摘 要:螺釘樁是一種新型可回收預(yù)制樁,具有經(jīng)濟(jì)、環(huán)保的特點(diǎn)。通過在樁側(cè)表面增設(shè)螺紋結(jié)構(gòu),形同鋸齒,可以改善傳統(tǒng)樁土接觸方式,能顯著提升極限承載能力。為研究這種樁型的荷載傳遞機(jī)理與承載特性,采用模型試驗(yàn)與有限元分析相結(jié)合的方法,對比分析了螺釘樁和等截面樁在加載過程中的豎向承載特性及樁周土體位移特征,探索了螺紋段長度與螺紋間距對承載力的影響規(guī)律。結(jié)果表明:螺釘樁荷載-沉降曲線呈緩變型變化特征,極限承載力與樁身材料利用率均優(yōu)于等截面樁;螺釘樁主要通過樁側(cè)摩阻力傳遞上部荷載,樁側(cè)阻力約為等截面樁的4.57倍,呈現(xiàn)端承摩擦樁的承載特性;螺釘樁樁側(cè)表面獨(dú)特的鋸齒結(jié)構(gòu)可以充分發(fā)揮樁周土體協(xié)同工作,以調(diào)動(dòng)螺牙槽口內(nèi)外側(cè)土體間的抗剪力;增加螺紋段長度可以增大樁身側(cè)面與土體間的齒狀咬合區(qū)域,從而顯著提升螺釘樁極限承載力和材料利用率;隨著螺紋間距的增大,螺紋內(nèi)外側(cè)土體沉降差異變小,破壞方式發(fā)生變化。當(dāng)距徑比為0.75~1.0時(shí),螺釘樁極限承載力與樁身材料利用率均取得較大值。研究成果可為螺釘樁基礎(chǔ)的設(shè)計(jì)提供依據(jù)。
關(guān)鍵詞:螺釘樁;模型試驗(yàn);數(shù)值計(jì)算;極限承載力;材料利用率
中圖分類號(hào):TU 473.1""" 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2025)01-0129-09
DOI:10.13800/j.cnki.xakjdxxb.2025.0112
Experimental study on bearing characteristics of
screw-pile in loess layer
DENG Yousheng ZHUANG Ziying ZHAO Huiling WEI Huanwei3,
CHEN Zhuo WU Along DONG Chenhui1,2
(1.College of Architecture and Civil Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;
2.Pile-Supported Structures Research amp; Test Center,Xi’ an University of Science and Technology,Xi’an 710054,China;
3.College of Civil Engineering,Shandong Jianzhu University,Jinan 250101,China)
Abstract:Screw pile,a new type of recyclable prefabricated pile,has the characteristics of economical and environmental protection.By adding a screw structure on the surface of the pile side,similar to the form of" sawteeth,the traditional pile-soil contact mode can be improved,with its ultimate bearing capacity
increased significantly.In order to study the load transfer mechanism and bearing characteristics of this type of pile,model test and finite element analysis were adopted to compare and analyze the vertical bearing characteristic and the displacement characteristics of soil around the pile under the loading of screw pile and equal section pile
,thus exploring
the influence law of screw length and screw pitch on its bearing capacity.The results demonstrate that the load-settlement curve of screw pile shows the characteristics of slow change,and the ultimate bearing capacity and the utilization rate of pile material are better than those of equal section pile.The screw pile transfers the upper load mainly through the side friction resistance of the pile,and it is about 4.57 times that of the equal section pile,exhibit the bearing characteristics of the end bearing friction pile.The unique zigzag structure on the side surface of screw pile can give full play to the cooperative work of soil around the pile to mobilize the shear resistance between the soil inside and outside the screw notch.Increasing the length of the screw section can
enlarge the dentate area between the side of the pile and the soil,thus significantly improving the ultimate bearing capacity and material utilization of the screw pile.With the increase of screw pitch,the difference of soil settlement between the inside and outside of the screw becomes smaller,and its failure mode changes.When the ratio of distance to diameter is 0.75~1.0,the ultimate bearing capacity of screw pile and the utilization rate of pile material are both larger.The research results could provide a basis for the design of screw pile foundation.
Key words:screw pile;model test;numerical calculation;ultimate bearing capacity;material utilization
0 引 言
變截面樁[1]是一種通過改變傳統(tǒng)等截面樁橫向截面形狀或縱向截面變化率,充分調(diào)動(dòng)樁周土體協(xié)同工作,從而提高承載能力的新型樁,在土木工程領(lǐng)域方面應(yīng)用廣泛[2-4]。國內(nèi)外學(xué)者對此進(jìn)行了大量研究,提出了諸如擴(kuò)底樁、楔形樁等多種樁型[5-10]。螺釘樁通過在樁身周圍布設(shè)螺紋結(jié)構(gòu),如同螺絲釘可隨時(shí)旋進(jìn)和旋出木材一樣,在一些臨時(shí)性工程,如基坑支護(hù)、棧橋基礎(chǔ)等,這類工程竣工后可旋出回收,減少基坑工程的拆除破壞,可降低總工程造價(jià);再者,樁側(cè)螺紋結(jié)構(gòu)形成樁-土凹凸交錯(cuò)接觸方式,樁土間齒狀咬合作用增大了樁側(cè)阻力,進(jìn)而提高了承載能力。故螺釘樁具有承載變形能力強(qiáng)、適應(yīng)性強(qiáng)、經(jīng)濟(jì)環(huán)保等特點(diǎn)。許多學(xué)者對這類樁豎向承載特性進(jìn)行了研究。錢建固等通過大型接觸面剪切儀,觀察螺紋樁樁土剪切面破壞形態(tài),發(fā)現(xiàn)螺紋樁樁-土界面呈現(xiàn)拱形曲線破壞,存在一個(gè)最優(yōu)螺距使的拱形曲線破壞面達(dá)到最大[11];
馬文杰等對螺紋單樁豎向極限承載力計(jì)算公式進(jìn)行歸納總結(jié)[12]
;JIANG等通過模型試驗(yàn)認(rèn)為螺旋樁復(fù)合地基的承載能力高于普通直樁[13];周楊等通過模型試驗(yàn)與數(shù)值模擬認(rèn)為變截面螺紋樁的材料利用率優(yōu)于直螺紋樁和普通圓樁[14];王國才等通過數(shù)值模擬對螺紋樁豎向承載特性進(jìn)行研究,認(rèn)為螺紋樁極限承載力隨S/D(螺距/螺紋內(nèi)徑)的增大呈現(xiàn)先增后減的趨勢[15];冷伍明等通過模型試驗(yàn)與數(shù)值模擬表明螺距與螺紋寬度是影響螺紋樁極限承載力的主要因素[16];王曙光等基于模型試驗(yàn)認(rèn)為螺桿樁螺紋段的極限側(cè)阻表現(xiàn)為周邊土體的抗剪強(qiáng)度[17]。
目前很多學(xué)者通過現(xiàn)場試驗(yàn)、模型試驗(yàn)、數(shù)值模擬等方法對螺紋樁進(jìn)行研究[18-24],并取得了一定的成果,但對于螺釘樁豎向承載特性方面研究較少,荷載傳遞機(jī)理尚不清晰。通過室內(nèi)模型試驗(yàn)與數(shù)值模擬相結(jié)合方法,對螺釘樁與等截面樁豎向承載特性進(jìn)行研究,分析螺紋段長度以及螺紋間距對螺釘樁承載能力的影響。
1 模型試驗(yàn)
1.1 模型箱及試驗(yàn)材料
采用模型箱尺寸為4.0 m×1.9 m×2.0 m,沿模型箱短邊方向設(shè)置3個(gè)寬度為20 mm的反力梁,底板與左右側(cè)板采用寬度為16 mm厚的鋼板,正面與背面內(nèi)置10 mm厚的鋼化玻璃。試驗(yàn)樁位于模型箱的中心,距離模型箱的距離大于10倍的樁徑,可以忽略邊界效應(yīng)。綜合考慮室內(nèi)模型試驗(yàn)條件,依據(jù)相似性原理,以幾何長度為基本物理量,取相似比為1∶10設(shè)計(jì)模型試驗(yàn)(表1)[25-26]。
試驗(yàn)?zāi)P蜆恫捎?061實(shí)心鋁棒制成[27-28]。共制作3根螺釘樁和1根等截面樁(表2)。通過室內(nèi)土工試驗(yàn)測得黃土密度為1.94 g/cm3,黏聚力為38.2 kPa,內(nèi)摩擦角為28.3°。試驗(yàn)土體采用分層填埋的方法進(jìn)行填筑,回填過程確保各層土體均勻鋪平且采用小錘子夯實(shí),確保夯實(shí)程度一致。
1.2 測點(diǎn)與布置
螺釘樁與等截面圓樁沿樁身對稱等間距布設(shè)7組應(yīng)變片。相鄰應(yīng)變片間隔100 mm。螺釘樁螺紋段應(yīng)變片粘貼至內(nèi)徑壁以避免螺紋部位非軸向變形產(chǎn)生的影響。
1.3 加載制度
試驗(yàn)樁采用預(yù)埋的方式進(jìn)行填筑[29-31],在樁頂布設(shè)加載板,加載儀器與位移測量儀器分別為千斤頂和位移計(jì)(圖1)。
試驗(yàn)依據(jù)《建筑樁基檢測技術(shù)規(guī)范 JGJ 106—2014》,采用慢速維持荷載法逐級加載,并通過靜態(tài)數(shù)據(jù)采集儀采集相應(yīng)數(shù)據(jù)。
1.4 計(jì)算公式
依據(jù)樁身應(yīng)變片數(shù)據(jù),依照式(1)、式(2)計(jì)算樁身軸力與樁側(cè)摩阻力。
P=EAεi
(1)
Q=EA(εi-εi+1)/AS
(2)
式中 P為樁身軸力,kN;E為樁彈性模量,kPa;A為樁身橫截面積,螺釘樁螺紋段橫截面取螺紋外徑對應(yīng)圓形截面,m2;εi,εi+1為測點(diǎn)i、i+1處平均應(yīng)變;Q為樁側(cè)摩阻力,kPa;AS為測點(diǎn)i、i+1之間樁側(cè)表面積,m2。
2 試驗(yàn)結(jié)果及分析
2.1 荷載-沉降曲線
加載初期,試驗(yàn)樁沉降曲線均呈現(xiàn)平緩的線性變化,土體處于彈性變形狀態(tài)。隨著荷載的增大,沉降曲線由線性變化向非線性變化過渡,土體進(jìn)入彈塑性變形狀態(tài)(圖2)。螺紋段與土體間的齒狀咬合作用,使得螺釘樁沉降遠(yuǎn)小于等截面樁。4#等截面樁曲線在加載后期呈現(xiàn)明顯的陡降型變化,取該陡降點(diǎn)所對應(yīng)荷載3.14 kN為極限承載力。1#~3#螺釘樁沉降曲線呈“緩變型”變化特征,不存在明顯陡降點(diǎn)。依據(jù)《建筑樁基檢測規(guī)范》與本次模型試驗(yàn)相似常數(shù),取沉降4 mm時(shí)對應(yīng)的荷載為樁基的極限承載力,1#~3#螺釘樁極限承載力分別為6.33,7.03,5.69 kN。螺釘樁極限承載力約為等截面樁的1.81~2.24倍。
依據(jù)樁身材料利用率公式(樁體極限荷載與樁體體積比值)計(jì)算得出螺釘樁材料利用率約為等截面樁的2.17~2.84倍。螺釘樁的承載性能優(yōu)于等截面樁,并且可以節(jié)約樁身材料,達(dá)到經(jīng)濟(jì)、環(huán)保的目的。
2.2 樁身軸力
以1#樁和4#樁為例,2種樁型的軸力分布總體都沿著深度方向衰減,但衰減的幅度有所差異(圖3)。等截面樁下半段樁身軸力衰減幅度高于上半段樁身,螺釘樁螺紋段軸力衰減幅度遠(yuǎn)大于直桿段。在極限荷載作用下,等截面樁樁底軸力為1.941kN,占樁頂荷載的61.8%,呈現(xiàn)摩擦端承樁的承載特性,螺釘樁樁底軸力為1.136 kN,僅占樁頂荷載的18.09%,呈現(xiàn)端承摩擦樁的承載特性。這是因?yàn)槁葆敇丢?dú)特的螺紋結(jié)構(gòu)以及樁身存在變截面處,使得樁頂荷載向下傳遞的過程中,絕大部分荷載通過螺紋結(jié)構(gòu)與土體間的齒狀咬合作用以及變截面處土體的端承作用傳遞到樁周土體。
2.3 樁側(cè)摩阻力
2種樁型樁側(cè)摩阻力分布規(guī)律存在較大差異(圖4)。等截面樁側(cè)摩阻力沿著樁長逐步增大,樁身下部側(cè)阻的發(fā)揮程度高于樁身上部。在加載初期,等截面樁側(cè)摩阻力隨著荷載的增加而增大。在加載后期,其樁側(cè)阻力變化程度減小,表明樁側(cè)阻力發(fā)揮已經(jīng)接近極限。當(dāng)樁體達(dá)到極限承載力發(fā)生刺入破壞,此時(shí)樁側(cè)阻力跌落至殘余強(qiáng)度。螺釘樁樁側(cè)阻力可以分成直桿段與螺紋段2部分,隨著樁頂荷載的增加,直桿段樁側(cè)阻力很快就達(dá)到極限值,螺紋段樁側(cè)阻力則不斷增加。螺釘樁獨(dú)特的螺紋結(jié)構(gòu),改變了傳統(tǒng)樁-土接觸方式。等截面樁側(cè)摩阻力主要取決于樁土接觸面間的摩阻力,螺釘樁側(cè)摩阻力不僅取決于摩阻力,更取決于樁側(cè)土體的剪切力。螺紋段樁側(cè)阻力的發(fā)揮程度高于直桿段。在極限荷載狀態(tài)下,等截面樁的平均側(cè)摩阻力為11.63 kPa,螺釘樁的平均側(cè)摩阻力為53.24 kPa,是等截面樁的4.57倍。螺釘樁側(cè)摩阻力遠(yuǎn)大于等截面樁,承載能力要優(yōu)于等截面樁。
3 數(shù)值計(jì)算
3.1 模型的建立與驗(yàn)證
利用ABAQUS有限元分析軟件對1#樁和4#樁分別建立三維數(shù)值全模型。為忽略邊界效應(yīng)的影響,土體寬度設(shè)置成樁徑的20倍,深度設(shè)置成樁長的2倍。樁體與樁周土體采用四面體網(wǎng)格加密劃分,其余土體采用六面體網(wǎng)格劃分(圖5)。樁身材料強(qiáng)度遠(yuǎn)大于土體,在豎向受荷中基本只發(fā)生彈性變形,可以簡化為線彈性模型,土體假定為均質(zhì)、各項(xiàng)同性的彈塑性材料,采用Mohr-Coulomb彈塑性本構(gòu)模型可以較好的反應(yīng)實(shí)際工程中樁土間的相互作用[32-33](表3)。設(shè)置樁土接觸面為面-面接觸,通過軟件中“切向行為”、“法向行為”模擬樁土接觸狀態(tài)。切向行為定義為罰函數(shù),摩擦系數(shù)取tan0.65φ(φ為土體內(nèi)摩擦角)[28],法向行為定義成硬接觸。模型四周分別約束法向位移,模型底部約束3個(gè)方向的位移。為了消除土體自重產(chǎn)生的初始應(yīng)力場會(huì)對計(jì)算結(jié)果產(chǎn)生的影響,需要先進(jìn)行土體地應(yīng)力平衡。
圖6為模型試驗(yàn)與數(shù)值分析結(jié)果對比,模型試驗(yàn)數(shù)據(jù)依據(jù)本次試驗(yàn)相似常數(shù)進(jìn)行相應(yīng)放大。二者荷載沉降曲線較為吻合,螺釘樁的極限承載力為等截面樁的2.11倍。表明有限元模型可以較好的擬合試驗(yàn)結(jié)果。
3.2 地基土體位移特征
極限承載力作用下等截面樁樁周土體豎向位移區(qū)域集中在樁身下半段與樁端附近,等截面樁主要依靠樁身下半段樁側(cè)阻力以及樁端阻力提供承載能力。螺釘樁因?yàn)闃渡碇車嬖谶B續(xù)式螺紋結(jié)構(gòu),受荷沉降時(shí),螺紋結(jié)構(gòu)會(huì)帶動(dòng)螺紋內(nèi)部的土體一起沉降,引起螺紋內(nèi)外側(cè)土體差異沉降(圖7)。螺紋內(nèi)外側(cè)土體發(fā)生相對位移產(chǎn)生的抗剪力是螺釘樁承載力的主要來源,螺釘樁變截面處與樁端處土體受壓產(chǎn)生的端阻力也可承擔(dān)部分上部荷載。螺釘樁在受荷沉降的過程中,對樁側(cè)土體的影響范圍要遠(yuǎn)大于等截面樁。表明螺釘樁可以更好的調(diào)動(dòng)樁側(cè)土體承載能力共同承擔(dān)上部荷載。
4 參數(shù)分析
螺釘樁因?yàn)闃渡砺菁y結(jié)構(gòu)的存在,各級螺牙與土體之間齒狀咬合作用提高了樁的承載能力。螺紋段長度與螺紋間距是反應(yīng)齒狀咬合作用程度的2個(gè)重要影響因素?;诖吮疚倪x取上述模型參數(shù)通過數(shù)值計(jì)算分析二者對螺釘樁豎向承載能力的影響。
4.1 螺紋段長度
增加螺紋段長度可以顯著提升螺釘樁極限承載力(圖8)。螺紋段長度從2 m提升至5 m時(shí),極限承載力相較于等截面樁分別提升了51.9%、82.8%、111.1%和136.3%。螺紋段長度越長,樁身與土體之間形成齒狀咬合的區(qū)域越大,樁體極限承載力提升。隨著螺紋段長度的增加,螺釘樁體積減小,材料利用率也呈增長趨勢。
4.2 螺紋間距
隨著螺距的增大,螺釘樁極限承載力呈現(xiàn)先增大后減小的趨勢(圖9)。螺距從0(即等截面圓樁)增加至200 mm時(shí),極限承載力提高約1.24倍。螺距在300 mm至400 mm時(shí)達(dá)到較大值,二者相差在5%以內(nèi)。隨著螺距進(jìn)一步增大,承載力逐步下降。螺距增加至700 mm,極限承載力下降15.2%。從材料利用率的角度分析,其變化規(guī)律與螺釘樁極限承載力一致。螺距為300 mm與400 mm時(shí)二者均達(dá)到較大值,約為等截面圓樁的2.89倍。
當(dāng)螺距為200 mm與300 mm時(shí),螺紋內(nèi)部土體與樁體的豎向位移大致相同,螺釘樁帶動(dòng)螺紋內(nèi)部土體一起向下沉降。整體呈現(xiàn)與螺釘樁外徑相當(dāng)?shù)膱A柱形剪切破壞。當(dāng)螺距增加至400 mm時(shí),螺紋內(nèi)部土體只有在靠近各級螺牙下方部分區(qū)域土體沉降與樁體相同,這表明螺紋結(jié)構(gòu)對土體的約束逐漸減弱。隨著螺距的進(jìn)一步增大,該土體區(qū)域進(jìn)一步減小,最終僅存在于各級螺牙下表面附近區(qū)域(圖10)。螺距較小時(shí),螺紋圈數(shù)增加,螺紋內(nèi)外側(cè)土體剪切區(qū)域較少,極限承載力降低。螺距越大,相鄰兩級螺牙之間的影響效果減弱,螺紋對土體的齒狀咬合作用減小,螺紋內(nèi)外側(cè)土體沉降大致相同,土體剪切效果減弱。此時(shí)螺釘樁變成各級螺牙下的土體單獨(dú)承載,螺釘樁承載力降低。綜合考慮極限承載力與經(jīng)濟(jì)效益因素,將螺紋間距與螺釘樁內(nèi)徑的比值定義為“距徑比”,建議距徑比取值在0.75~1.0。
5 結(jié) 論
1)螺釘樁與等截面樁的荷載沉降曲線分別為緩變型和陡降型。螺釘樁極限承載力與材料利用率均優(yōu)于等截面樁。螺釘樁能提升承載力,并有效降低樁身混凝土用量,達(dá)到低碳經(jīng)濟(jì)的目的。
2)在極限荷載作用下,螺釘樁與等截面樁的荷載分擔(dān)比存在差異。螺釘樁主要由樁側(cè)摩阻力承擔(dān)荷載,等截面樁主要由樁端阻力承擔(dān)荷載。螺釘樁樁側(cè)摩阻力遠(yuǎn)大于等截面樁。
3)增加螺紋段長度能顯著提升螺釘樁極限承載力與樁身材料利用率。螺紋間距的變化會(huì)影響螺紋內(nèi)外側(cè)土體相對位移,進(jìn)而改變極限承載能力。在距徑比為0.75~1.0時(shí)極限承載力取得較大值。
參考文獻(xiàn)(References):
[1] 周先齊,葉金鉍,金曉勤,等.錐型組合樁豎向承載力模型試驗(yàn)研究[J].防災(zāi)減災(zāi)工程學(xué)報(bào),2022,42(5):1097-1103.ZHOU Xianqi,YE Jinbi,JIN Xiaoqin,et al.Experimental study on vertical bearing capacity of conical composite piles[J].Journal of Disaster Prevention and Mitigation Engineering,2022,42(5):1097-1103.
[2]鄧友生,付云博,葉建軍,等.毛竹管樁基坑支護(hù)可靠性研究[J].西安科技大學(xué)學(xué)報(bào),2022,42(1):1-7.DENG Yousheng,F(xiàn)U Yunbo,YE Jianjun,et al.Study on reliability of foundation pit support with bamboo pipe pile[J].Journal of Xi’an University of Science and Technology,2022,42(1):1-7.
[3]鄧友生,王一雄,蘇家琳,等.樁網(wǎng)結(jié)構(gòu)動(dòng)力響應(yīng)研究新進(jìn)展[J].西安科技大學(xué)學(xué)報(bào),2020,40(3):377-383.DENG Yousheng,WANG Yixiong,SU Jialin,et al.New research progress in dynamic response of pile net structure[J].Journal of Xi’an University of Science and Technology,2020,40(3):377-383.
[4]馮忠居,張亮,張聰,等.地震作用下變截面鋼管混凝土單樁動(dòng)力響應(yīng)[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,44(2):122-130.FENG Zhongju,ZHANG Liang,ZHANG Cong,et al.Dynamic response of variable section steel tube concrete monopile under earthquake action[J].Journal of Hebei University(Natural Science Edition),2024,44(2):122-130.
[5]顧紅偉,孔綱強(qiáng),車平,等.楔形樁與等直徑樁承載特性對比模型試驗(yàn)研究[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,48(6):1600-1606.GU Hongwei,KONG Gangqiang,CHE Ping,et al.Comparative model tests on bearing capacities of tapered pile and equal section pile[J].Journal of Central South University(Science and Technology),2017,48(6):1600-1606.
[6]鄧友生,李龍,鄧明科,等.梅花型混凝土樁截面幾何特性[J].西安科技大學(xué)學(xué)報(bào),2023,43(1):143-150.DENG Yousheng,LI Long,DENG Mingke,et al.Geometric properties of concrete plum blossom piles section[J].Journal of Xi’an University of Science and Technology,2023,43(1):143-150.
[7]鄧友生,吳阿龍,陳茁,等.擴(kuò)底樁豎向承載特性及群樁效應(yīng)研究[J].鐵道建筑,2024,64(2):107-111.DENG Yousheng,WU ALong,CHEN Zhuo,et al.Study on vertical bearing characteristics and group pile effect of expanded-base piles[J].Railway Engineering,2024,64(2):107-111.
[8]HU J,TU W,GU X.A Simple approach for the dynamic analysis of a circular tapered pile under axial harmonic vibration[J].Buildings,2023,13(4):999.
[9]鄧友生,宋虔,張克欽,等.錐形帽單樁豎向承載力模型試驗(yàn)研究[J].武漢科技大學(xué)學(xué)報(bào),2023,46(6):472-477.DENG Yousheng,SONG Qian,ZHANG Keqin,et al.Model test study on vertical bearing capacity of single conical cap piles[J].Journal of Wuhan University of Science and Technology,2023,46(6):472-477.
[10]鄧友生,李龍,趙衡,等.基于透明土的梅花樁沉樁擠土效應(yīng)[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,49(7):205-213.DENG Yousheng,LI Long,ZHAO Heng,et al.Plum-blossom pile penetration effect based on transparent soil[J].Journal of Hunan University(Natural Sciences),2022,49(7):205-213.
[11]錢建固,陳宏偉,賈鵬,等.注漿成型螺紋樁接觸面特性試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2013,32(9):1744-1749.QIAN Jiangu,CHEN Hongwei,JIA Peng,et al.Experimental study of mechanical behaviors of grouting-screw pile interface[J].Chinese Journal ofRock Mechanics and Engineering,2013,32(9):1744-1749.
[12]馬文杰,王博林,王旭,等.螺紋樁承載特性的初步探討[J].建筑結(jié)構(gòu),2018,48(S1):738-741.MA Wenjie,WANG Bolin,WANG Xu,et al.Preliminary study on load characteristics of thread pile[J].Building Structure,2018,48(S1):738-741.
[13]JIANG P C,XU W,ZHANG Y J.Analysis of the bearing behavior of a screw-pile foundation in silt soil[J].Proceedings of the Institution of Civil Engineers-Ground Improvement,2019,172(4):257-263.
[14]周楊,肖世國,徐駿,等.變截面螺紋樁豎向承載特性試驗(yàn)研究[J].巖土力學(xué),2017,38(3):747-754,783.ZHOU Yang,XIAO Shiguo,XU Jun,et al.Model test on vertical bearing capacity of variable cross-section thread piles[J].Rock and Soil Mechanics,2017,38(3):747-754,783.
[15]王國才,趙志明,奚靈智,等.螺紋樁豎向承載特性研究[J].浙江工業(yè)大學(xué)學(xué)報(bào),2020,48(1):90-96.WANG Guocai,ZHAO Zhiming,XI Lingzhi,et al.Research on vertical load bearing characteristics of thread piles[J].Journal of Zhejiang University of Technology,2020,48(1):90-96.
[16]冷伍明,魏廣帥,聶如松,等.螺紋樁豎向承載特性及承載機(jī)理研究[J].鐵道工程學(xué)報(bào),2020,37(5):1-6,35.LENG Wuming,WEI Guangshuai,NIE Rusong,et al.Research on the vertical bearing characteristics and bearing mechanism of screw pile[J].Journal of Railway Engineering Society,2020,37(5):1-6,35.
[17]王曙光,馮浙,唐建中,等.豎向荷載作用下螺桿灌注樁受壓承載機(jī)理的試驗(yàn)研究[J].巖土工程學(xué)報(bào),2021,43(2):383-389.WANG Shuguang,F(xiàn)ENG Zhe,TANG Jianzhong,et al.Experimental study on bearing mechanism of screw cast-in-place piles under vertical loads[J].Chinese Journal of Geotechnical Engineering,2021,43(2):383-389.
[18]鄭軍鋒,范德全,陳濟(jì)熙,等.擠密螺紋樁復(fù)合地基樁土應(yīng)力比現(xiàn)場試驗(yàn)研究[J].鐵道科學(xué)與工程學(xué)報(bào),2019,16(12):3005-3012.ZHENG Junfeng,F(xiàn)AN Dequan,CHEN Jixi,et al.Field experimental study on pile-soil stress ratio of composite foundation under squeeze tightly threaded piles[J].Journal of Railway Science and Engineering,2019,16(12):3005-3012.
[19]趙治冶.DDS樁在高速鐵路復(fù)合地基工程中的適用性[J].鐵道建筑,2020,60(5):77-79.ZHAO Zhiye.Adaptability of DDS pile to composite foundation projects on high speed railway[J].Railway Engineering,2020,60(5):77-79.
[20]楊燁.螺紋樁在宣績高速鐵路路基工程中的應(yīng)用[J].鐵道建筑,2023,63(7):134-137.YANG Ye.Research on application of screw pile in subgrade engineering of Xuancheng-Jixi high speed railway[J].Railway Engineering,2023,63(7):134-137.
[21]YANG T T,ZHENG W C,XIE Y L,et al.Evaluating screw-shaft pile composite foundations in round gravelly soil:A study using model tests and numerical simulations[J].Heliyon,2023,9(10): e20887-e20887.
[22]MOHAJERANI A,BOSNJAK D,BROMWICH D.Analysis and design methods of screw piles:A review[J].Soils and Foundations,2016,56(1):115-128.
[23]MA H W,LIU L,WANG P,et al.Calculation method and mechanism of ultimate side resistance of screw pile[J].Marine Georesources amp; Geotechnology,2023,41(1):99-113.
[24]王博宇,胡志平,張永輝,等.成層土中考慮樁側(cè)土豎向作用的螺紋樁動(dòng)力響應(yīng)[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2024,56(9):161-170.WANG Boyu,HU Zhiping,ZHANG Yonghui,et al.Dynamic response of screw pile considering vertical action of pile side soil in layered soil[J].Journal of Harbin Institute of Technology,2024,56(9):161-170.
[25]關(guān)偉,吳紅剛,余仕江,等.列車荷載下螺桿樁復(fù)合地基動(dòng)力特性及承載性狀試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2023,42(2):508-520.GUAN Wei,WU Honggang,YU Shijiang,et al.Experimental study on dynamic and bearing characteristics of part-screw pile composite foundations under train loads[J].Chines Journal of Rock Mechanics and Engineering,2023,42(2):508-520.
[26]鄧友生,李文杰,張克欽,等.剛度差異樁組合樁網(wǎng)結(jié)構(gòu)路基承載特性[J].中國鐵道科學(xué),2024,45(1):26-35.DENG Yousheng,LI Wenjie,ZHANG Keqin,et al.Bearing characteristics of composite pile-net structure subgrade with varied pile stifness[J].China Railway Science,2024,45(1):26-35.
[27]陳楊,楊敏,魏厚振,等.鈣質(zhì)砂中單樁軸向抗拔模型試驗(yàn)研究[J].巖土力學(xué),2018,39(8):2851-2857.CHEN Yang,YANG Min,WEI Houzhen,et al.Experimental study on axial tension response of model monopile in calcareous sand[J].Rock and Soil Mechanics,2018,39(8):2851-2857.
[28]董俊利,陳軍浩,聶如松,等.螺紋樁復(fù)合地基樁土應(yīng)力比模型試驗(yàn)與數(shù)值模擬[J].鐵道科學(xué)與工程學(xué)報(bào),2022,19(10):2966-2975.DONG Junli,CHEN Junhao,NIE Rusong,et al.Model test and numerical simulation study on the pile-soil stress ratio of screw pile composite foundation[J].Journal of Railway Science and Engineering,2022,19(10):2966-2975.
[29]AOYAMA S,MAO W W,GOTO S,et al.Application of advanced procedures to model tests on the subsoil behavior under vertical loading of group pile in" sand[J].Indian Geotechnical Journal,2016,46(1):64-76.
[30]王曙光,王浩宇,唐建中,等.螺桿灌注樁抗拔承載機(jī)理的試驗(yàn)研究[J].巖土工程學(xué)報(bào),2023,45(10):2156-2164.WANG Shuguang,WANG Haoyu,TANG Jianzhong,et al.Experimental study on vertical tensile bearing mechanism of screw cast-in-place piles[J].Chinese Journal of Geotechnical Engineering,2023,45(10):2156-2164.
[31]董瓊英,肖尊群,湯東桑.不同變截面樁豎向承載特性的數(shù)值分析[J].武漢工程大學(xué)學(xué)報(bào),2021,43(4):436-441.DONG Qiongying,XIAO Zunqun,TANG Dongsang.Experimental analysis of vertical bearing characteristics of piles with different variable sections[J].Journal of Wuhan Institute of Technology,2021,43(4):436-441.
[32]趙志明.螺紋樁豎向承載特性及群樁效應(yīng)研究[D].杭州:浙江工業(yè)大學(xué),2019.ZHAO Zhiming.Research on vertical bearing characteristics and group pile effect of thread pile[D].Hangzhou:Zhejiang University of Technology,2019.
[33]鄧友生,莊子穎,董晨輝,等.豎向荷載下螺釘樁承載特性的影響因素[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,44(6):571-580.DENG Yousheng,ZHUANG Ziying,DONG Chenhui,et al.Influencing factors for bearing characteristics of screw pile under vertical load[J].Journal of Hebei University(Natural Science Edition),2024,44(6):571-580.
(責(zé)任編輯:李克永)