【摘要】 新生兒缺氧缺血性腦損傷(HIBD)是新生兒期神經(jīng)系統(tǒng)損傷的常見原因之一,易導(dǎo)致新生兒高致殘率、高死亡率,其發(fā)病機(jī)制復(fù)雜且在臨床上無特異性治療方法。鐵死亡作為近年新發(fā)現(xiàn)的一種非凋亡性細(xì)胞死亡類型,受到廣泛關(guān)注并逐漸成為研究熱點(diǎn)。關(guān)于鐵死亡與新生兒HIBD的研究逐年增多,大量研究表明鐵死亡與新生兒HIBD的發(fā)生、發(fā)展密切相關(guān)。并且,有研究指出維生素K2,特別是甲萘醌-4(MK-4)可以通過抑制鐵死亡發(fā)揮其神經(jīng)保護(hù)作用。本文簡(jiǎn)要綜述鐵死亡在新生兒HIBD及小膠質(zhì)細(xì)胞中的作用機(jī)制,并展望維生素K2,特別是MK-4通過抑制鐵死亡改善新生兒HIBD預(yù)后的可能,以期提供一種更加經(jīng)濟(jì)、安全且更具針對(duì)性的治療方式。
【關(guān)鍵詞】 腦損傷;鐵死亡;新生兒缺氧缺血性腦損傷;脂質(zhì)過氧化作用;甲萘醌-4;小膠質(zhì)細(xì)胞;綜述
【中圖分類號(hào)】 R 722.1 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2024.0254
Research Progress on the Mechanism of Ferroptosis in Neonatal Hypoxic-ischemic Brain Damage
【Abstract】 Neonatal hypoxic-ischemic brain damage(HIBD)is one of the common causes of neurological injuries in the neonatal period,which is prone to lead to high disability and mortality in newborns,and its pathogenesis is complex and there is no specific treatment in the clinic. Ferroptosis,as a newly discovered type of non-apoptotic cell death in recent years,has received widespread attention and has gradually become a research hotspot. Research on ferroptosis and neonatal HIBD has been increasing year by year,and a large number of studies have shown that ferroptosis is closely related to the occurrence and development of neonatal HIBD. Moreover,it has been pointed out that vitamin K2,especially MK-4,can exert its neuroprotective effect by inhibiting ferroptosis. In this paper,we briefly review the mechanism of ferroptosis in neonatal HIBD and microglia,and look forward to the possibility that vitamin K2,especially MK-4,can improve the prognosis of neonatal HIBD by inhibiting ferroptosis,with the aim of providing a more economical,safer,and more targeted treatment.
【Key words】 Brain injuries;Ferroptosis;Neonatal hypoxic-ischemic brain damage;Lipid peroxidation;MK-4;Microglia;Review
新生兒缺氧缺血性腦損傷(hypoxic-ischemic brain damage,HIBD)指因圍生期窒息引起的全身性低氧血癥和/或腦血流減少,進(jìn)而導(dǎo)致胎兒或新生兒腦損傷,其常帶來不可逆的中樞神經(jīng)系統(tǒng)損傷、腦白質(zhì)損傷,嚴(yán)重危害新生兒健康[1]。新生兒HIBD的發(fā)病機(jī)制復(fù)雜,尚無特異性的治療方法,因此對(duì)于新生兒HIBD的發(fā)病機(jī)制深入探索具有重要意義。
鐵死亡作為一種全新的細(xì)胞死亡機(jī)制,指不受限制的脂質(zhì)過氧化和隨后的質(zhì)膜破裂引起的鐵依賴性細(xì)胞程序性死亡方式,其發(fā)生機(jī)制與谷胱甘肽(glutathione,GSH)代謝、脂質(zhì)過氧化物異常積累和鐵代謝紊亂密切相關(guān)[2]。鐵死亡參與腦缺血再灌注損傷、老年癡呆癥、急性肺損傷等多種疾病的發(fā)生、發(fā)展。研究發(fā)現(xiàn),鐵死亡在新生兒HIBD中發(fā)揮重要作用,并且神經(jīng)炎癥和小膠質(zhì)細(xì)胞鐵積累能夠相互作用,共同促進(jìn)神經(jīng)炎癥的進(jìn)展。
本文圍繞鐵死亡的發(fā)生機(jī)制,鐵死亡在新生兒HIBD及小膠質(zhì)細(xì)胞中的作用機(jī)制展開綜述,并提出甲基萘醌類,又稱維生素K2,特別是甲萘醌-4(menaquinone 4,MK-4)通過抑制鐵死亡改善新生兒HIBD的可能,以期為新生兒HIBD的預(yù)防提供新思路,為今后開展相關(guān)研究提供可行依據(jù)。
本文文獻(xiàn)檢索策略:計(jì)算機(jī)檢索中國(guó)知網(wǎng)(CNKI)、萬方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)、PubMed、Web of Science等數(shù)據(jù)庫(kù),中文檢索詞包括:鐵死亡、新生兒缺氧缺血性腦損傷、甲萘醌-4、脂質(zhì)過氧化、鐵超載、小膠質(zhì)細(xì)胞、治療等檢索詞及其相互組合,英文檢索詞包括:ferroptosis、neonatal hypoxic-ischemic brain damage、MK-4、lipid peroxidation、iron overload、microglia、treat等檢索詞及其相互組合。檢索時(shí)間為建庫(kù)至2024年2月。文獻(xiàn)納入標(biāo)準(zhǔn):(1)研究?jī)?nèi)容為鐵死亡,研究對(duì)象為HIBD模型;(2)與本研究主題相關(guān)的隨機(jī)對(duì)照試驗(yàn)、動(dòng)物實(shí)驗(yàn)研究、臨床研究。排除標(biāo)準(zhǔn):信息數(shù)據(jù)少、重復(fù)發(fā)表、質(zhì)量差的文獻(xiàn)。
1 鐵死亡概述及其發(fā)生機(jī)制
1.1 鐵死亡概述
2012年,DIXON等[2]首次用“ferroptosis”描述一種以依賴鐵的脂質(zhì)過氧化物積累為標(biāo)志的全新的程序性細(xì)胞死亡方式,并將其命名為“鐵死亡”。在細(xì)胞成分上,鐵死亡不同于凋亡、自噬、細(xì)胞焦亡等其他細(xì)胞死亡方式,其主要表現(xiàn)為細(xì)胞內(nèi)鐵離子過度沉積和膜脂質(zhì)過氧化物水平升高[2]。在電鏡下,鐵死亡典型形態(tài)特征為細(xì)胞線粒體超微結(jié)構(gòu)的改變,即線粒體體積減小,雙層膜密度增加以及線粒體嵴減少或消失,細(xì)胞膜斷裂和出泡,但細(xì)胞核大小正常[3-4]。
鐵死亡的標(biāo)志是鐵超載和脂質(zhì)過氧化物生成,其調(diào)節(jié)常涉及細(xì)胞內(nèi)鐵超載、關(guān)鍵脂質(zhì)過氧化物的過度積累以及包括GSH、谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)、鐵死亡抑制蛋白1(ferroptosis suppressor protein 1,F(xiàn)SP1)等在內(nèi)的消除這些脂質(zhì)過氧化物的抗氧化體系的嚴(yán)密調(diào)控。其中,細(xì)胞中的活性氧(reactive oxygen species,ROS)在亞鐵離子(Fe2+)存在下,氧化脂膜上特定的多不飽和脂肪酸(polyunsaturated fatty acid,PUFA)產(chǎn)生脂質(zhì)過氧化物,引起膜損傷,導(dǎo)致細(xì)胞死亡。因此,ROS是鐵死亡的“肇事者”,而構(gòu)成細(xì)胞膜的特定磷脂的過氧化是鐵死亡的關(guān)鍵驅(qū)動(dòng)因素[5]。一旦抗氧化系統(tǒng)發(fā)生故障、鐵超載時(shí),不能及時(shí)清除過度產(chǎn)生的脂質(zhì)過氧化物,就會(huì)引起細(xì)胞死亡。
1.2 鐵死亡發(fā)生機(jī)制
1.2.1 鐵相關(guān)代謝:鐵是人體必需的微量元素,對(duì)生物生存至關(guān)重要。在生理狀態(tài)下,血漿中的Fe3+與載體蛋白轉(zhuǎn)鐵蛋白(transferrin,TF)緊密結(jié)合,然后作用于細(xì)胞表面廣泛表達(dá)的轉(zhuǎn)鐵蛋白受體1(transferrin receptor 1,TFR1)。在細(xì)胞表面組裝完成后,TF-Fe3+-TFR1復(fù)合物通過網(wǎng)格蛋白介導(dǎo)的內(nèi)吞作用內(nèi)化形成內(nèi)吞小體。進(jìn)入胞質(zhì)后,內(nèi)吞小體內(nèi)的低pH值促使Fe3+從內(nèi)吞小體中的TFR1中釋放出來,經(jīng)金屬還原酶前列腺跨膜上皮抗原3(six-transmembrane epithelial antigen of prostate 3,STEAP3)轉(zhuǎn)化為Fe2+,并經(jīng)二價(jià)金屬轉(zhuǎn)運(yùn)體1(bivalent metal transporter 1,DMT1)轉(zhuǎn)移到胞質(zhì)中[6-7]。其中,大部分Fe2+通過細(xì)胞膜上的鐵轉(zhuǎn)運(yùn)蛋白(ferroportin,F(xiàn)PN)輸出到循環(huán)系統(tǒng)。而不穩(wěn)定且不參與生物過程的鐵可以儲(chǔ)存于鐵蛋白[由鐵蛋白重鏈1(ferritin heavy chain 1,F(xiàn)TH1)、鐵蛋白輕鏈(ferritin light chain,F(xiàn)TL)編碼],其余部分參與相關(guān)細(xì)胞生物代謝過程[8]。
然而,不適當(dāng)?shù)牡突蚋邼舛鹊蔫F有時(shí)可能會(huì)導(dǎo)致疾病發(fā)生。當(dāng)鐵在某些區(qū)室(例如溶酶體)中的不當(dāng)積累或發(fā)生鐵蛋白自噬均會(huì)增加所謂的不穩(wěn)定鐵池中的氧化還原活性鐵,從而驅(qū)動(dòng)鐵死亡的過氧化反應(yīng)[9]。嚴(yán)重缺乏TF會(huì)導(dǎo)致組織鐵超載。同時(shí),一旦血漿中鐵水平超過TF的鐵緩沖能力,造成松散結(jié)合的且有毒形式的非轉(zhuǎn)鐵蛋白結(jié)合鐵(non-transferrin-bound iron,NTBI)積累,就有可能發(fā)生鐵毒性[10]。
1.2.2 脂質(zhì)過氧化物的生成:脂質(zhì)過氧化物的異常累積是鐵死亡最主要的誘發(fā)因素。細(xì)胞內(nèi)脂質(zhì)過氧化物的生成調(diào)控復(fù)雜且精密。在細(xì)胞內(nèi),主要有兩種產(chǎn)生脂質(zhì)過氧化的反應(yīng):其一是脂肪酸酶催化的脂質(zhì)過氧化反應(yīng);其二指游離Fe2+誘導(dǎo)的芬頓反應(yīng)參與的脂質(zhì)過氧化。
(1)脂肪酸酶催化的脂質(zhì)過氧化反應(yīng)具體是指PUFA會(huì)在一系列酶的催化下被轉(zhuǎn)化為高活性的脂質(zhì)過氧化物(phospholipid hydroperoxide,PL-PUFA-OOH)。研究表明,PUFA主要的來源除了環(huán)境和飲食,還包含細(xì)胞內(nèi)廣泛存在的花生四烯酸(arachidonic acid,AA)和亞油酸。PUFA首先在?;o酶A合成酶長(zhǎng)鏈家族蛋白4(Acyl-CoA synthetase long chain family protein 4,ACSL4)作用下被乙?;癁橹]o酶A酯(PUFA-CoA),活化后的脂質(zhì)分子在溶血卵磷脂?;D(zhuǎn)移酶3(lysophosphatidyltransferase 3,LPCAT3)的催化下與磷脂酰膽堿發(fā)生酯化反應(yīng)生成具有多不飽和脂肪酸的磷脂(polyunsaturated fatty acid-containing phospholipid,PUFA-PL),之后在脂氧合酶蛋白家族(lipoxygenases,LOXs)催化下發(fā)生脂質(zhì)過氧化[11-12]。參與反應(yīng)的相關(guān)酶均在鐵死亡過程中發(fā)揮重要的作用,其中ACSL4是鐵死亡中重要的指示蛋白,而含鐵LOXs尤其是其中的LOX-15和LOX-12是引發(fā)脂質(zhì)過氧化的關(guān)鍵酶,也是很多鐵死亡誘導(dǎo)劑的靶標(biāo)[13]。而細(xì)胞內(nèi)脂氧合酶催化反應(yīng)溫和,代謝自身脂質(zhì)新陳代謝,但是在一些病理情況下,會(huì)與芬頓反應(yīng)聯(lián)合引起鐵死亡。
(2)另外一種發(fā)生脂質(zhì)過氧化的過程指游離Fe2+誘導(dǎo)的芬頓反應(yīng)。細(xì)胞內(nèi)的鐵主要以含有Fe3+的轉(zhuǎn)運(yùn)蛋白進(jìn)行物質(zhì)交換,通過細(xì)胞膜上的TFR運(yùn)送進(jìn)入細(xì)胞[14]。內(nèi)吞小體的酸性環(huán)境致Fe3+游離出來并由鐵還原酶(如STEAP3)還原為Fe2+[6-7]。細(xì)胞中的Fe2+與過氧化物混合時(shí),會(huì)具有極其強(qiáng)烈的氧化性,兩者反應(yīng)后生成Fe3+和過氧自由基。一旦上述合成的PUFA-PL融入膜環(huán)境,生成的過氧自由基就會(huì)進(jìn)攻脂質(zhì)分子,將其氧化為PL-PUFA-OOH[15]。在正常細(xì)胞內(nèi),由于鐵離子的濃度保持一定的水平,脂質(zhì)過氧化物處于穩(wěn)態(tài)中。而當(dāng)細(xì)胞內(nèi)的鐵離子突然激增,芬頓反應(yīng)會(huì)大大加劇,引起脂質(zhì)過氧化物過度積累,最終導(dǎo)致細(xì)胞發(fā)生鐵死亡。
1.2.3 脂質(zhì)過氧化物的清除:體內(nèi)過氧化PUFA-PL的清除有4種途徑:GPX4/GSH軸、FSP1/輔酶Q10(coenzyme Q10,CoQ10)軸(FSP1/CoQ10軸)、GTP環(huán)水解酶1(GTP cyclohydrolase 1,GCH1)/四氫生物蝶呤(tetrahydrobiopterin,BH4)軸(GCH1/BH4軸)、二氫乳清酸脫氫酶(dihydroorotate dehydrogenase,DHODH)/CoQ10軸(DHODH/CoQ10軸)[5,16-18]。
細(xì)胞清除脂質(zhì)過氧化物主要依靠GPX4的作用,其以GSH為底物將脂質(zhì)過氧化物還原成正常的磷脂分子。此外,細(xì)胞通過胱氨酸-谷氨酸反向轉(zhuǎn)運(yùn)體(system Xc-)從細(xì)胞外攝取胱氨酸,以此產(chǎn)生細(xì)胞內(nèi)半胱氨酸,而半胱氨酸又是細(xì)胞內(nèi)生物合成還原性物質(zhì)GSH的重要原料。故system Xc-是鐵死亡調(diào)節(jié)的中樞[5]。研究提示,通過調(diào)節(jié)system Xc-可調(diào)控細(xì)胞鐵死亡進(jìn)程。CD8+ T細(xì)胞衍生的干擾素g(interferon-g,IFN-g)在免疫治療后通過下調(diào)溶質(zhì)載體家族 7A 成員 11(solute carrier family 7a member 11,SLC7A11)、溶質(zhì)載體家族 3 成員 2(solute carrier family 3 member 2,SLC3A2)(編碼system Xc-的兩個(gè)基因)的表達(dá)可觸發(fā)癌細(xì)胞鐵死亡[19]。p53腫瘤抑制因子通過抑制SLC7A11基因的轉(zhuǎn)錄使細(xì)胞對(duì)鐵死亡敏感[20]。相反,核因子E2相關(guān)因子2(nuclear factor E2-related factor 2,NRF2)上調(diào)SLC7A11可以防止細(xì)胞鐵死亡[21]。由于system Xc-/GSH/GPX4軸是鐵死亡的經(jīng)典途徑,且GPX4是此途徑中唯一能將脂質(zhì)過氧化物還原成脂質(zhì)的酶,因此GPX4在鐵死亡中具有重要的地位。
隨著研究的進(jìn)展,除了最經(jīng)典的抗氧化系統(tǒng)GPX4/GSH軸,研究者們還發(fā)現(xiàn)細(xì)胞內(nèi)存在以CoQ10為底物的還原途徑,反應(yīng)過程中的FSP1將CoQ10(又稱泛醌)再生為還原CoQ10——泛醇(ubiquinol,CoQH2),后者抑制PL-PUFA-OOH的生成。并且FSP1/CoQ10軸獨(dú)立于GPX4/GSH軸[18,22]。類似于FSP1/CoQ10軸,研究表明BH4通過兩種途徑抑制PL-PUFA-OOH的生成,一是生成CoQH2,二是重塑脂質(zhì)[17]。其中GCH1作為BH4生物合成的限速酶,可參與調(diào)控鐵死亡進(jìn)程。目前又有新的研究提示,DHODH/CoQ10軸與線粒體GPX4并行運(yùn)作,但獨(dú)立于胞質(zhì)GPX4或FSP1[23]。其中,DHODH是一種類似于FSP1的CoQ10還原黃素蛋白,通過將CoQ10還原為CoQH2和減少維生素K來抑制線粒體內(nèi)膜的鐵死亡。并且DHODH可調(diào)控細(xì)胞對(duì)GPX4抑制劑——RSL3的敏感性。
2 鐵死亡與新生兒HIBD
新生兒HIBD是指產(chǎn)前、產(chǎn)時(shí)和/或新生兒窒息引起的部分或完全缺氧、腦血流減少或暫停而導(dǎo)致胎兒或新生兒腦損傷[1]。其中,各種原因引起的腦組織缺氧缺血強(qiáng)烈激活大腦中的免疫細(xì)胞,主要引起小膠質(zhì)細(xì)胞活化,從而啟動(dòng)炎癥級(jí)聯(lián)反應(yīng)[24]。當(dāng)受到缺氧缺血刺激后,活化的小膠質(zhì)細(xì)胞釋放過量的促炎因子,包括腫瘤壞死因子α(tumor necrosis factor α,TNF-α)、白介素(interleukin,IL)-1β、IL-6[25]。持續(xù)的慢性炎癥激活會(huì)加速甚至導(dǎo)致神經(jīng)變性[26]。
2.1 新生兒HIBD發(fā)生鐵死亡的相關(guān)機(jī)制
新生兒HIBD后,腦組織存在鐵過量沉積現(xiàn)象。30年前,DIETRICH等[27]通過完善HIBD患兒顱腦磁共振發(fā)現(xiàn)嚴(yán)重缺氧缺血性損傷后,腦室周圍白質(zhì)存在明顯的出血點(diǎn),基底神經(jīng)節(jié)出現(xiàn)鐵沉積。之后,HU等[28]在3日齡新生大鼠HIBD動(dòng)物模型中發(fā)現(xiàn),大腦中鐵沉積的程度隨時(shí)間發(fā)生變化,并在缺氧缺血后3 d鐵染色最顯著。缺氧缺血活化缺氧誘導(dǎo)因子(hypoxia-inducible factor,HIF),其可在上調(diào)相關(guān)鐵調(diào)節(jié)基因的同時(shí)導(dǎo)致細(xì)胞處于鐵死亡易感狀態(tài)[29],故缺氧缺血細(xì)胞鐵濃度的關(guān)鍵調(diào)節(jié)因子是HIF。同時(shí),缺氧缺血、不成熟的抗氧化系統(tǒng)導(dǎo)致新生兒積累過多的有毒形式的NTBI[30-31],并且,ROS水平的升高將鐵從鐵蛋白和紅細(xì)胞中釋放出來,增加血液中游離鐵濃度[32]。此外,缺氧上調(diào)血紅素加氧酶1(heme oxygenase-1,HO-1)表達(dá)量,引起血紅素降解并產(chǎn)生Fe2+,進(jìn)一步促使鐵異常增多[33]。除了自身破壞導(dǎo)致鐵濃度升高,缺氧誘導(dǎo)TFR表達(dá)上調(diào),引起鐵攝取增加[34]。隨著鐵濃度升高,細(xì)胞發(fā)生劇烈的芬頓反應(yīng),以非轉(zhuǎn)鐵蛋白結(jié)合鐵及游離Fe2+為底物產(chǎn)生自由基,導(dǎo)致脂質(zhì)過氧化引發(fā)鐵死亡。
缺氧缺血導(dǎo)致大腦產(chǎn)生過量的ROS,導(dǎo)致氧化應(yīng)激。病理情況下,由于抗氧化系統(tǒng)發(fā)生障礙,不能及時(shí)清除ROS,導(dǎo)致脂質(zhì)過氧化。目前普遍認(rèn)為,氧化應(yīng)激與新生兒腦損傷密切相關(guān)。在一項(xiàng)研究中,通過使用一種名為依達(dá)拉酮的自由基清除劑,發(fā)現(xiàn)其可通過抑制氧化應(yīng)激進(jìn)而抑制HIBD新生大鼠的脂質(zhì)過氧化[35]??梢哉J(rèn)為,脂質(zhì)過氧化由ROS介導(dǎo),是氧化應(yīng)激的主要成因[36]。研究發(fā)現(xiàn),不論在HIBD新生大鼠模型的腦組織中還是在窒息新生兒的臍帶血中,隨著腦損傷時(shí)間的延長(zhǎng),脂質(zhì)過氧化物的最終產(chǎn)物丙二醛含量逐漸升高,且其表達(dá)量與HIBD損傷程度密切相關(guān)[37-38]。
有臨床研究發(fā)現(xiàn),HIBD后的患兒腦代謝物中谷氨酸濃度升高[39]。其中,谷氨酸是一種興奮性神經(jīng)遞質(zhì),在缺氧細(xì)胞除極化時(shí)從突觸前囊泡釋放出來[40]。在大腦內(nèi),大部分谷氨酸轉(zhuǎn)運(yùn)蛋白1(glutamate transporter-1,GLT1)主要在成熟星形膠質(zhì)細(xì)胞中表達(dá)。當(dāng)缺氧缺血時(shí),會(huì)激活一系列生化事件如釋放谷氨酸,而部分未被成熟星形膠質(zhì)細(xì)胞重新攝取的谷氨酸滯留在細(xì)胞外,導(dǎo)致細(xì)胞外谷氨酸的異常積累。過多的谷氨酸會(huì)損害未成熟的少突膠質(zhì)細(xì)胞和神經(jīng)元,引起基底神經(jīng)節(jié)、腦室周圍白質(zhì)損傷[41]。除此之外,SLC7A11介導(dǎo)細(xì)胞外胱氨酸和細(xì)胞內(nèi)谷氨酸的交換,并支持GSH生物合成。由于異常滯留在細(xì)胞外的谷氨酸不能及時(shí)進(jìn)入細(xì)胞內(nèi),導(dǎo)致細(xì)胞不能攝取足夠的胱氨酸,還原型GSH的合成減少使得抗氧化系統(tǒng)不完善。因此,YANG等[42]的研究中發(fā)現(xiàn),缺氧能夠激活HIF-1α,HIF-1α可以增強(qiáng)膜谷氨酸轉(zhuǎn)運(yùn)蛋白基因溶質(zhì)載體家族1成員1(solute carrier family 1 member 1,SLC1A1,一種Na+依賴性谷氨酸轉(zhuǎn)運(yùn)蛋白基因)的轉(zhuǎn)錄,后者通過將細(xì)胞外谷氨酸循環(huán)到細(xì)胞中,促進(jìn)SLC7A11介導(dǎo)的胱氨酸攝取,進(jìn)而提高細(xì)胞鐵死亡抗性。并且在HIBD大鼠腦組織中,研究發(fā)現(xiàn)膠質(zhì)細(xì)胞增多、ROS類水平升高以及SLC7A11、GSH和GPX4表達(dá)下降,最終導(dǎo)致細(xì)胞抗氧化能力下降,引起大腦皮質(zhì)脂質(zhì)過氧化[43]。ZHU等[44]研究發(fā)現(xiàn)缺氧缺血顯著上調(diào)Toll樣受體4(TLR4,廣泛分布于神經(jīng)細(xì)胞,觸發(fā)炎癥通路的激活)。使用TLR4抑制劑可上調(diào)海馬組織中的SLC7A11和GPX4的表達(dá),早期抑制TLR4信號(hào)傳導(dǎo)可能通過減少神經(jīng)元丟失、減少神經(jīng)膠質(zhì)細(xì)胞活化、改善突觸可塑性來改善新生兒HIBD的長(zhǎng)期預(yù)后[44-45]。
2.2 鐵死亡與小膠質(zhì)細(xì)胞
小膠質(zhì)細(xì)胞是大腦的主要免疫細(xì)胞,負(fù)責(zé)大腦的先天性免疫,在維持中樞神經(jīng)系統(tǒng)平衡方面發(fā)揮重要作用。缺氧缺血誘發(fā)大腦炎癥反應(yīng),同時(shí),興奮性毒性損傷的神經(jīng)元可以引起小膠質(zhì)細(xì)胞活化,小膠質(zhì)細(xì)胞被激活后產(chǎn)生過多的細(xì)胞因子,最終導(dǎo)致神經(jīng)元死亡。在大腦發(fā)育和病理過程中廣泛存在神經(jīng)元死亡,并且伴隨著幾種新的細(xì)胞死亡形式的出現(xiàn),鐵死亡與小膠質(zhì)細(xì)胞之間的相關(guān)研究逐年增多[46-47]。研究表明,神經(jīng)炎癥和小膠質(zhì)細(xì)胞的鐵積累相互促進(jìn),抑制小膠質(zhì)細(xì)胞的鐵積累可以防止神經(jīng)炎癥。并且缺氧后,小膠質(zhì)細(xì)胞發(fā)生鐵積累,會(huì)進(jìn)一步導(dǎo)致少突膠質(zhì)細(xì)胞死亡和軸突腫脹,加速神經(jīng)元死亡[48]。FERNáNDEZ-MENDíVIL等[49]研究發(fā)現(xiàn),給予炎癥刺激后,小膠質(zhì)細(xì)胞中過度表達(dá)的HO-1會(huì)導(dǎo)致鐵相關(guān)代謝蛋白改變,促進(jìn)鐵積累,誘導(dǎo)鐵死亡。CUI等[50]研究發(fā)現(xiàn),在腦組織缺血后早期階段,由HIF-1α介導(dǎo)的ACSL4的下降,不僅減輕脂質(zhì)過氧化,還抑制小膠質(zhì)細(xì)胞中促炎細(xì)胞因子的產(chǎn)生。其中,HIF-1α負(fù)向調(diào)節(jié)ACSL4表達(dá)的機(jī)制是與其啟動(dòng)子結(jié)合[51]。RYAN等[52]研究發(fā)現(xiàn),相比較神經(jīng)元和星形膠質(zhì)細(xì)胞,小膠質(zhì)細(xì)胞對(duì)鐵死亡可能更易感。作者還發(fā)現(xiàn)在鐵死亡刺激后,只有小膠質(zhì)細(xì)胞的FTH1表達(dá)上調(diào),其他神經(jīng)細(xì)胞的FTH1表達(dá)沒有顯著差異。并且在不同刺激因素下,小膠質(zhì)細(xì)胞可被激活成促炎性M1表型或抗炎性M2表型[53-54]。其中M2型小膠質(zhì)細(xì)胞對(duì)RSL3誘導(dǎo)的鐵死亡比M1型更敏感[55]。因此,小膠質(zhì)細(xì)胞的鐵積累與神經(jīng)炎癥關(guān)系密切,提示今后可以嘗試從抑制小膠質(zhì)細(xì)胞鐵死亡角度來探討減輕神經(jīng)炎癥的新靶點(diǎn)。
3 鐵死亡與新生兒HIBD的相關(guān)治療
在腦缺血再灌注損傷、腦室周圍白質(zhì)軟化癥、帕金森病、創(chuàng)傷性腦損傷等多種神經(jīng)系統(tǒng)疾病中均發(fā)現(xiàn)鐵死亡的存在[56-58]。越來越多的研究表明鐵死亡的相關(guān)機(jī)制,如脂質(zhì)過氧化、線粒體功能障礙等與新生兒HIBD關(guān)系密切,通過抑制鐵死亡有望改善腦損傷嚴(yán)重程度[58]。研究發(fā)現(xiàn),小膠質(zhì)細(xì)胞具有較高的鐵儲(chǔ)存能力,可在疾病中累積鐵,并且能夠提高細(xì)胞對(duì)鐵死亡的敏感性。使用抗氧化性的鐵死亡抑制劑(ferroptosis inhibitors-1,F(xiàn)ER-1)或鐵螯合劑如去鐵胺(deferoxamine,DFO)均可部分逆轉(zhuǎn)小膠質(zhì)細(xì)胞帶來的額外神經(jīng)毒性[52]。GOU等[59]通過給新生大鼠HIBD模型外源性注射褪黑素,可有效抑制神經(jīng)元鐵死亡,促進(jìn)海馬神經(jīng)元的存活,進(jìn)而改善HIBD大鼠的長(zhǎng)期學(xué)習(xí)和記憶能力;而使用GPX4抑制劑RSL3處理可消除褪黑素的保護(hù)作用。此外,研究表明甘草酸通過高遷移率族蛋白B1(high mobility group box-1 protein,HMGB1)/GPX4途徑抑制新生大鼠神經(jīng)元鐵死亡和氧化應(yīng)激,減少線粒體損傷,改善HIBD中的神經(jīng)炎癥,減輕HIBD[60]。LI等[61]研究發(fā)現(xiàn),在7日齡HIBD大鼠模型中,鐵死亡由沉默信息調(diào)節(jié)因子 sirtuin 1(silent information regulator sirtuin 1,SIRT1)/NRF2/GPX4信號(hào)通路介導(dǎo)發(fā)生,給予FER-1有效減輕因缺氧缺血所致腦萎縮。YANG等[62]對(duì)谷氨酸損傷后的HT22小鼠海馬神經(jīng)元細(xì)胞研究發(fā)現(xiàn),紅景天苷上調(diào)GPX4和SLC7A11蛋白表達(dá),通過激活NRF2/HO-1信號(hào)通路來減輕神經(jīng)元鐵死亡。
早有報(bào)道稱維生素K具有抗氧化作用。由于維生素K與CoQ結(jié)構(gòu)的相似性,最新的研究表明FSP1能夠?qū)⒕S生素K還原為維生素K對(duì)苯二酚(vitamin K hydroquinone,VKH2),通過捕獲氧自由基來抗氧化、抑制磷脂過氧化物生成[63]。研究中,使用的維生素K2形式主要是MK-4,提示MK-4與鐵死亡密切相關(guān)。
4 小結(jié)與展望
目前,新生兒HIBD仍是導(dǎo)致新生兒死亡的主要原因之一。由于發(fā)病機(jī)制不明和暫無特效治療方法,HIBD遺留的神經(jīng)系統(tǒng)后遺癥嚴(yán)重?fù)p害患兒的生活質(zhì)量,且給家庭及社會(huì)增加不可預(yù)計(jì)的負(fù)擔(dān)。本文簡(jiǎn)要介紹鐵死亡的發(fā)生機(jī)制,鐵死亡在新生兒HIBD及小膠質(zhì)細(xì)胞中的作用機(jī)制,并提出MK-4通過抑制鐵死亡改善新生兒HIBD的可能,以期為新生兒HIBD的預(yù)防提供新思路,為今后開展相關(guān)研究提供可行依據(jù)。臨床中HIBD患兒病情多較為復(fù)雜,且臨床試驗(yàn)充滿不確定性,因此積極開展科學(xué)嚴(yán)謹(jǐn)?shù)膭?dòng)物實(shí)驗(yàn)進(jìn)一步推動(dòng)臨床應(yīng)用不可或缺。雖然現(xiàn)有部分動(dòng)物實(shí)驗(yàn)表明MK-4是一種有效的鐵死亡抑制劑,但在未來實(shí)驗(yàn)研究和臨床應(yīng)用中仍存在許多問題需要解決,如對(duì)于缺氧狀態(tài)下的小膠質(zhì)細(xì)胞來說,MK-4是否可以通過激活NRF2/HIF-1α促進(jìn)鐵蛋白形成特別是FTH1,通過調(diào)控不穩(wěn)定鐵池進(jìn)而減輕鐵超載,減輕鐵死亡損傷呢?這些問題都值得進(jìn)一步思考并探索,以期提供充足的實(shí)驗(yàn)數(shù)據(jù)指出抑制鐵死亡可以改善新生兒HIBD預(yù)后,使通過使用針對(duì)性藥物抑制鐵死亡改善新生兒HIBD這一假設(shè)成為可能,那么這將會(huì)令新生兒HIBD治療更加安全有效、經(jīng)濟(jì)。
參考文獻(xiàn)
陳小娜,姜毅. 2018昆士蘭臨床指南:缺氧缺血性腦病介紹[J]. 中華新生兒科雜志(中英文),2019,34(1):77-78. DOI:10.3760/cma.j.issn.2096-2932.2019.01.019.
DIXON S J,LEMBERG K M,LAMPRECHT M R,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072. DOI:10.1016/j.cell.2012.03.042.
MOU Y H,WANG J,WU J C,et al. Ferroptosis,a new form of cell death:opportunities and challenges in cancer[J]. J Hematol Oncol,2019,12(1):34. DOI:10.1186/s13045-019-0720-y.
YAN H F,ZOU T,TUO Q Z,et al. Ferroptosis:mechanisms and links with diseases[J]. Signal Transduct Target Ther,2021,
6(1):49. DOI:10.1038/s41392-020-00428-9.
STOCKWELL B R,F(xiàn)RIEDMANN ANGELI J P,BAYIR H,et al. Ferroptosis:a regulated cell death nexus linking metabolism,redox biology,and disease[J]. Cell,2017,171(2):273-285. DOI:10.1016/j.cell.2017.09.021.
WANG Z H,GUO R,TRUDEAU S J,et al. CYB561A3 is the key lysosomal iron reductase required for Burkitt B-cell growth and survival[J]. Blood,2021,138(22):2216-2230. DOI:10.1182/blood.2021011079.
MENG F J,F(xiàn)LEMING B A,JIA X,et al. Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases[J]. Blood Adv,2022,6(6):1692-1707. DOI:10.1182/bloodadvances.2021005609.
MUCKENTHALER M U,RIVELLA S,HENTZE M W,et al. A red carpet for iron metabolism[J]. Cell,2017,168(3):344-361. DOI:10.1016/j.cell.2016.12.034.
BROWN C W,AMANTE J J,CHHOY P,et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell,2019,51(5):575-586.e4. DOI:10.1016/j.devcel.2019.10.007.
VALI S W,LINDAHL P A. Might nontransferrin-bound iron in blood plasma and sera be a nonproteinaceous high-molecular-mass FeⅢ aggregate?[J]. J Biol Chem,2022,298(12):102667. DOI:10.1016/j.jbc.2022.102667.
KAGAN V E,MAO G W,QU F,et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol,2017,13(1):81-90. DOI:10.1038/nchembio.2238.
DOLL S,PRONETH B,TYURINA Y Y,et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol,2017,13(1):91-98. DOI:10.1038/nchembio.2239.
YANG W S,KIM K J,GASCHLER M M,et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci USA,2016,113(34):E4966-4975. DOI:10.1073/pnas.1603244113.
CHENG Y F,ZAK O,AISEN P,et al. Structure of the human transferrin receptor-transferrin complex[J]. Cell,2004,
116(4):565-576. DOI:10.1016/s0092-8674(04)00130-8.
LEI P X,BAI T,SUN Y L. Mechanisms of ferroptosis and relations with regulated cell death:a review[J]. Front Physiol,2019,10:139. DOI:10.3389/fphys.2019.00139.
MAO C,LIU X G,ZHANG Y L,et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature,2021,593(7860):586-590. DOI:10.1038/s41586-021-03539-7.
KRAFT V A N,BEZJIAN C T,PFEIFFER S,et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci,2020,6(1):41-53. DOI:10.1021/acscentsci.9b01063.
BERSUKER K,HENDRICKS J M,LI Z P,et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature,2019,575(7784):688-692. DOI:10.1038/s41586-019-1705-2.
WANG W M,GREEN M,CHOI J E,et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature,2019,569(7755):270-274. DOI:10.1038/s41586-019-1170-y.
JIANG L,KON N,LI T Y,et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature,2015,
520(7545):57-62. DOI:10.1038/nature14344.
CHEN D L,TAVANA O,CHU B,et al. NRF2 is a major target of ARF in p53-independent tumor suppression[J]. Mol Cell,2017,68(1):224-232.e4. DOI:10.1016/j.molcel.2017.09.009.
DOLL S,F(xiàn)REITAS F P,SHAH R,et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature,2019,
575(7784):693-698. DOI:10.1038/s41586-019-1707-0.
MISHIMA E,NAKAMURA T,ZHENG J S,et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition[J]. Nature,2023,619(7968):E9-18. DOI:10.1038/s41586-023-06269-0.
WU X,WAN T,GAO X Y,et al. Microglia pyroptosis:a candidate target for neurological diseases treatment[J]. Front Neurosci,2022,16:922331. DOI:10.3389/fnins.2022.922331.
SáNCHEZ-SARASúA S,F(xiàn)ERNáNDEZ-PéREZ I,ESPINOSA-FERNáNDEZ V,et al. Can we treat neuroinflammation in Alzheimer's disease?[J]. Int J Mol Sci,2020,21(22):8751. DOI:10.3390/ijms21228751.
HANSLIK K L,ULLAND T K. The role of microglia and the Nlrp3 inflammasome in Alzheimer's disease[J]. Front Neurol,2020,11:570711. DOI:10.3389/fneur.2020.570711.
DIETRICH R B,JR BRADLEY W G. Iron accumulation in the basal Ganglia following severe ischemic-anoxic insults in children[J]. Radiology,1988,168(1):203-206. DOI:10.1148/radiology.168.1.3380958.
HU D W,ZHANG G,LIN L,et al. Dynamic changes in brain iron metabolism in neonatal rats after hypoxia-ischemia[J]. J Stroke Cerebrovasc Dis,2022,31(4):106352. DOI:10.1016/j.jstrokecerebrovasdis.2022.106352.
SINGHAL R,MITTA S R,DAS N K,et al. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron[J]. J Clin Invest,2021,131(12):e143691. DOI:10.1172/JCI143691.
ZHANG H,HE Y,WANG J X,et al. MiR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol,2020,29:101402. DOI:10.1016/j.redox.2019.101402.
SILVA A M N,RANGEL M. The(bio)chemistry of non-transferrin-bound iron[J]. Molecules,2022,27(6):1784. DOI:10.3390/molecules27061784.
WANG Y F,WU Y N,LI T,et al. Iron metabolism and brain development in premature infants[J]. Front Physiol,2019,10:463. DOI:10.3389/fphys.2019.00463.
MIYAMOTO H D,IKEDA M,IDE T,et al. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury[J]. JACC Basic Transl Sci,2022,7(8):800-819. DOI:10.1016/j.jacbts.2022.03.012.
TANG L J,ZHOU Y J,XIONG X M,et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion[J]. Free Radic Biol Med,2021,162:339-352. DOI:10.1016/j.freeradbiomed.2020.10.307.
NOOR J I,IKEDA T,UEDA Y,et al. A free radical scavenger,edaravone,inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats[J]. Am J Obstet Gynecol,2005,193(5):1703-1708. DOI:10.1016/j.ajog.2005.03.069.
CHEN S J,ZHANG J,ZHOU T,et al. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m5C modification of SLC7A11 mRNA[J]. Redox Biol,2024,69:102975. DOI:10.1016/j.redox.2023.102975.
ZHU H,HAN X,JI D F,et al. Estrogen inhibits lipid peroxidation after hypoxic-ischemic brain damage in neonatal rats[J]. Neural Regen Res,2012,7(31):2424-2431. DOI:10.3969/j.issn.1673-5374.2012.31.003.
EL BANA S M,MAHER S E,GABER A F,et al. Serum and urinary malondialdehyde(MDA),uric acid,and protein as markers of perinatal asphyxia[J]. Electron Physician,2016,
8(7):2614-2619. DOI:10.19082/2614.
SHIBASAKI J,AIDA N,MORISAKI N,et al. Changes in brain metabolite concentrations after neonatal hypoxic-ischemic encephalopathy[J]. Radiology,2018,288(3):840-848. DOI:10.1148/radiol.2018172083.
BERGER R,GARNIER Y. Perinatal brain injury[J]. J Perinat Med,2000,28(4):261-285. DOI:10.1515/jpm.2000.034.
LAI P C,HUANG Y T,WU C C,et al. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats[J]. J Biomed Sci,2011,18(1):69. DOI:10.1186/1423-0127-18-69.
YANG Z,SU W,WEI X Y,et al. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1[J]. Cell Rep,2023,42(8):112945. DOI:10.1016/j.celrep.2023.112945.
LIN W,ZHANG T L,ZHENG J Y,et al. Ferroptosis is involved in hypoxic-ischemic brain damage in neonatal rats[J]. Neuroscience,2022,487:131-142. DOI:10.1016/j.neuroscience.2022.02.013.
ZHU K Y,ZHU X,SUN S H,et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Exp Neurol,2021,345:113828. DOI:10.1016/j.expneurol.2021.113828.
TANG Z,CHENG S W,SUN Y Y,et al. Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity[J]. Exp Neurol,2019,321:113039. DOI:10.1016/j.expneurol.2019.113039.
FRICKER M,TOLKOVSKY A M,BORUTAITE V,et al. Neuronal cell death[J]. Physiol Rev,2018,98(2):813-880. DOI:10.1152/physrev.00011.2017.
MANGALMURTI A,LUKENS J R. How neurons die in Alzheimer's disease:implications for neuroinflammation[J]. Curr Opin Neurobiol,2022,75:102575. DOI:10.1016/j.conb.2022.102575.
RATHNASAMY G,LING E G,KAUR C. Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species[J]. J Neurosci,2011,31(49):17982-17995. DOI:10.1523/JNEUROSCI.2250-11.2011.
FERNáNDEZ-MENDíVIL C,LUENGO E,TRIGO-ALONSO P,et al. Protective role of microglial HO-1 blockade in aging:implication of iron metabolism[J]. Redox Biol,2021,38:101789. DOI:10.1016/j.redox.2020.101789.
CUI Y,ZHANG Y,ZHAO X L,et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J]. Brain Behav Immun,2021,93:312-321. DOI:10.1016/j.bbi.2021.01.003.
WANG Y,ZHANG M H,BI R,et al. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury[J]. Redox Biol,2022,51:102262. DOI:10.1016/j.redox.2022.102262.
RYAN S K,ZELIC M,HAN Y N,et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration[J]. Nat Neurosci,2023,26(1):12-26. DOI:10.1038/s41593-022-01221-3.
YU H Y,CHANG Q,SUN T,et al. Metabolic reprogramming and polarization of microglia in Parkinson's disease:role of inflammasome and iron[J]. Ageing Res Rev,2023,90:102032. DOI:10.1016/j.arr.2023.102032.
KAPRALOV A A,YANG Q,DAR H H,et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death[J]. Nat Chem Biol,2020,16(3):278-290. DOI:10.1038/s41589-019-0462-8.
GAO S Q,ZHOU L Z,LU J N,et al. Cepharanthine attenuates early brain injury after subarachnoid hemorrhage in mice via inhibiting 15-lipoxygenase-1-mediated microglia and endothelial cell ferroptosis[J]. Oxid Med Cell Longev,2022,2022:4295208. DOI:10.1155/2022/4295208.
KENNY E M,F(xiàn)IDAN E,YANG Q,et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury[J]. Crit Care Med,2019,47(3):410-418. DOI:10.1097/CCM.0000000000003555.
AGUIRRE C A,CONCETTA MORALE M,PENG Q,et al. Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson's disease increase cellular susceptibility to oxidative stress[J]. Brain Behav Immun,2020,88:920-924. DOI:10.1016/j.bbi.2020.04.007.
JIANG X J,STOCKWELL B R,CONRAD M. Ferroptosis:mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol,2021,22(4):266-282. DOI:10.1038/s41580-020-00324-8.
GOU Z X,SU X J,HU X,et al. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway[J]. Brain Res Bull,2020,163:40-48. DOI:10.1016/j.brainresbull.2020.07.011.
ZHU K Y,ZHU X,LIU S Q,et al. Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway[J]. Oxid Med Cell Longev,2022,2022:8438528. DOI:10.1155/2022/8438528.
LI C,WU Z Y,XUE H,et al. Ferroptosis contributes to hypoxic-ischemic brain injury in neonatal rats:role of the SIRT1/Nrf2/GPx4 signaling pathway[J]. CNS Neurosci Ther,2022,28(12):2268-2280. DOI:10.1111/cns.13973.
YANG S X,XIE Z P,PEI T T,et al. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ1-42-induced Alzheimer's disease mice and glutamate-injured HT22 cells[J]. Chin Med,2022,17(1):82. DOI:10.1186/s13020-022-00634-3.
MISHIMA E,ITO J,WU Z J,et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor[J]. Nature,2022,608(7924):778-783. DOI:10.1038/s41586-022-05022-3.