A"R,"BAWIN"Y,"KRABBENHOFT"T"J,"WANG"Z"Q,"FLECK"S"J,"AUSSEL"R,"BELLANGER"L,"CHARPAGNE"A,"FOURNIER"C,"KASSAM"M,"LEFEBVRE"G,"MéTAIRON"S,"MOINE"D,"RIGOREAU"M,"STOLTE"J,"HAMON"P,"COUTURON"E,"TRANCHANT"D"C,"MUKHERJEE"M,"LAN"T"Y,"ENGELHARDT"J,"STADLER"P,"CORREIA"D"L"S"M,"SUZUKI"S"I,"SUMIRAT"U,"WAI"C"M,"DAUCHOT"N,"OROZCO"A"S,"GARAVITO"A,"KIWUKA"C,"MUSOLI"P,"NALUKENGE"A,"GUICHOUX"E,"REINOUT"H,"SMIT"M,"CARRETERO"P"L,"FILHO"O"G,"BRAGHINI"M"T,"PADILHA"L,"SERA"G"H,"RUTTINK"T,"HENRY"R,"MARRACCINI"P,"VAN"D"P"Y,"ANDRADE"A,"DOMINGUES"D,"GIULIANO"G,"MUELLER"L,"PEREIRA"L"F,"PLAISANCE"S,"PONCET"V,"ROMBAUTS"S,"SANKOFF"D,"ALBERT"V"A,"CROUZILLAT"D,"DE"K"A,"DESCOMBES"P."The"genome"and"population"genomics"of"allopolyploid"Coffea"arabica"reveal"the"diversification"history"of"modern"coffee"cultivars[J]."Nature"Genetics,"2024,"56(4):"721-731.
[38]"HUANG"L"F,"WANG"X"Y,"DONG"Y"P,"LONG"Y"Y,"HAO"C"Y,"YAN"L,"SHI"T."Resequencing"93"accessions"of"coffee"unveils"independent"and"parallel"selection"during"coffea"species"divergence[J]."Plant"Molecular"Biology,"2020,"103:"51-61.