摘要:目的探討過度機械應(yīng)力調(diào)控Piezo1通道誘發(fā)小鼠成軟骨細(xì)胞鐵死亡的作用機制。方法選取小鼠ATDC5成軟骨細(xì)胞系進行實驗,使用siRNA-Piezo1干擾質(zhì)粒和Piezo1過表達質(zhì)粒轉(zhuǎn)染細(xì)胞,給予機械應(yīng)力刺激(MS),構(gòu)建對照組(Control組)、MS組、MS+siRNA-Piezo1組(MS+sh組)和MS+Piezo1過表達組(MS+OV組)。用細(xì)胞增殖和毒性檢測法(CCK-8)檢測各組細(xì)胞增殖活力,透射電鏡觀察線粒體的形態(tài)和結(jié)構(gòu),生化檢測氧化應(yīng)激和亞鐵離子(Fe2+)水平,流式細(xì)胞術(shù)檢測脂質(zhì)活性氧(ROS)水平,蛋白免疫印跡法(Western blot)檢測溶質(zhì)載體家族7成員11(SLC7A11)、谷胱甘肽過氧化物酶4(GPX4)、Ⅱ型膠原蛋白(CollagenⅡ)、基質(zhì)金屬蛋白酶(MMP)-13、蛋白聚糖(Aggrecan)及p53蛋白的表達水平。結(jié)果與Control組比較,MS組細(xì)胞活力下降,F(xiàn)e2+、ROS、丙二醛(MDA)水平升高,還原型谷胱甘肽(GSH)、超氧化物歧化酶(SOD)水平降低(均P<0.05),電鏡示線粒體嵴減少,SLC7A11、GPX4、CollagenⅡ、Aggrecan蛋白水平下降,p53和MMP-13蛋白水平則升高(均P<0.05)。與MS組比較,MS+sh組的Fe2+、ROS、MDA水平下降,GSH、SOD水平升高(均P<0.05),SLC7A11、GPX4、CollagenⅡ、Aggrecan蛋白水平升高,MMP-13和p53蛋白水平下降(均P<0.05)。與MS組比較,MS+OV組的細(xì)胞活力下降,F(xiàn)e2+、ROS、MDA水平升高,GSH、SOD水平降低,SLC7A11、GPX4、CollagenⅡ、Aggrecan蛋白水平下降,MMP-13和p53蛋白水平上升(均P<0.05)。結(jié)論過度機械應(yīng)力能夠通過Piezo1通道蛋白介導(dǎo)成軟骨細(xì)胞鐵死亡,促進細(xì)胞外基質(zhì)降解。
關(guān)鍵詞:骨關(guān)節(jié)炎;軟骨細(xì)胞;應(yīng)力,物理;鐵死亡;Piezo1
中圖分類號:R684.3文獻標(biāo)志碼:A DOI:10.11958/20241259
The mechanism of excessive mechanical stress modulates Piezo1-mediatedferroptosis in chondrocytes
WU Bin1,LIU Zhaoxiang2,ZHANG Yuehong3,WANG Changyao4△
1 Department of Orthopedics,Qingdao University Linyi People's Hospital,Linyi 276000,China;2 Department of Orthopedics,Yishui Second People's Hospital;3 Department of Second Orthopedics,Dongming People's Hospital;4 Department of JointSurgery,the Affiliated Hospital of Qingdao University Medical College
△Corresponding Author E-mail:swxg.1@163.com
Abstract:Objective To explore the mechanism of excessive mechanical stress regulated ferroptosis induced by Piezo1 channel in mouse chondrocytes.Methods The experiment was performed on mouse ATDC5 chondrocytes.siRNA-Piezo1 interference plasmid and Piezo1 overexpression plasmid were used to transfect chondrocytes,and mechanical stress stimulation was given.The control group,the mechanical stress stimulation group(MS group),the MS+siRNA-Piezo1 group(MS+sh group)and the MS+Piezo1 overexpression group(MS+OV group)were constructed,respectively.The cell viability,F(xiàn)e2+,ROS levels,the expression of ferroptosis-related proteins SLC7A11 and GPX4,and the expression of CollagenⅡ,MMP-13,Aggrecan and p53 proteins were detected in each group.Results Compared with the control group,the cell viability was decreased in the MS group(P<0.05).Levels of Fe2+,reactive oxygen species(ROS)and malondialdehyde(MDA)were increased(P<0.05).Levels of reduced glutathione(GSH)and superoxide dismutase(SOD)were decreased(Plt;0.05),and the mitochondrial ridge was decreased detected by transmission electron microscopy.Protein levels of SLC7A11,GPX4,CollagenⅡand Aggrecan were decreased(P<0.05),while protein levels of p53 and MMP-13 were increased(Plt;0.05).Compared with the MS group,F(xiàn)e2+,ROS and MDA levels were decreased in the MS+sh group(P<0.05),GSH andSOD levels were increased(P<0.05),and protein levels of SLC7A11,CollagenⅡ,GPX4 and Aggrecan were increased(Plt;0.05).The protein levels of MMP-13 and p53 were decreased(P<0.05).Compared with the MS group,cell viability was decreased(P<0.05),F(xiàn)e2+,ROS and MDA levels were increased(P<0.05),GSH and SOD levels were decreased(P<0.05),and protein levels of SLC7A11,CollagenⅡ,GPX4 and Aggrecan were decreased in the MS+OV group(P<0.05).Levels of MMP-13 and p53 protein were increased(P<0.05).Conclusion Excessive mechanical stress can induce chondrocyte ferroptosis and promote extracellular matrix degradation via Piezo1 channel protein.
Key words:osteoarthritis;chondrocytes;stress,mechanical;ferroptosis;Piezo1
骨性關(guān)節(jié)炎(OA)是一種常見的慢性關(guān)節(jié)退行性疾病,具有較高的發(fā)病率和致殘率。OA以軟骨損傷、軟骨下骨化和骨贅形成等為主要的病理特征[1]。早期OA表現(xiàn)為關(guān)節(jié)疼痛、腫脹,晚期出現(xiàn)不同程度的關(guān)節(jié)畸形、晨僵,嚴(yán)重者可致殘疾。據(jù)統(tǒng)計,全世界OA患者累計約3億人,每年相關(guān)醫(yī)療費用支出超過3 000億美元[2]。隨著人口老齡化和肥胖問題的加劇,OA發(fā)病率與致殘率逐年增加,已成為全世界面臨的重要公共健康問題之一。
大量研究表明,OA的發(fā)病機制主要包括軟骨細(xì)胞死亡、軟骨細(xì)胞外基質(zhì)的降解2個方面[3-4]。軟骨細(xì)胞是關(guān)節(jié)軟骨的唯一細(xì)胞類型,對機械應(yīng)力刺激敏感。生理性機械應(yīng)力對維持軟骨細(xì)胞穩(wěn)態(tài)是必需的,而過度機械應(yīng)力負(fù)荷可激發(fā)軟骨細(xì)胞損傷和死亡,至于具體激發(fā)機制和細(xì)胞死亡機制尚不明確[5]。在細(xì)胞死亡事件中,鐵死亡是一種鐵離子依賴性的新型程序性細(xì)胞死亡方式,以脂質(zhì)活性氧(ROS)累積、線粒體皺縮為主要特征。Piezo1作為一種機械敏感性離子通道蛋白,主要分布在軟骨細(xì)胞表面,能夠把機械信號轉(zhuǎn)化為細(xì)胞內(nèi)的化學(xué)信號,調(diào)控軟骨細(xì)胞的生物學(xué)效應(yīng)[6]。最近的研究表明,鐵死亡、Piezo1通道蛋白均與軟骨損傷密切相關(guān)[7-8]。關(guān)閉Piezo1通道蛋白可以起到保護軟骨細(xì)胞的作用[9]。鐵螯合劑可抑制OA軟骨細(xì)胞鐵死亡相關(guān)蛋白的表達,從而減輕軟骨基質(zhì)的降解[10]。目前,關(guān)于機械應(yīng)力調(diào)控Piezo1介導(dǎo)軟骨細(xì)胞鐵死亡的研究仍相對較少。本研究旨在探討過度機械應(yīng)力調(diào)控Piezo1介導(dǎo)軟骨細(xì)胞鐵死亡的作用機制。
1材料與方法
1.1實驗細(xì)胞選取小鼠ATDC5成軟骨細(xì)胞系進行本實驗,購自廣州吉妮歐生物科技有限公司。細(xì)胞培養(yǎng)使用完全培養(yǎng)基,在37℃、5%CO2條件下完全濕度培養(yǎng)箱中培養(yǎng),每2~3 d換液1次。
1.2主要試劑和儀器細(xì)胞完全培養(yǎng)基購自美國iCell公司。細(xì)胞增殖和毒性檢測法(CCK-8)試劑盒、0.25%胰蛋白酶溶液、亞鐵離子(Fe2+)含量檢測試劑盒、十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)凝膠制備試劑盒、BCA蛋白濃度測定試劑盒、高效RIPA裂解液購自北京索萊寶科技有限公司。無水乙醇、丙酮購自國藥集團化學(xué)試劑有限公司。電鏡固定液、Western blot一抗稀釋液、二抗稀釋液購自武漢賽維爾生物科技有限公司。Lipofectamine 2000購自美國Invitrogen公司。丙二醛(MDA)、ROS、還原型谷胱甘肽(GSH)、超氧化物歧化酶(SOD)檢測試劑盒購自上海碧云天生物技術(shù)有限公司。PVDF膜購自美國Millipore公司。兔抗小鼠溶質(zhì)載體家族7成員11(SLC7A11)、谷胱甘肽過氧化物酶(GPX)4、膠原蛋白(Collagen)Ⅱ、基質(zhì)金屬蛋白酶(MMP)?13、蛋白聚糖(Aggrecan)及p53一抗購自武漢華美生物工程有限公司。羊抗兔IgG-HRP二抗購自英國Abcam公司。多功能酶標(biāo)儀(美國Molecular Devices公司),CO2細(xì)胞培養(yǎng)箱(美國Thermo Scientific公司),透射電子顯微鏡(日本Hitachi公司),流式細(xì)胞儀(美國Becton-Dickinson公司),凝膠成像分析系統(tǒng)(美國Bio-Rad公司),機械牽張應(yīng)力加載模型系統(tǒng)(美國Flexcell公司)。
1.3機械應(yīng)力刺激(MS)通過周期性體外細(xì)胞機械牽張應(yīng)力加載系統(tǒng)對細(xì)胞施加機械應(yīng)力,為培養(yǎng)細(xì)胞創(chuàng)建一個循環(huán)拉伸應(yīng)變的環(huán)境,模擬身體運動過程中的MS。具體操作如下:細(xì)胞接種到預(yù)涂有CollagenⅠ的6孔BioFlex培養(yǎng)板,密度為2×105/孔,暴露于參數(shù)為10%強度、0.5 Hz和1/2正弦波的周期性細(xì)胞機械應(yīng)力下8 h。
1.4細(xì)胞分組和轉(zhuǎn)染siRNA-Piezo1干擾質(zhì)粒和Piezo1過表達質(zhì)粒的構(gòu)建和篩選由上海吉凱生物公司完成。使用Lipofectamine 2000試劑轉(zhuǎn)染細(xì)胞,構(gòu)建對照組(Control組)、MS組、MS+siRNA-Piezo1組(MS+sh組)和MS+Piezo1過表達組(MS+OV組)。細(xì)胞轉(zhuǎn)染步驟:將細(xì)胞預(yù)先接種于6孔板(5×105個/孔),根據(jù)Lipofectamine 2000說明書將質(zhì)粒轉(zhuǎn)染到ATDC5成軟骨細(xì)胞中,48 h收集細(xì)胞用于后續(xù)實驗。
1.5 CCK-8法檢測細(xì)胞增殖活力將對數(shù)生長期細(xì)胞接種于96孔板(3×103/孔),過夜,按照Control組、MS組、MS+sh組、MS+OV組分組情況干預(yù)細(xì)胞24 h,向每孔中加入10μL CCK-8溶液,37℃避光孵育1 h,采用酶標(biāo)儀測450 nm處光密度(OD),計算細(xì)胞活力值。
1.6透射電子顯微鏡觀察線粒體的形態(tài)與結(jié)構(gòu)離心收集細(xì)胞,去培養(yǎng)基加入電鏡固定液,4℃重懸混勻固定2~4 h,瓊脂預(yù)包埋,室溫條件下1%鋨酸固定2 h,丙酮梯度脫水,812包埋劑浸脂,聚合制成透射電子顯微鏡標(biāo)本,超微切片機切割成為超薄切片(80 nm),用醋酸鈾酰和檸檬酸鉛進行雙重染色。透射電鏡觀察線粒體形態(tài)結(jié)構(gòu)。
1.7細(xì)胞內(nèi)氧化應(yīng)激和Fe2+水平測定按照每5×106個細(xì)胞加入1 mL裂解液裂解細(xì)胞,并使用超聲波(功率200 W,超聲3 s,間隔10 s,重復(fù)30次)破碎細(xì)胞,按照檢測試劑盒說明書測定GSH、SOD、MDA和Fe2+水平。
1.8流式細(xì)胞術(shù)檢測脂質(zhì)ROS水平將細(xì)胞接種于6孔板(5×105/孔)中過夜,各組按照相應(yīng)的干預(yù)方式干預(yù)細(xì)胞24 h,去除細(xì)胞培養(yǎng)液,更換為無血清培養(yǎng)基配制的10μmol/L DCFH-DA熒光探針,37℃孵育20 min,PBS洗滌3次,流式細(xì)胞儀進行檢測。使用Flow Jo軟件進行定量分析。
1.9 Western blot檢測蛋白表達水平將細(xì)胞以5×105/孔的密度接種于6孔板中過夜,按照Control組、MS組、MS+sh組、MS+OV組分組情況干預(yù)細(xì)胞24 h,裂解并收集各組細(xì)胞,BCA法檢測蛋白濃度。蛋白樣品經(jīng)10%SDS-PAGE并轉(zhuǎn)移到PVDF膜上,室溫下用5%脫脂奶粉封閉1 h,一抗在4℃下孵育過夜,室溫孵育二抗1 h,蛋白條帶用ECL發(fā)光液顯色,凝膠成像分析系統(tǒng)獲取條帶圖像。
1.10統(tǒng)計學(xué)方法采用SPSS 22.0軟件進行數(shù)據(jù)分析。使用Shapiro-Wilk檢驗分析數(shù)據(jù)的分布,正態(tài)分布的數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較采用單因素方差分析,組間多重比較用LSD-t法。P<0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1各組細(xì)胞增殖活力比較組間比較:與Control組比較,在相同時間點(24 h、48 h和72 h),MS組、MS+sh組和MS+OV組細(xì)胞增殖活力均降低(Plt;0.05);與MS組比較,在相同時間點(24 h、48 h和72 h),MS+sh組細(xì)胞增殖活力均升高,而MS+OV組細(xì)胞增殖活力均降低(P<0.05)。組內(nèi)比較:Control組、MS組和MS+sh組48 h和72 h的細(xì)胞增殖活力相比各自組24 h依次升高(P<0.05);而MS+OV組72 h時細(xì)胞增殖活力較24 h和48 h時升高(P<0.05)。見表1。
2.2各組細(xì)胞超微結(jié)構(gòu)形態(tài)變化Control組線粒體結(jié)構(gòu)正常,線粒體嵴排布密集,呈長條形或橢圓形;與Control組相比,MS+sh組、MS組和MS+OV組線粒體形態(tài)損傷依次加重,表現(xiàn)為線粒體膜發(fā)生皺縮,形態(tài)由長棒形縮為圓形,線粒體嵴明顯減少,MS+sh組、MS組和MS+OV組軟骨細(xì)胞的死亡方式均為鐵死亡。見圖1。
2.3過度機械應(yīng)力對細(xì)胞氧化應(yīng)激和Fe2+水平的影響與Control組相比,MS組的ROS、MDA、Fe2+水平升高,GSH、SOD水平下降(P<0.05);與MS組比較,MS+sh組的ROS、MDA、Fe2+水平下降,GSH、SOD水平升高(P<0.05),MS+OV組的ROS、MDA、Fe2+水平升高,GSH、SOD水平下降(P<0.05),見表2。
2.4各組細(xì)胞蛋白表達水平比較與Control相比,MS組SLC7A11、GPX4、CollagenⅡ、Aggrecan蛋白水平降低,MMP-13、p53蛋白水平升高(P<0.05);與MS組比較,MS+sh組的SLC7A11、GPX4、CollagenⅡ、Aggrecan蛋白水平升高,MMP-13、p53蛋白水平下降(P<0.05);與MS組比較,MS+OV組的SLC7A11、GPX4、CollagenⅡ、Aggrecan蛋白水平降低,MMP-13、p53蛋白水平升高(P<0.05)。見圖2、表3。
3討論
軟骨細(xì)胞是一種機械敏感細(xì)胞,可以將機械信號轉(zhuǎn)化為生化信號,參與調(diào)節(jié)軟骨細(xì)胞的各種生物學(xué)過程[11]。機械應(yīng)力是一把“雙刃劍”,適度的機械應(yīng)力刺激可保護軟骨,維持軟骨穩(wěn)態(tài),而過度的機械應(yīng)力則是OA發(fā)病的重要危險因素之一[12]。越來越多的證據(jù)表明,軟骨細(xì)胞鐵死亡在OA發(fā)病機制中發(fā)揮關(guān)鍵作用[13-15]。然而,過度的機械應(yīng)力和鐵死亡在OA中的作用機制尚不完全明確。
Piezo1作為一種機械敏感的離子通道,能夠?qū)S轉(zhuǎn)化為電或化學(xué)信號,傳遞至胞內(nèi)引起一系列生化反應(yīng)[16]。有研究表明,Piezo1能夠介導(dǎo)軟骨細(xì)胞受到MS所形成的內(nèi)電流,從而證實Piezo1在軟骨細(xì)胞中的信號轉(zhuǎn)導(dǎo)作用[17]。另有研究發(fā)現(xiàn),行全膝關(guān)節(jié)置換術(shù)的OA患者軟骨受損區(qū)的Piezo1蛋白水平顯著升高[18]。以上證據(jù)表明,Piezo1在OA的病理過程中發(fā)揮重要作用。然而,Piezo1與鐵死亡在OA中的關(guān)系尚不清楚。本研究通過在體外成軟骨細(xì)胞中應(yīng)用siRNA-Piezo1和Piezo1過表達以確定Piezo1在細(xì)胞發(fā)生鐵死亡中的作用。結(jié)果發(fā)現(xiàn),過度MS能夠降低細(xì)胞的增殖活力,使線粒體形態(tài)發(fā)生損傷;siRNA-Piezo1能夠在過度MS的基礎(chǔ)上提高細(xì)胞的增殖活力,減輕線粒體損傷,而過表達Piezo1將在過度MS的基礎(chǔ)上進一步降低細(xì)胞的增殖活力,加重線粒體損傷。此外,鐵死亡的過程中伴隨著氧化應(yīng)激水平的加劇。本研究發(fā)現(xiàn),過度MS能夠提高細(xì)胞ROS、MDA的水平,降低GSH、SOD的水平。綜合以上研究結(jié)果說明,過度MS能夠通過Piezo1介導(dǎo)細(xì)胞鐵死亡的發(fā)生。
細(xì)胞鐵死亡過程受到多種蛋白的調(diào)控。SLC7A11作為一種重要的細(xì)胞膜氨基酸轉(zhuǎn)運體,主要通過SLC7A11/GPX4信號通路調(diào)控鐵死亡[19]。GPX4是鐵死亡發(fā)生的關(guān)鍵調(diào)節(jié)因子,能夠通過消除細(xì)胞內(nèi)脂質(zhì)ROS來抵抗鐵死亡[20]。p53是一種典型的抑癌基因,通過轉(zhuǎn)錄的方式抑制SLC7A11的表達,導(dǎo)致胱氨酸轉(zhuǎn)運障礙,抑制GPX4活性,從而使細(xì)胞對鐵死亡的敏感性增加[21]。本研究結(jié)果發(fā)現(xiàn),過度機械應(yīng)力刺激能夠使軟骨細(xì)胞鐵死亡通路中的相關(guān)蛋白發(fā)生明顯變化,p53表達水平升高,SLC7A11和GPX4蛋白表達水平降低,這證實了p53/SLC7A11/GPX4信號通路在軟骨細(xì)胞鐵死亡過程中的關(guān)鍵作用。軟骨細(xì)胞作為軟骨唯一的細(xì)胞成分,參與細(xì)胞外基質(zhì)(ECM)的合成。ECM主要由CollagenⅡ和Aggrecan構(gòu)成[22]。MMP-13在ECM降解過程中起到重要的作用[23-24]。然而,Piezo1與ECM降解之間的關(guān)系尚不清楚。本研究結(jié)果表明,過度機械應(yīng)力刺激能夠通過Piezo1通道蛋白使CollagenⅡ和Aggrecan的表達明顯降低,而MMP-13的表達明顯上升,這表明過度機械刺激能夠促進ECM降解。
綜上所述,本研究結(jié)果表明,過度機械應(yīng)力能夠通過Piezo1通道蛋白介導(dǎo)軟骨細(xì)胞鐵死亡,促進ECM降解,這對理解過度機械應(yīng)力如何導(dǎo)致OA提供了新的理論依據(jù)。
參考文獻
[1]BARNETT R.Osteoarthritis[J].Lancet,2018,391(10134):1985.doi:10.1016/S0140-6736(18)31064-X.
[2]ABRAMOFF B,CALDERA F E.Osteoarthritis:pathology,diagnosis,and treatment options[J].Med Clin North Am,2020,104(2):293-311.doi:10.1016/j.mcna.2019.10.007.
[3]MOLNAR V,MATI?I?V,KODVANJ I,et al.Cytokines and chemokines involved in osteoarthritis pathogenesis[J].Int J MolSci,2021,22(17):9208.doi:10.3390/ijms22179208.
[4]JIANG Y.Osteoarthritis year in review 2021:biology[J].Osteoarthritis Cartilage,2022,30(2):207-215.doi:10.1016/j.joca.2021.11.009.
[5]ARGOTE P F,KAPLAN J T,POON A,et al.Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain,but not stress,to pericellular and cellular regions[J].Osteoarthritis Cartilage,2019,27(12):1822-1830.doi:10.1016/j.joca.2019.07.018.
[6]LAI A,COX C D,CHANDRA SEKAR N,et al.Mechanosensing by Piezo1 and its implications for physiology and various pathologies[J].Biol Rev Camb Philos Soc,2022,97(2):604-614.doi:10.1111/brv.12814.
[7]LEE W,NIMS R J,SAVADIPOUR A,et al.Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis[J].Proc Natl Acad Sci U S A,2021,118(13):e2001611118.doi:10.1073/pnas.2001611118.
[8]孫銘遠(yuǎn),郭文超,賈慶運,等.機械敏感離子通道蛋白Piezo1在骨關(guān)節(jié)炎中的作用研究進展[J].中國骨與關(guān)節(jié)損傷雜志,2024,39(5):496-500.SUN M Y,GUO W C,JIA Q Y,et al.Advances in the role of Piezo1,a mechanosensitive ion channel protein,in osteoarthritis[J].Chin J Bone Joint Injury,2024,39(5):496-500.doi:10.7531/j.issn.1672-9935.2024.05.010.
[9]SUN Y,LENG P,GUO P,et al.G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1[J].Mol Med,2021,27(1):96.doi:10.1186/s10020-021-00360-w.
[10]YAO X,SUN K,YU S,et al.Chondrocyte ferroptosis contribute to the progression of osteoarthritis[J].J Orthop Translat,2021,27:33-43.doi:10.1016/j.jot.2020.09.006.
[11]HE M,LU B,OPOKU M,et al.Metformin prevents or delays the development and progression of osteoarthritis:new insight and mechanism of action[J].Cells,2022,11(19):3012.doi:10.3390/cells11193012.
[12]ASTEPHEN WILSON J L,KOBSAR D.Osteoarthritis year in review 2020:mechanics[J].Osteoarthritis Cartilage,2021,29(2):161-169.doi:10.1016/j.joca.2020.12.009.
[13]YANG J,HU S,BIAN Y,et al.Targeting cell death:pyroptosis,ferroptosis,apoptosis and necroptosis in osteoarthritis[J].Front Cell Dev Biol,2021,9:789948.doi:10.3389/fcell.2021.789948.
[14]SUN K,HOU L,GUO Z,et al.JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy[J].Free Radic Biol Med,2023,200:87-101.doi:10.1016/j.freeradbiomed.2023.03.008.Tianjin Med J,January 2025,Vol.53 No.1
[15]GONG Z,WANG Y,LI L,et al.Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway[J].Food Chem Toxicol,2023,174:113644.doi:10.1016/j.fct.2023.113644.
[16]HUANG H,KAMM R D,LEE R T.Cell mechanics and mechanotransduction:pathways,probes,and physiology[J].Am J Physiol Cell Physiol,2004,287(1):C1-11.doi:10.1152/ajpcell.00559.2003.
[17]SERVIN-VENCES M R,MORONI M,LEWIN G R,et al.Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes[J].Elife,2017,6:e21074.doi:10.7554/eLife.21074.
[18]REN X,ZHUANG H,LI B,et al.Gsmtx4 alleviated osteoarthritis through Piezo1/Calcineurin/NFAT1 signaling axis under excessive mechanical strain[J].Int J Mol Sci,2023,24(4):4022.doi:10.3390/ijms24044022.
[19]LI P,YU J,HUANG F,et al.SLC7A11-associated ferroptosis in acute injury diseases:mechanisms and strategies[J].Eur Rev Med Pharmacol Sci,2023,27(10):4386-4398.doi:10.26355/eurrev_202305_32444.
[20]BERSUKER K,HENDRICKS J M,LI Z,et al.The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J].Nature,2019,575(7784):688-692.doi:10.1038/s41586-019-1705-2.
[21]XU R,WANG W,ZHANG W.Ferroptosis and the bidirectional regulatory factor p53[J].Cell Death Discov,2023,9(1):197.doi:10.1038/s41420-023-01517-8.
[22]劉平舉,唐魁韓,孫立,等.龍膽苦苷對骨性關(guān)節(jié)炎軟骨細(xì)胞外基質(zhì)的影響[J].世界中醫(yī)藥,2024,19(7):957-961.LIU P J,TANG K H,SUN L,et al.Effect of gentiopicroside on extracellular matrix of cartilage cells in osteoarthritis[J].World Chin Med,2024,19(7):957-961.doi:10.3969/j.issn.1673-7202.2024.07.008.
[23]WANG M,SAMPSON E R,JIN H,et al.MMP13 is a critical target gene during the progression of osteoarthritis[J].Arthritis Res Ther,2013,15(1):R5.doi:10.1186/ar4133.
[24]張春虹,黃洪超,劉越,等.基于RNA測序和生物信息學(xué)分析鑒定椎旁肌退變中關(guān)鍵的鐵死亡基因[J].天津醫(yī)藥,2024,52(9):991-995.ZHANG C H,HUANG H C,LIU Y,et al.Identification of key ferroptosis genes in paraspinal muscle degeneration based on RNA sequencing and bioinformatics analysis[J].Tianjin Med J,2024,52(9):991-995.doi:10.11958/20240587.
(2024-09-03收稿2024-11-03修回)
(本文編輯李國琪)