摘" " 要:【目的】富民枳和華中枳具有較強的抗寒能力,是潛在的優(yōu)良柑橘砧木資源。研究這兩個物種的分類地位,以期為它們的保護和利用提供理論依據(jù)?!痉椒ā靠紤]到雜交以及不完全譜系分選的影響,挑選了4個沒有明顯連鎖關(guān)系的核基因片段(CTV.4,HYB,LGT,P12),對富民枳、華中枳和宜昌橙進行直接或克隆測序,重建廣義柑橘屬的系統(tǒng)發(fā)育樹,進一步探究富民枳和華中枳的分類地位?!窘Y(jié)果】4個單基因樹的拓撲結(jié)構(gòu)存在不一致性,富民枳和華中枳在CTV.4基因樹中表現(xiàn)出雜交起源的特性,揭示了這2種植物可能是枳(♀)與柚(♂)的自然雜交種?!窘Y(jié)論】研究為枳屬與狹義柑橘屬之間在自然狀態(tài)下存在基因交流提供了新證據(jù),為富民枳和華中枳的物種起源提供了新見解。這2個物種是狹義柑橘屬與枳屬之間的橋梁,對研究廣義柑橘屬的系統(tǒng)發(fā)育關(guān)系和柑橘育種具有重要價值。因此,它們應(yīng)受到更多的關(guān)注和保護,建議將華中枳列為地方保護物種或與富民枳同等級的保護物種。
關(guān)鍵詞:柑橘屬;分類學(xué);自然雜交;保護物種
中圖分類號:S666 文獻標志碼:A 文章編號:1009-9980(2024)10-1979-11
Taxonomic status of Citrus × pubinervia and Citrus × polytrifolia based on the phylogenetic trees reconstructed by four nuclear genes
WU Yu1, TAO Xiaoning1, YUAN Heqing1, YI Min2, WANG Hui2, YANG Liping1*
(1Research Center of Nature Reserve Regulatory Policy and Technology of Hunan Province/Department of Environmental Science, Changsha Environmental Protection College, Hunan 410007, Changsha, China; 2Hunan Ecological Environment Monitoring Center, Hunan 410007, Changsha, China)
Abstact: 【Objective】 Evergreen trifoliate orange is a special member of Citrus s.l., with its trifoliolate similar to those of C. trifoliata, yet its evergreen features resembles that of species within Citrus s.s. Currently, two types of evergreen trifoliate orange have been established as independent species, including C. × pubinervia and C. × polytrifolia. Evergreen trifoliate oranges possess strong cold resistance and are excellent citrus rootstock resources. However, their taxonomic status has long been disputed since their discovery, hindering research on their conservation and utilization. 【Methods】 Considering the impacts of hybridization and incomplete lineage sorting, four nDNA segments (CTV.4, HYB, LGT and P12) that show no significant linkage relationship were selected for direct or cloning sequencing in C. × polytrifolia, C. × pubinervia, and C. cavaleriei to reconstruct the phylogenetic tree of the Citrus s.l. and, further exploring the taxonomic status of these two evergreen trifoliate oranges. 【Results】 The phylogenetic tree based on HYB gene sequences revealed that C. trifoliata, C. × polytrifolia, and C. × pubinervia formed the first strongly supported independent clade (LP=100%, PP=1.00) within Citrus s.l., known as the “Poncirus” clade. “Poncirus” clade further diverged into the “deciduous trifoliate orange” clade (LP=76%, PP=0.81) and the “evergreen trifoliate orange” clade (LP=81%, PP=0.76), which included C. × polytrifolia and C. × pubinervia. The HYB gene tree was unable to distinguish between the two evergreen trifoliate oranges. C. cavaleriei appeared in the HYB gene tree within Citrus s.s., distant from the two species of the evergreen trifoliate oranges. The LGT gene tree showed that C. trifoliata and the two evergreen trifoliate oranges also formed an independent clade within Citrus s.l. (LP=100%, PP=1.00). However, unlike the HYB gene tree, the LGT gene tree cannot differentiate between the C. trifoliata and the evergreen trifoliate oranges. C. cavaleriei remained within Citrus s.s. in the LGT gene tree. There was no significant topological inconsistency of gene trees between the LGT and HYB, but LGT was more conservative and had lower species resolution than HYB. The topology of the P12 gene tree was inconsistent with the previous two. The “Poncirus” clade was embedded within the Citrus s.l., sharing a large clade with Fortunella, which had low support (LP=0, PP=0.66). The P12 gene tree cannot differentiate the three species within the “Poncirus” clade and had limited ability to distinguish other species within Citrus s.l., presenting an overall \"comb-like\" structure. The topology of the CTV.4 gene tree was significantly different from the first three, with the two evergreen trifoliate oranges separating from C. trifoliata and clustering with C. maxima and C. × aurantium in a large clade with weak support (LP=52%, PP=0.63). This large clade further diverged into two strongly supported smaller clades, namely the “C. maxima” clade (LP=98%, PP=1.00) and the “evergreen trifoliate orange” clade (LP=97%, PP=1.00), showing clear differentiation between them. The CTV.4 gene tree cannot distinguish C. maxima and C. × aurantium as two separate species, nor can it differentiate C. × pubinervia and C. × polytrifolia as two species. The clone sequencing of C. × pubinervia was supplemented to verify this phenomenon. The results showed that its three clone sequences were located in the “Poncirus” clade, and two clone sequences were together with C. × polytrifolia in the “C. maxima” clade, exhibiting characteristics of hybrid origin. Direct and cloning sequencing of C. cavaleriei formed a strongly supported clade (LP=98%, PP=1.00), adjacent to the “Poncirus” clade and distant from the evergreen trifoliate oranges. 【Conclusion】 The topological structure between CTV.4 and the other three nDNA single-gene trees showed significant inconsistencies, suggesting that C. × polytrifolia and C. × pubinervia may have experienced hybridization events. In the CTV.4 gene tree, as a hybrid related to C. maxima, C. × aurantium was very closely related to C. maxima. Whereas evergreen trifoliate orange has undergone significant genetic differentiation from the “C. maxima” clade, the fact indicates its origin time must be much earlier than C. × aurantium, and evergreen trifoliate orange has experienced an independent evolutionary process. Earlier cpDNA phylogenetic analysis showed that C. trifoliata, C. × polytrifolia and C. × pubinervia had differentiated at the chloroplast gene level, being three distinguishable species. Therefore, C. × polytrifolia and C. × pubinervia likely originated from natural hybridization between C. trifoliata (♀) and other species of Citrus s.l. (♂), with C. maxima being the most likely maternal species. Since Citrus s.l. has undergone complex reticulate evolution and C. maxima is believed to have participated in the formation of other hybrid species (such as C. × aurantium), so the male parent of evergreen trifoliate orange cannot be determined conclusively through the study on a few gene fragments. Its male parent could be C. maxima or a natural hybrid containing C. maxima lineage. However, this result does not mean that the two evergreen trifoliate oranges are not “good species” in the taxonomic sense, because natural hybridization events are one of the important ways of species formation, especially for many species of Citrus s.l.. This study provides strong evidence of gene exchange existing naturally between the Poncirus and the Citrus s.s., offering new insights into the species origin of C. × pubinervia and C. × polytrifolia. These two species serve as a bridge between the Citrus s.s. and the Poncirus, holding significant value for studying the phylogenetic relationships of the Citrus s.l. and citrus breeding. Therefore, they should receive more attention and protection, suggesting that Citrus × pubinervia be listed as a local protected species or be granted the same level of protection as C. × polytrifolia.
Key words: Citrus; Taxonomy; Natural hybridization; Protecting species
廣義柑橘屬(Citrus s.l.)隸屬于蕓香科(Rutaceae)柑橘族(Citreae),包括柑橘、柚、檸檬等著名水果[1-2]。起初,Swingle等[2]根據(jù)雄蕊數(shù)目及汁胞構(gòu)造將蕓香科(Rutaceae)、柑橘族(Citreae)中6個關(guān)系密切的屬歸為“真柑橘類”(True Citrus Fruit Trees),包括原產(chǎn)中國的枳屬(Poncirus Raf.)、金柑屬(Fortunella Swingle)、狹義柑橘屬(Citrus s.s.),以及產(chǎn)自澳大利亞和新幾內(nèi)亞的Eremocitrus Swingle、Microcitrus Swingle和Clymenia Swingle。近年來,基于葉綠體基因(cpDNA)或核糖體基因內(nèi)轉(zhuǎn)錄間隔區(qū)(ITS)基因片段的研究表明,枳屬、金柑屬及狹義柑橘屬關(guān)系密切,且“真柑橘類”是單系的[1,3-7]。然而核基因(nDNA)和全基因組的研究結(jié)果有所不同,枳屬在“真柑橘類”中是一個獨立分支[8-10]。盡管這些狹義屬之間存在明顯的形態(tài)差異,但具有雜交親和性[2]。狹義柑橘屬物種的雜交起源歷史已得到基因組學(xué)方面的證據(jù)[10],但相關(guān)狹義屬間的關(guān)系尚未完全明確??傊s交和不完全譜系分選仍然對相關(guān)屬、種的親緣關(guān)系研究造成困擾[9]。
“常綠枳”是廣義柑橘屬中特殊的成員,它的指狀三出復(fù)葉與枳(Citrus trifoliata L.)相似,而常綠(春季花較多的枝條上的葉較少,因此也呈現(xiàn)出“半常綠”的狀態(tài))習(xí)性又與狹義柑橘屬內(nèi)物種相似。目前,有兩種“常綠枳”被確立為獨立的物種,包括華中枳(Citrus × pubinervia D. G. Zhang amp; Z. H. Xiang,Y. Wu)和富民枳(Citrus × polytrifolia Govaerts)[11-12]。富民枳的分類地位存在一定爭議。起初,研究者根據(jù)形態(tài)特征的交叉及假定親本的雜交親和性將其判定為雜交種[13],亦有RAPD分子的研究支持富民枳為雜交種[14]。然而cpDNA或nDNA片段系統(tǒng)發(fā)育分析、SSR分子標記、核型、花粉微形態(tài)和葉片同工酶比較均認為富民枳為獨立的物種[15-19]。華中枳是發(fā)表于2021年的新名稱,形態(tài)比較和cpDNA的系統(tǒng)發(fā)育分析表明,其與枳、富民枳發(fā)生了分化,是一個可區(qū)分的物種[11],但還未見nDNA方面的研究報道。華中枳通常分布于海拔900~1400 m的山區(qū),具有常綠和良好的抗寒特性,與富民枳生物學(xué)特性相似[20],是潛在的柑橘砧木資源。二者的野生資源數(shù)量十分有限[11,21],富民枳在2022年被列為國家二級重點保護野生植物(農(nóng)業(yè)資源)。考慮到雜交起源和不完全譜系分選的影響,筆者在本研究中參考Ramadugu等[9]的報道,挑選了其中4個沒有明顯連鎖關(guān)系的nDNA片段(CTV.4,HYB,LGT,P12),進一步分析這2個物種的分類地位,以期為它們的保護和利用提供理論依據(jù)。
1 材料和方法
1.1 采樣
枳的樣品采于華中枳模式產(chǎn)地附近3個不同縣域,華中枳的樣品來源于模式產(chǎn)地的3個不同居群,富民枳樣品來源于昆明植物研究所種質(zhì)園(引種自富民縣)。宜昌橙(C. cavaleriei)樣品采于湘西吉首市與鄂西神農(nóng)架林區(qū)。外類群和其他同屬近源類群的DNA序列(含克隆測序數(shù)據(jù))根據(jù)文獻[9]從NCBI下載。近源類群種類在不同基因分析中并不能完全保持一致,但都涵蓋了廣義柑橘屬的大部分物種。樣品信息見表1,相關(guān)憑證標本保存于吉首大學(xué)植物標本館(JIU),外類群及其他近源類群的DNA序列信息見附表。
1.2 DNA的提取與擴增
總DNA的提取使用改良的CTAB法[22],材料為硅膠快速干燥的新鮮葉片。對CTV.4、HYB、LGT、P12的DNA片段進行擴增,將條帶清晰的擴增產(chǎn)物用于雙向測序,擴增與測序使用的引物與文獻[9]相同。鑒于CTV.4基因樹的特殊性,選取華中枳和宜昌橙為代表對CTV.4基因進行克隆測序??寺∈褂们婵芓SV-007VS-pClone007試劑盒,將目的DNA片段連入載體、轉(zhuǎn)入受體細胞后進行培養(yǎng),最后挑取5個單克隆進行雙向測序。將雙向測序結(jié)果進行手動組裝后,用于后續(xù)分析。
1.3 系統(tǒng)發(fā)育分析
采用最大似然法(ML)和貝葉斯法(BI)分別構(gòu)建系統(tǒng)發(fā)育樹。使用MAFFT 7.0將序列對齊[23]。最佳核酸替代模型使用PhyloSuite中集成的ModelFinder計算[24-25]。最大似然法使用IQtree2.2.0[26]進行10 000次bootstrap運算。貝葉斯法使用MrBayes 3.1.2[27],以馬爾科夫鏈-蒙特卡羅算法(MCMC)進行2次獨立重復(fù)運算,參數(shù)設(shè)置為4條平行熱鏈運行100 000代,以平均標準誤差(<0.01)來判斷數(shù)據(jù)收斂性,舍棄25%老化樣本后估算后驗概率。
2 結(jié)果與分析
HYB基因樹拓撲結(jié)構(gòu)如圖1所示。枳、富民枳和華中枳在廣義柑橘屬中形成第一個支持率較強的獨立分支(LP=100%,PP=1.00),即枳屬分支。枳屬進一步分化成“落葉枳”分支(LP=76%,PP=0.81),和包含了富民枳和華中枳的“常綠枳”分支(LP=81%,PP=0.76)。HYB基因樹不能區(qū)分2種“常綠枳”。曾有學(xué)者認為華中枳是與宜昌橙有關(guān)的雜交種[11],但宜昌橙在HYB基因樹上與“常綠枳”分支2個物種相距甚遠。
如圖2所示,在LGT基因樹上,枳與2種“常綠枳”同樣在廣義柑橘屬中形成一個獨立的分支(LP=100%,PP=1.00)。但與HYB基因樹不同,LGT基因樹不能區(qū)分“落葉枳”和“常綠枳”。宜昌橙在LGT基因樹上仍然處于狹義柑橘屬中。LGT與HYB基因樹的拓撲沒有明顯的不一致,但LGT比HYB更保守,對物種的區(qū)分度更低。
如圖3所示,P12基因樹拓撲結(jié)構(gòu)與前兩者不一致。將枳屬分支嵌入廣義柑橘屬中,與金柑屬同處一個支持率較低的大分支(LP=0,PP=0.66)。P12基因樹不能區(qū)分枳屬分支的3個物種,且對廣義柑橘屬的其他物種的區(qū)分能力有限,整體呈現(xiàn)“梳子狀”。
如圖4所示,CTV.4基因樹的拓撲結(jié)構(gòu)與前3者的明顯不同,2種“常綠枳”與枳發(fā)生了分離,而與柚[C. maxima (Burman) Merrill]以及酸橙[C. × aurantium Siebold amp; Zucc. ex Engl.]聚集在一個支持率較弱的大分支上(LP=52%,PP=0.63)。這一大分支進一步分化為2個具有較強支持率的小分支,即“柚”分支(LP=98%,PP=1.00)和“常綠枳”分支(LP=97%,PP=1.00),這2個小分支之間產(chǎn)生了明顯的分化。CTV.4基因樹不能將柚與酸橙區(qū)分為2個物種,也不能將華中枳與富民枳區(qū)分為兩個物種。筆者補充了華中枳的克隆測序來驗證這一現(xiàn)象,結(jié)果顯示它的3條克隆序列位于枳屬分支,2條克隆序列與富民枳一同位于“柚”分支中,表現(xiàn)出雜交起源的特性。宜昌橙直接測序及克隆測序序列形成一個具有較強支持率的分支(LP=98%,PP=1.00),與枳屬分支相鄰而與“常綠枳”距離較遠。
3 討 論
3.1" " 富民枳和華中枳的分類地位
CTV.4與其他3個nDNA單基因樹之間的拓撲結(jié)構(gòu)明顯不一致,顯示富民枳和華中枳可能經(jīng)歷過雜交事件。在CTV.4基因樹中,作為與柚有關(guān)的雜交種,酸橙與柚關(guān)系十分親密,在“柚”分支中不分彼此;而“常綠枳”與“柚”分支發(fā)生了明顯的遺傳分化,表明其起源應(yīng)該要遠遠早于酸橙,而且經(jīng)歷了獨立的演化進程。更早的cpDNA的系統(tǒng)發(fā)育分析顯示[11],枳、富民枳和華中枳在葉綠體基因水平上發(fā)生了分化,是3個可以區(qū)分的物種。因此富民枳和華中枳可能起源于枳(♀)與其他廣義柑橘屬物種(♂)的自然雜交,而且柚是最有可能成為它們母本的物種。
由于廣義柑橘屬經(jīng)歷了復(fù)雜的網(wǎng)狀進化,柚被認為參與了其他雜交物種的形成[9-10](如酸橙),所以“常綠枳”的父本并不能通過少數(shù)基因片段的研究而下定論,其父本可能是柚或含有柚血緣的自然雜交種。但這一推論并不說明2種“常綠枳”不是分類學(xué)意義上的獨立物種,因為自然雜交事件是物種形成,尤其是許多廣義柑橘屬物種形成的重要方式之一。這2個物種是狹義柑橘屬和枳屬之間的橋梁,對研究廣義柑橘屬的系統(tǒng)發(fā)育關(guān)系和柑橘育種具有重要價值,應(yīng)受到更多的關(guān)注和保護。建議將華中枳列為地方保護物種或與富民枳同等級的保護物種。
3.2 對枳屬分類地位的建議
在不同類型和不同深度的基因研究中,枳屬分支的位置不一致。枳屬分支在9個葉綠體基因系統(tǒng)發(fā)育樹中嵌入廣義柑橘屬中,位于“南半球為主(澳大利亞、新幾內(nèi)亞、新喀里多尼亞、新愛爾蘭)的分支”與“北半球分支”之間[1]。在本研究的4個nDNA單基因樹中,枳屬分支的位置不一致。在HYB與LGT基因樹中,枳屬分支是廣義柑橘屬中第一個較獨立的分支,而在P12和CTV.4單基因樹中枳屬分支嵌入廣義柑橘屬中。在全基因組水平上的分析表明,枳屬分支是廣義柑橘屬最外側(cè)較獨立的分支[8,10],它的起源應(yīng)早于廣義柑橘屬南北半球分支的形成[10]。
總體上來說,枳屬分支是廣義柑橘屬中較獨立的一個分支,但它更像一個沒能完成獨立演化的古老“演化殘枝”,通過共同起源、基因交流或趨同進化等復(fù)雜因素與廣義柑橘屬其他物種在遺傳上產(chǎn)生復(fù)雜聯(lián)系。因為枳屬分支與“北半球分支”有共同的祖先、相似的氣候環(huán)境以及分布區(qū)重疊,不排除在演化過程中與“北半球分支”產(chǎn)生基因交流,它們之間實際上也存在雜交親和性[2]。富民枳和華中枳的存在也為它們之間存在基因交流提供了證據(jù)。因此枳屬分支可以歸為廣義柑橘屬的一個亞屬,“常綠枳”位于枳和廣義柑橘屬的其他物種之間,屬于中間產(chǎn)物。
4 結(jié) 論
筆者在對枳和常綠枳廣泛采集樣本的基礎(chǔ)上,選取了4個無明顯連鎖關(guān)系的核DNA片段進行直接或克隆測序,重建了廣義柑橘屬的系統(tǒng)發(fā)育樹。結(jié)果顯示,富民枳和華中枳可能起源于枳(♀)與柚的雜交。二者在遺傳上與推定親本產(chǎn)生了分化,應(yīng)是經(jīng)歷了獨立演化后的自然雜交物種。這一研究結(jié)果為富民枳和華中枳的分類地位提供了新的見解,為枳屬與狹義柑橘屬之間存在自然狀態(tài)下的基因交流提供了證據(jù)?!俺>G枳”是狹義柑橘屬和枳屬之間的中間產(chǎn)物,對研究廣義柑橘屬的系統(tǒng)發(fā)育關(guān)系和柑橘育種具有重要價值。因此,建議將華中枳列為地方保護物種或與富民枳同等級的保護物種。
參考文獻References:
[1] BAYER R J,MABBERLEY D J,MORTON C,MILLER C H,SHARMA I K,PFEIL B E,RICH S,HITCHCOCK R,SYKES S. A molecular phylogeny of the orange Subfamily(Rutaceae:Aurantioideae) using nine cpDNA sequences[J]. American Journal of Botany,2009,96(3):668-685.
[2] SWINGLE W T,REECE P C. The botany of citrus and its wild relatives of the orange subfamily[M]. Berkeley,California,USA:University of California,1967.
[3] 謝讓金,周志欽,鄧烈. 真正柑橘果樹類植物基于AFLP分子標記的分類與進化研究[J]. 植物分類學(xué)報,2008,46(5):682-691.
XIE Rangjin,ZHOU Zhiqin,DENG Lie. Taxonomic and phylogenetic relationships among the Genera of the True Citrus Fruit Trees Group (Aurantioideae,Rutaceae) based on AFLP markers[J]. Journal of Systematics and Evolution,2008,46(5):682-691.
[4] MORTON C M. Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions,atpB-rbcL spacer,rps16,and trnL-trnF[J]. Organisms Diversity amp; Evolution,2009,9(1):52-68.
[5] PENJOR T,YAMAMOTO M,UEHARA M,IDE M,MATSUMOTO N,MATSUMOTO R,NAGANO Y. Phylogenetic relationships of Citrus and its relatives based on matK gene sequences[J]. PLoS One,2013,8(4):e62574.
[6] PENJOR T,ANAI T,NAGANO Y,MATSUMOTO R,YAMAMOTO M. Phylogenetic relationships of Citrus and its relatives based on rbcL gene sequences[J]. Tree Genetics amp; Genomes,2010,6(6):931-939.
[7] MORTON C M,GRANT M,BLACKMORE S. Phylogenetic relationships of the Aurantioideae inferred from chloroplast DNA sequence data[J]. American Journal of Botany,2003,90(10):1463-1469.
[8] GARCIA-LOR A,CURK F,SNOUSSI-TRIFA H,MORILLON R,ANCILLO G,LURO F,NAVARRO L,OLLITRAULT P. A nuclear phylogenetic analysis:SNPs,indels and SSRs deliver new insights into the relationships in the ‘true Citrus fruit trees’ group (Citrinae,Rutaceae) and the origin of cultivated species[J]. Annals of Botany,2013,111(1):1-19.
[9] RAMADUGU C,PFEIL B E,KEREMANE M L,LEE R F,MAUREIRA-BUTLER I J,ROOSE M L. A six nuclear gene phylogeny of Citrus (Rutaceae) taking into account hybridization and lineage sorting[J]. PLoS One,2013,8(7):e68410.
[10] WU G A,TEROL J,IBANEZ V,LóPEZ-GARCíA A,PéREZ-ROMáN E,BORREDá C,DOMINGO C,TADEO F R,CARBONELL-CABALLERO J,ALONSO R,CURK F,DU D L,OLLITRAULT P,ROOSE M L,DOPAZO J,GMITTER F G,ROKHSAR D S,TALON M. Genomics of the origin and evolution of Citrus[J]. Nature,2018,554(7692):311-316.
[11] WU Y,LIU Q,XIANG Z H,ZHANG D G. Citrus × pubinervia,a new natural hybrid species from Central China[J]. Phytotaxa,2021,523(3):239-246.
[12] 丁素琴,張顯努,暴卓然,梁明清. 中國枳屬一新種[J]. 云南植物研究,1984,6(3):292-293.
DING Suqin,ZHANG Xiannu,BAO Zhuoran,LIANG Ming-qing. A new species of Poncirus from China[J]. Acta Botanica Yunnanica,1984,6(3):292-293.
[13] ZHANG D X,MABBERLEY D J. Citrus[M]//WU Z Y,Raven P H. Flora of China. Beijing:Science Press and St. Louis,Missour:Missouri Botanical Garden Press,2008,11:90-96.
[14] 吳興恩,范眸天,高峻,李文祥,龍雯虹,許明輝. 枳、富民枳與枳橙RAPD分析與分類(親緣)關(guān)系探討[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報,2003,18(3):277-280.
WU Xing’en,F(xiàn)AN Moutian,GAO Jun,LI Wenxiang,LONG Wenhong,XU Minghui. Studies on the RAPD analysis and taxonomic relationship of trifoliate orange,F(xiàn)uming trifoliate orange and citrange[J]. Journal of Yunnan Agricultural University,2003,18(3):277-280.
[15] 張余,龔洵,馮秀彥. 利用DNA片段測序方法探究枳屬和富民枳的分類地位[J]. 廣西植物,2021,41(1):114-122.
ZHANG Yu,GONG Xun,F(xiàn)ENG Xiuyan. Phylogenetic position of Poncirus and Poncirus polyandra by DNA sequencing[J]. Guihaia,2021,41(1):114-122.
[16] 龔桂芝,洪棋斌,彭祝春,江東,向素瓊. 枳屬種質(zhì)遺傳多樣性及其與近緣屬植物親緣關(guān)系的SSR和cpSSR分析[J]. 園藝學(xué)報,2008,35(12):1742-1750.
GONG Guizhi,HONG Qibin,PENG Zhuchun,JIANG Dong,XIANG Suqiong. Genetic diversity of Poncirus and its phylogenetic relationships with relatives as revealed by nuclear and chloroplast SSR[J]. Acta Horticulturae Sinica,2008,35(12):1742-1750.
[17] 劉利勤,楊靜,顧志建. 富民枳的核型與分類位置探討[J]. 云南植物研究,2007,29(2):198-200.
LIU Liqin,YANG Jing,GU Zhijian. Karyomorphology and taxonomic position of Poncirus polyandra (Rutaceae)[J]. Acta Botanica Yunnanica,2007,29(2):198-200.
[18] 范眸天,梁明清,浦衛(wèi)瓊. 富民枳與枳的花粉形態(tài)與分類位置探討[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報,1998,13(3):298-300.
FAN Moutian,LIANG Mingqing,PU Weiqiong. Studies on the pollen morphology and taxonomic position of P. trifoliata and P. Polyandra[J]. Journal of Yunnan Agricultural University (Natural Science),1998,13(3):298-300.
[19] FANG D Q. Intra-and intergeneric relationships of Poncirus polyandar:Investigation by leaf isozymes[J]. Journal of Wuhan Botanical Research,1993,11(1):34-40.
[20] 鐘瑞芳,王仕玉,梁明清,杜元明,段志宇. 富民枳的生物學(xué)特性及利用研究初報[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報,2001,16(3):244-246.
ZHONG Ruifang,WANG Shiyu,LIANG Mingqing,DU Yuanming,DUAN Zhiyu. Studies on biological characteristics and application of Poncirus polyandra S. Q. Ding et al[J]. Journal of Yunnan Agricultural University,2001,16(3):244-246.
[21] 高雪松,張玉萍,唐金武,顧文輝. 淺談富民枳生存現(xiàn)狀與保護發(fā)展[J]. 防護林科技,2017(12):83-85.
GAO Xuesong,ZHANG Yuping,TANG Jinwu,GU Wenhui. Survival status and protection development of Fumin Trifoliate Orange[J]. Protection Forest Science and Technology,2017(12):83-85.
[22] DOYLE J,DOYLE J L,DOYLE J,DOYLE F J. A rapid DNA isolation procedure for small amounts of fresh leaf tissue[J]. Phytochemistry,1987,19(1):11-15.
[23] KATOH K,STANDLEY D M. MAFFT multiple sequence alignment software version 7:Improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780.
[24] KALYAANAMOORTHY S,MINH B Q,WONG T K F,VON HAESELER A,JERMIIN L S. ModelFinder:Fast model selection for accurate phylogenetic estimates[J]. Nature Methods,2017,14(6):587-589.
[25] ZHANG D,GAO F L,JAKOVLI? I,ZOU H,ZHANG J,LI W X,WANG G T. PhyloSuite:An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources,2020,20(1):348-355.
[26] NGUYEN L T,SCHMIDT H A,VON HAESELER A,MINH B Q. IQ-TREE:A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution,2015,32(1):268-274.
[27] HUELSENBECK J P,RONQUIST F. MRBAYES:Bayesian inference of phylogenetic trees[J]. Bioinformatics,2001,17(8):754-755.