亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        多序列MRI影像組學(xué)對(duì)局部晚期宮頸鱗癌同步放化療療效的預(yù)測(cè)價(jià)值

        2025-03-01 00:00:00田友軍譚正武楊柯彭劍敏陳紅桃黃志平
        天津醫(yī)藥 2025年2期
        關(guān)鍵詞:磁共振成像

        摘要:目的 觀察多序列磁共振成像(MRI)影像組學(xué)對(duì)局部晚期宮頸鱗癌(CSCC)患者同步放化療(CCRT)療效的預(yù)測(cè)價(jià)值。方法 選取行CCRT治療的100例局部晚期CSCC患者的臨床資料。按7∶3比例隨機(jī)分為訓(xùn)練集(70例)與驗(yàn)證集(30例)。根據(jù)實(shí)體腫瘤療效標(biāo)準(zhǔn)將患者分為完全緩解(CR)與部分緩解(PR)。收集所有患者治療前橫斷面DWI、T2WI及增強(qiáng)T1WI延遲期的檢查圖像,使用ITK-SNAP軟件包結(jié)合3個(gè)序列勾畫感興趣區(qū)(ROI),開源軟件PyRadiomics提取影像組學(xué)特征。對(duì)MRI組學(xué)特征先采用最小冗余最大相關(guān)(mRMR)算法篩選出前30個(gè)主要特征后,采用基于10折交叉驗(yàn)證的最小絕對(duì)收縮和選擇算子(Lasso)降維篩選非零系數(shù)特征,并根據(jù)訓(xùn)練集中Lasso-Logistic回歸模型的加權(quán)系數(shù)計(jì)算患者組學(xué)標(biāo)簽;采用Logistic回歸構(gòu)建基于DWI、T2WI及T1WI各序列預(yù)測(cè)模型及多序列組學(xué)標(biāo)簽的預(yù)測(cè)模型;受試者工作特征(ROC)曲線評(píng)估各個(gè)組學(xué)模型對(duì)局部晚期CSCC患者CCRT療效的預(yù)測(cè)價(jià)值。結(jié)果 訓(xùn)練集CR組38例,PR組32例;驗(yàn)證集CR組16例,PR組14例。在訓(xùn)練集與驗(yàn)證集中,CR組與PR組患者的年齡、FIGO分期、分化程度、病灶最大徑及月經(jīng)情況差異均無統(tǒng)計(jì)學(xué)意義。從ROI靶區(qū)中共提取851個(gè)影像學(xué)特征,經(jīng)mRMR算法保留前30個(gè)特征后,經(jīng)Lasso-Logistic算法與10折交叉驗(yàn)證從每個(gè)單獨(dú)序列各自的851個(gè)影像組學(xué)特征中篩選出3個(gè)與CR相關(guān)的特征。從3個(gè)序列聯(lián)合后的2 553個(gè)特征中篩選出8個(gè)與CR相關(guān)的特征。ROC曲線結(jié)果顯示,訓(xùn)練集與驗(yàn)證集中,多序列聯(lián)合預(yù)測(cè)局部晚期CSCC患者CCRT治療療效的曲線下面積(AUC)分別為0.971、0.946,均高于T1WI、T2WI、DWI單序列預(yù)測(cè)(訓(xùn)練集:Z分別為2.683、2.046、2.817,P<0.05;驗(yàn)證集:Z分別為2.075、2.117、2.005,均P<0.05)。結(jié)論 多序列MRI影像組學(xué)模型對(duì)局部晚期CSCC患者CCRT治療療效具有較高的預(yù)測(cè)價(jià)值。

        關(guān)鍵詞:宮頸腫瘤;癌,鱗狀細(xì)胞;磁共振成像;放化療;影像組學(xué)

        中圖分類號(hào):R737.33 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20241488

        Abstract: Objective To observe the value of multi-sequence magnetic resonance imaging (MRI) radiomics in predicting the efficacy of concurrent chemoradiotherapy (CCRT) in locally advanced cervical squamous cell carcinoma (CSCC) patients. Methods Clinical data of 100 CSCC patients underwent CCRT treatment were selected. In order to better validate the performance of the model, patients were randomly divided into the training set (70 cases) and the validation set (30 cases) in a 7∶3 ratio. According to the efficacy criteria for solid tumors, patients were divided into the complete response (CR) group (n=16) and the partial response (PR) group (n=14). Examination images of cross-sectional DWI, T2WI and enhanced T1WI were collected from all patients before treatment. ITK-SNAP software package combined with three sequences were used to outline ROI, and the open source software PyRadiomics was used to extract image omics features. For MRI omics features, the minimum redundancy maximum correlation (mRMR) algorithm was used to analyze and screen out the first 30 main features, and then the minimum absolute contraction and selection method (Lasso) based on 10-fold cross-validation was used to reduce dimensionality to screen the non-zero coefficient features. According to the weighting coefficient of Lasso-Logistic regression model in the training set, patient omics labels were calculated. Logistic regression analysis was used to construct a prediction model based on DWI, T2WI and T1WI sequence prediction models and multiple sequenomics labels. Receiver operating characteristic (ROC) curves evaluated the predictive value of each omics model for CCRT treatment in patients with locally advanced CSCC. Results There were 38 cases in the CR group and 32 cases in the PR group in the training set. There were 16 cases in the CR group and 14 cases in the PR group in the validation set. There were no significant differences in patient age, FIGO stage, differentiation degree, maximum lesion diameter and menstrual status between the CR group and the PR group in the training and validation sets. A total of 851 imaging features were extracted from the ROI target area. After the first 30 features were retained by mRMR algorithm, 3 CR-related features were selected from the 851 imaging omics features of each individual sequence by Lasso algorithm and 10-fold cross-validation. Eight CR related features were selected from 2 553 features after the combination of the three sequences. ROC curve results showed that in the training set and validation set, the AUC of multiple sequences combined to predict the therapeutic effect of CCRT in patients with locally advanced CSCC was 0.971 and 0.946, respectively, which was higher than that of T1WI, T2WI and DWI single sequence prediction (training set Z=2.683, 2.046, 2.817, P<0.05; verification set Z=2.075, 2.117, 2.005, P<0.05). Conclusion The multi sequence MRI radiomics model has high predictive value for the efficacy of CCRT treatment in locally advanced CSCC patients.

        Key words: uterine cervical neoplasms; carcinoma, squamous cell; magnetic resonance imaging; treatment outcome; radiomics

        宮頸癌是最常見的婦科惡性腫瘤,其發(fā)病率僅次于乳腺癌和結(jié)直腸癌,是女性腫瘤致死的重要原因之一[1-2]。宮頸癌患者在發(fā)病早期臨床癥狀較隱匿,隨病情進(jìn)展會(huì)出現(xiàn)不同程度的陰道異常出血、排液等[3]。據(jù)統(tǒng)計(jì),鱗癌占宮頸癌的80%~85%,且確診時(shí)大多患者已處于局部晚期[4-5]。國(guó)際婦產(chǎn)聯(lián)合會(huì)(International Federation of Gynecology and Obstetrics,F(xiàn)IGO)提出同步放化療(concurrent chemoradiotherapy,CCRT)是治療局部晚期宮頸鱗癌(cervical squamous cell carcinoma,CSCC)的標(biāo)準(zhǔn)治療方案[6]。研究發(fā)現(xiàn),CCRT治療能在一定程度上延長(zhǎng)局部晚期CSCC患者的生存時(shí)間,但腫瘤異質(zhì)性會(huì)導(dǎo)致臨床療效差異[7]。因此采用合適的方法對(duì)CCRT療效進(jìn)行預(yù)測(cè),并在此基礎(chǔ)上對(duì)治療方案調(diào)整與優(yōu)化,對(duì)改善患者預(yù)后意義重大。當(dāng)前MRI作為癌癥診斷與評(píng)估的重要方法,在宮頸癌診斷、分期及療效評(píng)估方面應(yīng)用廣泛[8]。MRI影像組學(xué)通過高通量地從MRI圖像中提取影像學(xué)特征進(jìn)行定量分析,從而對(duì)腫瘤進(jìn)行全面評(píng)估并揭示其異質(zhì)性,有利于輔助臨床實(shí)現(xiàn)精準(zhǔn)治療[9]。當(dāng)前MRI影像學(xué)在CSCC患者的鑒別診斷與分期評(píng)估中應(yīng)用較多[10],但基于多序列MRI影像組學(xué)對(duì)局部晚期CSCC患者CCRT療效的預(yù)測(cè)價(jià)值尚未明晰。鑒于此,本研究通過訓(xùn)練集進(jìn)行影像組學(xué)特征篩選與模型構(gòu)建,驗(yàn)證集對(duì)構(gòu)建的預(yù)測(cè)模型進(jìn)行驗(yàn)證,以期為臨床評(píng)估提供參考。

        1 對(duì)象與方法

        1.1 研究對(duì)象 選取2021年10月—2023年10月于天門市第一人民醫(yī)院行CCRT治療的100例局部晚期CSCC患者。納入標(biāo)準(zhǔn):(1)滿足CSCC診斷標(biāo)準(zhǔn)[11],且經(jīng)臨床病理證實(shí)。(2)FIGO 2018(2018版)分期[12]處于ⅡB—ⅣA期。(3)接受CCRT治療。(4)臨床資料與影像學(xué)資料完善。排除標(biāo)準(zhǔn):(1)伴其他惡性腫瘤。(2)有MRI檢查禁忌證。(3)入組前接受過其他治療方案。(4)MRI影像質(zhì)量較差,難以用于分析。將患者按7∶3比例采用隨機(jī)數(shù)字表法分為訓(xùn)練集(70例)與驗(yàn)證集(30例)。本研究經(jīng)醫(yī)院倫理委員會(huì)批準(zhǔn)(批號(hào):KY20240512),患者簽署知情同意書。

        1.2 方法

        1.2.1 CCRT 放療方案主要包括腔內(nèi)后裝治療與三維適形調(diào)強(qiáng)放療,其中腔內(nèi)后裝治療劑量為6~7 Gy/次,共5~7次,總劑量30~42 Gy;三維適形調(diào)強(qiáng)放療大體腫瘤靶區(qū)(gross tumor volume,GTV)劑量50.4~56 Gy,短徑在1 cm以上的淋巴結(jié)(GTVnd)劑量為60~66 Gy?;焺t采用紫杉醇聯(lián)合順鉑方案或紫杉醇聯(lián)合卡鉑方案,3周為1個(gè)治療周期。

        1.2.2 MRI檢查 所有患者均于治療前、治療后4周接受MRI檢查。采用GE3.0 TMR掃描設(shè)備,配備16通道體部相控線圈。檢查前所有患者需適當(dāng)憋尿,檢查時(shí)保持呼吸平穩(wěn)。掃描序列及參數(shù)如下:(1)矢狀面與橫斷面T2WI,視野" " " "400 mm×400 mm,層厚為5 mm,重復(fù)時(shí)間(TR)3 800 ms,回波時(shí)間(TE)116 ms。(2)橫斷面T1WI,視野400 mm×400 mm,層厚為5 mm,TR 550 ms,TE 13 ms。(3)DWI,視野400 mm×" "400 mm,層厚為4 mm,TR 700 ms,TE 11 ms,擴(kuò)散敏感因子(b)為0、800 s/mm2。(4)三維容積動(dòng)態(tài)增強(qiáng)T1WI,共6期相,掃描時(shí)間12 s/期,視野400 mm×400 mm,層厚為5 mm," " " " " TR 677 ms,TE 11 ms,層厚與層間距均為5 mm。第一期預(yù)掃描完成后行增強(qiáng)掃描,注射對(duì)比劑釓噴酸葡胺0.1 mmol/kg,注射速度為2 mL/s。

        1.2.3 療效評(píng)價(jià)與分組方法 根據(jù)實(shí)體腫瘤的療效評(píng)價(jià)標(biāo)準(zhǔn)[13]對(duì)患者CCRT治療4周后的療效進(jìn)行評(píng)價(jià),將病灶完全消失的患者判定為完全緩解(complete response,CR);病灶最大徑減小≥30%的患者判定為部分緩解(partial remission,PR);病灶最大徑增大≥20%或出現(xiàn)轉(zhuǎn)移的患者判定為疾病進(jìn)展(progressive disease,PD);病灶變化介于PR與PD之間的患者判定為疾病穩(wěn)定(stable disease,SD)。由2位分別具有5年、10年診斷經(jīng)驗(yàn)的放射科醫(yī)師根據(jù)患者治療前后的MRI影像進(jìn)行獨(dú)立判斷,當(dāng)兩者意見發(fā)生分歧時(shí),則由另一位具有副高職稱以上的醫(yī)師進(jìn)行判斷。

        1.2.4 MRI圖像處理與特征提取 收集所有患者治療前橫斷面DWI、T2WI及增強(qiáng)T1WI延遲期的影像,以DICOM格式導(dǎo)出。由1位具有5年診斷經(jīng)驗(yàn)的放射科醫(yī)師在不知曉病理診斷結(jié)果的前提下進(jìn)行獨(dú)立閱片,使用ITK-SNAP軟件包結(jié)合3個(gè)序列勾畫出感興趣區(qū)(regionof Interest,ROI),使用開源軟件PyRadiomics提取影像組學(xué)特征,主要包括107個(gè)原始特征和744個(gè)小波特征。在107個(gè)原始特征中,有18個(gè)一階統(tǒng)計(jì)特征、14個(gè)基于形狀的直方圖(SHAPE)特征、24個(gè)灰度共生矩陣(GLCM)特征、14個(gè)灰度依賴矩陣(GLDM)特征、16個(gè)灰度游程長(zhǎng)度矩陣(GLRLM)特征、16個(gè)灰度區(qū)域大小矩陣(GLSZM)特征和5個(gè)鄰域灰度差矩陣(NGTDM)特征。由另一位具有10年以上診斷經(jīng)驗(yàn)的放射科醫(yī)師對(duì)ROI進(jìn)行核對(duì)、確認(rèn)。ROI勾畫時(shí)應(yīng)根據(jù)患者病灶形態(tài)、大小等特征,沿腫瘤內(nèi)緣勾畫;勾畫病灶腫瘤侵襲范圍時(shí)重點(diǎn)觀察患者陰道、子宮體等周圍組織病變情況;ROI區(qū)域應(yīng)包括液化、壞死及囊變等腫瘤特征,見圖1。

        1.2.5 影像組學(xué)特征篩選與預(yù)測(cè)模型構(gòu)建 使用z-score法對(duì)提取的影像組學(xué)特征進(jìn)行標(biāo)準(zhǔn)化,排除不同特征值量綱的影響,為了減少計(jì)算復(fù)雜性和防止過度擬合,基于訓(xùn)練集,先采用最小冗余最大相關(guān)(minimum redundancy-maximum relevance,mRMR)算法分析保留重要性前30個(gè)主要組學(xué)特征,再采用“glmnet”R包,通過10折交叉驗(yàn)證的最小絕對(duì)收縮和選擇算子(least absolute shrinkage and selection operator,Lasso)回歸模型對(duì)組學(xué)特征進(jìn)行降維篩選非零系數(shù)特征,并根據(jù)訓(xùn)練集中Lasso-Logistic回歸模型的加權(quán)系數(shù),為每個(gè)患者計(jì)算組學(xué)標(biāo)簽(Rad-score),組學(xué)標(biāo)簽計(jì)算公式:Rad-score=β0+β1X1+β2X2+β3X3+···+βnXn。其中:Xn表示Lasso-Logistic回歸模型識(shí)別出的影像組學(xué)特征,β0為Rad-score常數(shù),βn為模型中對(duì)應(yīng)特征的回歸系數(shù)。最后采用Logistic回歸構(gòu)建基于DWI、T2WI及T1WI各序列預(yù)測(cè)模型及多序列組學(xué)標(biāo)簽的預(yù)測(cè)模型。

        1.3 統(tǒng)計(jì)學(xué)方法 采用SPSS 22.0和R語言軟件對(duì)數(shù)據(jù)進(jìn)行分析,計(jì)數(shù)資料用例(%)表示,組間比較采用χ2檢驗(yàn)或Fisher確切概率法。計(jì)量資料用[[x] ±s]表示,組間比較采用獨(dú)立樣本t檢驗(yàn)。采用受試者工作特征(ROC)曲線分析DWI、T2WI及增強(qiáng)T1WI 3個(gè)單序列及多序列MRI影像組學(xué)模型對(duì)局部晚期CSCC患者CCRT療效的預(yù)測(cè)價(jià)值。采用Delong檢驗(yàn)對(duì)ROC曲線下面積(AUC)進(jìn)行比較。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

        2 結(jié)果

        2.1 訓(xùn)練集與驗(yàn)證集患者基線資料比較 本研究中無PD與SD患者。訓(xùn)練集CR38例,PR32例;驗(yàn)證集CR16例,PR14例。在訓(xùn)練集與驗(yàn)證集中,CR與PR患者的年齡、FIGO分期、分化程度、病灶最大徑及月經(jīng)情況差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表1。

        3 討論

        當(dāng)前CCRT是局部晚期CSCC患者的主要治療方案,但腫瘤異質(zhì)性易導(dǎo)致患者局部血管密度、增殖轉(zhuǎn)移、能量代謝等生物學(xué)活動(dòng)出現(xiàn)不同程度的差異,進(jìn)而對(duì)臨床療效及預(yù)后產(chǎn)生影響[14]。既往研究指出,對(duì)臨床療效進(jìn)行早期預(yù)測(cè),從而輔助臨床實(shí)施個(gè)性化CCRT治療是改善患者預(yù)后的關(guān)鍵環(huán)節(jié)[15]。影像組學(xué)通過提取、篩選相關(guān)影像學(xué)特征,并在此基礎(chǔ)上構(gòu)建影像組學(xué)預(yù)測(cè)模型,可為臨床診斷與評(píng)估提供可靠依據(jù)[16]。

        本研究探討MRI影像組學(xué)對(duì)100例局部晚期CSCC患者CCRT療效的預(yù)測(cè)價(jià)值,通過對(duì)可能干擾研究結(jié)果的臨床因素進(jìn)行對(duì)比分析,發(fā)現(xiàn)訓(xùn)練集與驗(yàn)證集中CR組與PR組患者的年齡、FIGO分期、分化程度、病灶最大徑及月經(jīng)情況等臨床基線資料差異無統(tǒng)計(jì)學(xué)意義,可排除混雜因素對(duì)模型的干擾。田士峰等[17]研究指出,從宮頸癌患者ROI中篩選相關(guān)定量影像組學(xué)特征有利于量化腫瘤異質(zhì)性。本研究從ROI靶區(qū)中共提取851個(gè)影像學(xué)特征,經(jīng)mRMR算法與Lasso算法等篩選出最優(yōu)特征參數(shù),主要包括Flatness、Mesh volume、Minimum、IMC、Cluster shade、RLN及Complexity。IMC數(shù)值與圖像灰度分布復(fù)雜程度呈正相關(guān),Cluster shade則與體素強(qiáng)度分布均勻度有關(guān),而RLN、Complexity、IMC等特征能夠反映區(qū)域體積與行程長(zhǎng)度的同質(zhì)性、灰度級(jí)強(qiáng)度改變[18],可作為預(yù)測(cè)CCRT療效的重要因素,這也間接表征了病灶周圍微環(huán)境的侵襲活動(dòng)及細(xì)胞排列方式。另外Minimum表示體素中最小灰度值,能在一定程度上反映病灶的血供情況,Minimum值越小,表示病灶局部存在血供不均勻,從而更易誘發(fā)缺血、壞死等不良情況,同時(shí)也難以使藥物到達(dá)靶點(diǎn),對(duì)CCRT療效產(chǎn)生不利影響。

        本研究通過進(jìn)一步構(gòu)建預(yù)測(cè)模型,結(jié)果顯示訓(xùn)練集與驗(yàn)證集中,多序列聯(lián)合預(yù)測(cè)局部晚期CSCC患者CCRT療效的AUC均高于單序列預(yù)測(cè),提示多序列MRI影像組學(xué)模型對(duì)局部晚期CSCC患者CCRT治療療效具有較高的預(yù)測(cè)價(jià)值。主要原因在于將多個(gè)序列聯(lián)合能夠互為補(bǔ)充,豐富數(shù)據(jù)維度,全面反映患者腫瘤細(xì)胞密度與結(jié)構(gòu)、血管等多方面信息,從而有效彌補(bǔ)單一序列的不足,提高了對(duì)療效的預(yù)測(cè)效能。本研究中訓(xùn)練集AUC、敏感度及特異度分別為0.971、89.47%、93.75%;驗(yàn)證集分別為0.946、100.00%、87.50%,與佟晶等[19]的研究結(jié)果有所差異,這可能與不同研究采用的掃描參數(shù)及影像組學(xué)分析方法不同有關(guān)。

        綜上所述,多序列MRI影像組學(xué)模型對(duì)局部晚期CSCC患者CCRT的療效具有較高的預(yù)測(cè)價(jià)值,對(duì)于臨床決策與預(yù)后評(píng)估具有積極意義。本研究不足之處在于樣本量較少,未設(shè)置外部測(cè)試,且未針對(duì)不同分期患者進(jìn)行分層研究,后續(xù)可設(shè)計(jì)大樣本、多中心試驗(yàn),進(jìn)一步驗(yàn)證多序列MRI影像組學(xué)模型對(duì)局部晚期CSCC患者CCRT療效的預(yù)測(cè)價(jià)值。

        參考文獻(xiàn)

        [1] HE H,LIN C,LU Y,et al. Knockdown of miR-24 suppressed the tumor growth of cervical carcinoma through regulating PTEN/PI3K/AKT signaling pathway[J]. Biochem Genet,2024,62(2):1277-1290. doi:10.1007/s10528-023-10491-w.

        [2] 王倩倩,李婷芳,王峰. CHD4調(diào)控端粒功能促進(jìn)宮頸癌HeLa細(xì)胞生長(zhǎng)的機(jī)制研究[J]. 天津醫(yī)藥,2023,51(9):909-915. WANG Q Q,LI T F,WANG F. Study on the mechanism of CHD4 regulating telomere function to promote cervical cancer HeLa cell proliferation[J]. Tianjin Med J,2023,51(9):909-915. doi:10.11958/20222091.

        [3] NASIOUDIS D,BYRNE M,KO E M,et al. Minimally invasive hysterectomy for stage IA cervical carcinoma:a survival analysis of the National Cancer Database[J]. Int J Gynecol Cancer,2021,31(8):1099-1103. doi:10.1136/ijgc-2021-002543.

        [4] FERNANDES F P,CAMBUI R,SOARES J,et al. Cervical carcinoma induces NLRP3 inflammasome activation and IL-1? release in human peripheral blood monocytes affecting patients' overall survival[J]. Clin Transl Oncol,2023,25(11):3277-3286. doi:10.1007/s12094-023-03241-2.

        [5] TANAKA K,MURAKAMI I,MIKAMI M,et al. Reduced expression of gangliosides with GM2-determinant in cervical carcinoma-derived cells after subcutaneous transplantation into nude mice[J]. Hum Cell,2023,36(3):1199-1203. doi:10.1007/s13577-023-00864-z.

        [6] YANG H,ZHANG Y,HENG F,et al. Risk prediction model for radiation-induced dermatitis in patients with cervical carcinoma undergoing chemoradiotherapy[J]. Asian Nurs Res(Korean Soc Nurs Sci),2024,18(2):178-187. doi:10.1016/j.anr.2024.04.012.

        [7] FURUSAWA A,TAKEKUMA M,MORI K,et al. A randomized phase Ⅲ trial of adjuvant chemotherapy versus concurrent chemoradiotherapy for postoperative cervical cancer:Japanese Gynecologic Oncology Group study(JGOG1082)[J]. Int J Gynecol Cancer,2021,31(4):623-626. doi:10.1136/ijgc-2020-002344.

        [8] 蘆海星,焦光麗,劉峰,等. 影像組學(xué)模型對(duì)局部中晚期宮頸鱗癌同步放化療后無進(jìn)展生存期的預(yù)測(cè)[J]. 國(guó)際醫(yī)學(xué)放射學(xué)雜志,2023,46(4):402-408. LU H X,JIAO G L,LIU F,et al. An radiomics model for progression-free survival prediction after concurrent chemoradiotherapy in patients with locally advanced squamous cervical cancer[J]. Int J Med Radiol ,2023,46(4):402-408. doi:10.19300/j.2023.L20077.

        [9] 段夢(mèng)瑾,張路,田齊,等. 腦膜瘤的MRI影像組學(xué)應(yīng)用進(jìn)展[J]. 國(guó)際醫(yī)學(xué)放射學(xué)雜志,2023,46(5):551-555. DUAN M J,ZHANG L,TIAN Q,et al. Progress of MRI-based radiomics in meningioma research[J]. Int J Med Radiol,2023,46(5):551-555. doi:10.19300/j.2023.Z20580.

        [10] 鄭明雪,董江寧,李翠平,等. 表觀擴(kuò)散系數(shù)聯(lián)合紋理特征評(píng)估宮頸鱗癌分化程度的價(jià)值[J]. 實(shí)用放射學(xué)雜志,2020,36(4):592-595,614. ZHENG M X,DONG J N,LI C P,et al. The value of ADC values and texture analysis in evaluating the differentiation degree of cervical squamous cell carcinoma[J]. J Pract Radiol,2020,36(4):592-595,614. doi:10.3969/j.issn.1002-1671.2020.04.021.

        [11] 中國(guó)抗癌協(xié)會(huì)婦科腫瘤專業(yè)委員會(huì). 子宮頸癌診斷與治療指南(2021年版)[J]. 中國(guó)癌癥雜志,2021,31(6):474-489. Gynecological Tumor Professional Committee of Chinese Anti-Cancer Association. Guidelines for diagnosis and treatment of cervical cancer(2021 edition)[J]. China Oncology,2021,31(6):474-489. doi:10.19401/j.cnki.1007-3639.2021.06.06.

        [12] BHATLA N,DENNY L. FIGO cancer report 2018[J]. Int J Gynaecol Obstet,2018,143 Suppl 2:2-3. doi:10.1002/ijgo.12608.

        [13] THERASSE P,ARBUCK S G,EISENHAUER E A,et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer,National Cancer Institute of the United States,National Cancer Institute of Canada[J]. J Natl Cancer Inst,2000,92(3):205-216. doi:10.1093/jnci/92.3.205.

        [14] ENGINEER R,CHOPRA S,SHUKLA R,et al. Computed tomography-based interstitial brachytherapy for recurrent cervical carcinoma in the vaginal apex[J]. Clin Oncol(R Coll Radiol),2022,34(1):e1-e6. doi:10.1016/j.clon.2021.09.012.

        [15] KAUR A,SHARMA Y,KUMAR A,et al. In-vitro antiproliferative efficacy of Abrus precatorius seed extracts on cervical carcinoma[J]. Sci Rep,2022,12(1):10226. doi:10.1038/s41598-022-13976-7.

        [16] 尹韻清,張偉,張彥舫,等. 影像組學(xué)預(yù)測(cè)肝細(xì)胞癌免疫組化標(biāo)志物的研究進(jìn)展[J]. 國(guó)際醫(yī)學(xué)放射學(xué)雜志,2024,47(6):719-724. YIN Y Q,ZHANG W,ZHANG Y F,et al. Research progress on radiomics in predicting immunohistochemical biomarkers of hepatocellular carcinoma[J]. Int J Med Radiol,2024,47(6):719-724. doi:10.19300/j.2024.Z21385.

        [17] 田士峰,劉愛連,郭妍,等. 基于擴(kuò)散峰度成像序列平均擴(kuò)散峰度圖的影像組學(xué)鑒別宮頸鱗癌與腺癌的應(yīng)用[J]. 中國(guó)醫(yī)學(xué)影像學(xué)雜志,2021,29(7):716-720. TIAN S F,LIU A L,GUO Y,et al. Application of radiomics methods based on DKI sequence MK map for differentiating squamous cell carcinoma from cervix adenocarcinoma[J]. Chinese Journal of Medical Imaging,2021,29(7):716-720. doi:10.3969/j.issn.1005-5185.2021.07.015.

        [18] 王艷芳,肖峰,張寒菲,等. DCE-MRI圖像紋理分析對(duì)乳腺良惡性病變的診斷價(jià)值[J]. 武漢大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2021,42(6):935-940. WANG Y F,XIAO F,ZHANG H F,et al. Diagnostic value of texture analysis based on DCE-MRI images on benign and malignant breast lesions[J]. Medical Journal of Wuhan University,2021,42(6):935-940. doi:10.14188/j.1671-8852.2019.0596.

        [19] 佟晶,卑貴光,闞楊楊,等. 多序列MRI影像組學(xué)預(yù)測(cè)局部晚期宮頸鱗癌同步放化療早期治療反應(yīng)的價(jià)值[J]. 中華放射學(xué)雜志,2022,56(11):1223-1229. TONG J ,BEI G G,KAN Y Y,et al. The value of multi-sequence MRI radiomics in predicting the early response to concurrent chemoradiotherapy for locally advanced cervical squamous cell carcinoma [J]. Chin J Radiol,2022,56(11):1223-1229. doi:10.3760/cma.j.cn112149-20211117-01024.

        (2024-10-08收稿 2024-12-09修回)

        (本文編輯 李志蕓)

        猜你喜歡
        磁共振成像
        X線、CT和MRI對(duì)腰椎間盤突出癥診斷的價(jià)值對(duì)比分析
        胰腺腺泡細(xì)胞癌患者應(yīng)用CT與MRI診斷的臨床效果分析
        多序列聯(lián)合應(yīng)用MRI檢查在早期強(qiáng)直性脊柱炎骶髂關(guān)節(jié)病變的診斷價(jià)值
        體素內(nèi)不相干運(yùn)動(dòng)成像技術(shù)評(píng)估短暫性腦缺血發(fā)作的研究
        彌漫性軸索損傷CT、MR動(dòng)態(tài)觀察
        椎動(dòng)脈型頸椎病的磁共振成像分析
        磁敏感加權(quán)成像(SWI)在腦內(nèi)海綿狀血管瘤診斷中的應(yīng)用
        氙同位素應(yīng)用及生產(chǎn)綜述
        科技視界(2016年18期)2016-11-03 20:32:54
        MRI在前列腺疾病診斷中的應(yīng)用價(jià)值
        腦干膠質(zhì)瘤磁共振成像及病理學(xué)特點(diǎn)及兩者相關(guān)性研究
        337p日本欧洲亚洲大胆色噜噜| av免费网址在线观看| 亚洲成a v人片在线观看| 99爱这里只有精品| 极品美女尤物嫩模啪啪| 丝袜美腿国产一区二区| 亚洲乱码国产乱码精品精| 国产精品区一区第一页| 九九99久久精品在免费线97| 久久精品av在线视频| 国产高清在线观看av片| 欧美日韩亚洲国产精品| 国产精品黄色片在线观看| 91精品国产综合久久国产| 麻豆国产精品久久人妻| 蜜臀av无码精品人妻色欲| 亚洲精品成人国产av| 亚洲一区二区懂色av| 国产亚洲精品成人aa片新蒲金| 成人做爰高潮尖叫声免费观看| 国产亚洲精选美女久久久久| 白白色发布在线观看视频| 熟妇熟女乱妇乱女网站| 人体内射精一区二区三区| 亚洲av伊人久久综合性色| 久久国产在线精品观看| 乱人妻中文字幕| 国产一国产一级新婚之夜| 日韩人妻免费一区二区三区 | 日本真人添下面视频免费 | 亚洲一区二区三区99区| 一本之道久久一区二区三区| 男人激烈吮乳吃奶视频免费| 亚洲不卡无码高清视频| 成人免费毛片立即播放| 国产太嫩了在线观看| 天天躁人人躁人人躁狂躁| 亚洲精品国产av一区二区| 黄片视频免费在线播放观看| 又粗又硬又黄又爽的免费视频| 无码超乳爆乳中文字幕|