摘要" 總結CD47在腫瘤相關小膠質細胞/巨噬細胞中的功能,以及在膠質母細胞瘤臨床前研究中的應用,并分析CD47在膠質母細胞瘤中的作用。膠質母細胞瘤是成人神經系統(tǒng)中最常見且惡性程度最高的腫瘤,對放療和化療具有很強的耐受性,常規(guī)治療方案療效較差。目前免疫治療是一種較為有效的治療手段,然而,膠質母細胞瘤病人腦內T細胞浸潤較低、抗原呈遞較低導致自適應免疫抑制。膠質母細胞瘤病人腦內環(huán)境具有高含量的髓樣細胞及腫瘤相關小膠質細胞/巨噬細胞,能夠提升固有免疫治療在膠質母細胞瘤的治療效果。CD47作為膠質母細胞瘤生物學進程中的免疫檢查點,已經應用于膠質母細胞瘤的臨床前研究和其他腫瘤臨床試驗中的聯(lián)合治療。
關鍵詞" 膠質母細胞瘤;免疫治療;CD47;綜述
doi:10.12102/j.issn.1672-1349.2024.23.014
膠質母細胞瘤(glioblastoma,GBM)是中樞神經系統(tǒng)中最具侵襲性的腫瘤,其表現出廣泛的表觀遺傳機制失調[1-2],以及腫瘤內外廣泛的遺傳異質性[3-5]。膠質母細胞瘤在全球范圍內的發(fā)病率為0.59/10萬~3.69/10萬,中位發(fā)病年齡為63歲[6-8]。盡管膠質母細胞瘤的手術切除、放療和化療等治療手段有所改進,但病人的中位生存時間仍為12~15個月,3年生存率約為10%[9-10]。在原發(fā)腫瘤切除后,對放射治療和化療的敏感性為中等,但復發(fā)性膠質母細胞瘤對放射治療和化療顯示出耐藥性,導致臨床療效不佳[11-12]。因此,需要探索更有效的治療手段。
膠質母細胞瘤的病因至今仍然未知。迄今為止,電離輻射、卵巢類固醇激素、遺傳以及其他因素被認為與膠質母細胞瘤的發(fā)生和發(fā)展相關[13]。免疫療法已在其他腦外腫瘤治療中取得了顯著進展,然而大多數膠質母細胞瘤相關的免疫療法在臨床研究中僅取得了有限的進展[14]。目前,膠質母細胞瘤的免疫療法主要集中在適應性抗腫瘤免疫上,包括免疫檢查點阻斷療法、疫苗療法、溶瘤病毒療法和嵌合抗原受體T細胞免疫療法(chimeric antigen receptor T-cell immunotherapy,CAR-T)[15-17]。越來越多的證據表明,膠質母細胞瘤的腫瘤微環(huán)境中含有較多的髓系細胞和相對較少的腫瘤浸潤淋巴細胞(tumor infiltrating lymphocyte,TIL)[18-19],并且T細胞功能存在障礙[20]。因此通過適
作者單位" 1.山西醫(yī)科大學第一臨床醫(yī)學院(太原 030001);2.山西醫(yī)科大學第一醫(yī)院(太原 030001)
通訊作者" 萬大海,E-mail:13403451338@163.com
引用信息" 杜銘,萬大海.CD47的生物學作用及在膠質母細胞瘤免疫治療中的應用進展[J].中西醫(yī)結合心腦血管病雜志,2024,22(23):4315-4320.
應性免疫抗腫瘤的免疫療法在膠質母細胞瘤的治療中未取得顯著療效。然而腫瘤相關小膠質細胞/巨噬細胞(tumor-associated microglia/macrophages,TAM)占膠質母細胞瘤腫瘤微環(huán)境的30%~40%[21-22],其中約85%為骨髓來源的浸潤性巨噬細胞/單核細胞,其余則來源于小膠質細胞[23-24],其與適應性免疫細胞相互作用,介導腫瘤細胞的免疫逃逸[25-27],驅動腫瘤的生長和進展[28-32]。在這一過程中,CD47起到至關重要的作用,阻斷CD47作為克服腫瘤細胞逃避先天免疫的癌癥治療策略具有廣闊前景[33]。本研究總結CD47的相關免疫功能,探討CD47在膠質母細胞瘤中的作用,并回顧其在膠質母細胞瘤臨床前研究中的應用。
1" CD47的生物學作用及在癌癥免疫治療中的作用機制
先天免疫系統(tǒng)是對抗感染和惡性腫瘤的第一道防線[34]。抗原呈遞細胞(antigen-presenting cells,APCs)是先天免疫的重要組成部分,也與適應性免疫系統(tǒng)之間相關聯(lián),其包括樹突狀細胞、單核細胞和巨噬細胞。APCs通過吞噬來招募和清除轉化的腫瘤細胞,向活化的T細胞呈遞腫瘤源性抗原,并激活下游的適應性免疫反應。CD47是目前研究最廣泛且最有前途的先天免疫檢查點,在急性髓系白血病、胃癌等方面的一些聯(lián)合抗CD47治療已進入Ⅲ期臨床試驗[35]。
CD47是一種50 kDa的膜受體糖蛋白,屬于免疫球蛋白家族,其分子結構包括N末端的細胞外可變區(qū)域、5個疏水的跨膜螺旋結構,以及一個親水性的C末端的細胞內信號序列[36]。CD47最早于1987年在紅細胞上被鑒定出來[37],后來發(fā)現CD47廣泛表達于人類細胞,并且在許多類型的腫瘤細胞上過表達[38]。
CD47已知的配體包括血小板反應蛋白-1(platelet-reactive protein,TSP-1)、信號調節(jié)蛋白(signal-regulating protein,SIRP)α 、SIRPγ和整合素,這些配體與CD47的生理功能相關[39]。TSP-1是由活化的血小板釋放的一種分泌型糖蛋白,可以影響血管生成、細胞增殖、遷移、吞噬作用、凋亡以及一氧化氮(NO)信號通路。CD47-TSP-1相互作用抑制血管生成,使血管內皮生長因子受體2(vascular endothelial growth factor receptor 2,VEGFR-2)失活,抑制炎癥反應,并通過上調Kruppel樣因子4(KLF4)、Sox2、MYC癌基因(c-Myc)和Oct4(Oct4)等干細胞轉錄因子來增強干細胞的再生能力[40]。SIRPα 是一種跨膜糖蛋白,主要在巨噬細胞、單核細胞、樹突狀細胞和神經細胞(神經元、小膠質細胞)上表達。通常CD47-SIRPα相互作用會發(fā)出“不要吃我”的信號,并導致免疫逃避,這已經適用于免疫檢查點治療。SIRPγ在人類活化T細胞上表達,其與CD47結合的親和力低于SIRPα。但由于其表達位置的特殊性,可能在適應性抗腫瘤免疫中發(fā)揮關鍵作用[41]。此外,CD47可以與整合素相互作用,如a2β1和αvβ3,調節(jié)平滑肌細胞的遷移和血小板活化,并且近年來還發(fā)現了CD47的幾種細胞質結合伴侶,如整合素相關蛋白(integrin-associated protein,IAP)、泛醌蛋白2(PLIC-2)等[42]。
CD47普遍在淋巴瘤、白血病、卵巢癌、肺癌等多種腫瘤上過表達。大量的臨床前研究表明,靶向CD47治療的潛在機制主要包括:1)抑制CD47阻斷CD47-SIRPα軸,從而促進巨噬細胞的吞噬作用[41-43]。目前,已有60多項阻斷CD47/SIRPα軸的臨床試驗正在進行[43]。2)抗 CD47 消除了 TSP-1 介導的對自然殺傷細胞的抑制,從而增加了自然殺傷細胞的活化和細胞毒性[44]。3)CD47抗體直接誘導腫瘤細胞凋亡[45]。4)抑制CD47促進抗原呈遞,進而改善T細胞的募集和活化[41-43]。5)CD47抗體通過Fc受體誘導細胞介導的細胞毒性作用。6)阻斷CD47可以激活與腫瘤相關的小膠質細胞,從而增強小膠質細胞對中樞神經系統(tǒng)中膠質瘤細胞的吞噬作用[46]。
另外,在中藥學治療腫瘤的領域,相關研究同樣也證實了CD47在中藥作用于腫瘤細胞的生物學進程中起到了一定的影響。Tao等[47]研究表明,甘珀酸作為常見的中藥單體在鼻咽癌中能夠有效抑制腫瘤細胞的侵襲及惡性增殖等特性,但CD47的表達顯著降低了藥物療效。同樣,Dai等[48]研究表明,紅豆杉的水提取物能夠下調小細胞肺癌中CD47的表達,促進巨噬細胞介導的免疫反應,增強了紅豆杉的抗腫瘤能力。
2" CD47在膠質母細胞瘤中的表達及其臨床意義
研究發(fā)現CD47在膠質母細胞瘤細胞中過度表達,尤其是在膠質母細胞瘤干細胞中,其高表達水平與較差的臨床預后有關[49-50]。因此,CD47可以作為預測膠質母細胞瘤的預后指標。CD47會影響膠質母細胞瘤的發(fā)生、發(fā)展。最近的研究發(fā)現,CD47的過表達可通過磷脂酰肌醇-3-激酶(PI3K)/蛋白激酶B(AKT)信號通路激活膠質母細胞瘤細胞的增殖和侵襲[51-52]。另外,有研究發(fā)現CD47的配體TSP-1在膠質母細胞瘤細胞中過度表達,并與較差的臨床預后有關,同時也發(fā)現其通過調節(jié)轉化生長因子-β1(TGF-β1)/Smad3通路影響膠質母細胞瘤的增殖和侵襲[53]。
大量的證據表明,CD47-SIRPα、CD47-TSP-1的相互作用不僅影響膠質母細胞瘤細胞的增殖和侵襲能力,還抑制巨噬細胞和中性粒細胞的細胞毒性,限制樹突狀細胞的抗原呈遞功能[43-46,50-53]。
3" 靶向CD47治療在膠質母細胞瘤中的作用機制
針對膠質母細胞瘤的CD47靶向機制與其他腫瘤類似,其主要作用機制:1)靶向CD47,可阻斷CD47-SIRPα通路,促使巨噬細胞從促腫瘤的M2亞型向抗腫瘤的M1亞型極化,從而誘導吞噬作用,并且最近的研究表明,無論是靶向CD47-SIRPα軸還是下調上游調節(jié)蛋白,如富含亮氨酸重復序列免疫球蛋白2(LRIG2)、c-Jun,都可以誘導增強巨噬細胞的吞噬活性[50,54-62]。2)下調CD47表達可以減少膠質母細胞瘤中干細胞/祖細胞的特性,這可能有助于提高其他治療方法的效率并減少耐藥性[50]。3)抑制CD47,從而激活小膠質細胞,且增強小膠質細胞對中樞神經系統(tǒng)中膠質母細胞瘤細胞的吞噬作用[46,59]。4)抑制CD47從而抑制CD47-TSP-1相互作用或其他相關途徑直接減少癌細胞的侵襲和增殖[52,60,62-63]。Ma等[60]研究發(fā)現,CD47基因敲除可以招募更多的TAM,促進免疫細胞吞噬作用,抑制腫瘤血管生成,并通過Notch通路上調腱糖蛋白-C(tenascin C,TNC)。而TNC可能是對抗CD47誘導吞噬作用的下游因子[60]。5)抗CD47增強樹突狀細胞的抗原呈遞能力,產生有效的T細胞啟動和適應性抗腫瘤免疫反應[64-65]。6)CD47抗體通過 Fc 受體誘導細胞介導的細胞毒性。巨噬細胞上的Fc受體在激活巨噬細胞中起著關鍵作用[66]??傮w而言,與CD47抗體-免疫球蛋白G4(IgG4)相比,CD47抗體-免疫球蛋白G1(IgG1)具有更強的腫瘤殺傷效果,這是由于激活額外的巨噬細胞的抗體依賴性細胞吞噬(antibody-dependent cellular phagocytosis,ADCP)和自然殺傷細胞的抗體依賴性細胞毒性(antibody-dependent cell-mediated cytotoxic,ADCC)。然而,由于血漿中IgG1含量過高而引起的副作用限制了其應用。
4" 靶向CD47治療膠質母細胞瘤的局限性
第一,CD47抗體的非特異效應會阻斷正常紅細胞中的CD47信號傳導,并激活Fc介導的靶細胞殺傷作用,這些都導致巨噬細胞和自然殺傷細胞攻擊紅細胞并引發(fā)貧血。因此,需要設計新型的單克隆抗體、聯(lián)合療法和雙特異性抗體(bsAb)形式,克服這些限制并提高療效。第二,在巨噬細胞上的Fc受體在激活巨噬細胞中起關鍵作用。出于安全原因,在大多數研究中選擇的是IgG4而不是更有效的IgG1[66]。然而,血腦屏障和免疫抑制環(huán)境限制了藥物的效果[67]。第三,抗體與T淋巴細胞的結合可能會導致T細胞凋亡和免疫抑制[68]。第四,大腦中抗原呈遞細胞的缺乏使抗原識別和呈遞變得困難。僅靶向CD47可能不足以增強抗腫瘤的免疫力,目前國外進行的多項臨床前研究旨在探索膠質母細胞瘤的最佳聯(lián)合治療方案(見表1)。
5" 小結與展望
盡管靶向CD47的治療仍局限于臨床前研究中,但其能夠激活先天和適應性抗腫瘤免疫系統(tǒng),是治療膠質母細胞瘤病人的有前途的療法。然而,由于大腦中獨特的免疫微環(huán)境,臨床可行的膠質母細胞瘤免疫療法的發(fā)展相對緩慢。臨床前研究表明,抗CD47療法能有效激活大腦中的先天免疫力,來抑制腫瘤生長。然而,由于存在多種配體和復雜的信號途徑,膠質母細胞瘤中CD47的相關機制還沒有被清楚地闡明。此外,關于FcR的參與、非特異性作用、具體的靶向選擇、替代途徑、協(xié)同途徑或靶點等問題仍需解決。
綜上所述,靶向CD47在膠質母細胞瘤的治療中具有潛力。要在膠質母細胞瘤治療中實現靶向CD47的治療仍然需要很長的路程。要充分理解其潛在機制,不斷深入研究,為靶向CD47提供合理的治療依據,同時應在充分的理論基礎上,基于中藥對于CD47的作用機制,探究合理有效的中藥聯(lián)合治療方案。那么,在膠質母細胞瘤中實現靶向CD47的免疫治療的新紀元必定會到來。
參考文獻:
[1]" NAGARAJAN R P,COSTELLO J F.Epigenetic mechanisms in glioblastoma multiforme[J].Seminars in Cancer Biology,2009,19(3):188-197.
[2]" POP S,ENCIU A M,NECULA L G,et al.Long non-coding RNAs in brain tumours:focus on recent epigenetic findings in glioma[J].Journal of Cellular and Molecular Medicine,2018,22(10):4597-4610.
[3]" INDA M M,BONAVIA R,SEOANE J.Glioblastoma multiforme:a look inside its heterogeneous nature[J].Cancers,2014,6(1):226-239.
[4]" QAZI M A,VORA P,VENUGOPAL C,et al.Intratumoral heterogeneity:pathways to treatment resistance and relapse in human glioblastoma[J].Annals of Oncology,2017,28(7):1448-1456.
[5]" TANASE C,ALBULESCU R,CODRICI E,et al.Circulating biomarker panels for targeted therapy in brain tumors[J].Future Oncology,2015,11(3):511-524.
[6]" DARLIX A,ZOUAOUI S,RIGAU V,et al.Epidemiology for primary brain tumors:a nationwide population-based study[J].Journal of Neuro-Oncology,2017,131(3):525-546.
[7]" OSTROM Q T,GITTLEMAN H,FULOP J,et al.CBTRUS statistical report:primary brain and central nervous system tumors diagnosed in the United States in 2008-2012[J].Neuro-oncology,2015,17(Suppl 4):iv1-iv62.
[8]" KOSHY M,VILLANO J L,DOLECEK T A,et al.Improved survival time trends for glioblastoma using the SEER 17 population-based registries[J].Journal of Neuro-Oncology,2012,107(1):207-212.
[9]" BAKAS S,AKBARI H,PISAPIA J,et al.In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration:the /u03d5-index[J]. Clin Cancer Res,2017,23(16):4724-4734.
[10]" DUNN G P,RINNE M L,WYKOSKY J,et al.Emerging insights into the molecular and cellular basis of glioblastoma[J].Genes amp; Development,2012,26(8):756-784.
[11]" RAZAVI S M,LEE K E,JIN B E,et al.Immune evasion strategies of glioblastoma[J].Frontiers in Surgery,2016,3:11.
[12]" LIAUW S L,CONNELL P P,WEICHSELBAUM R R.New paradigms and future challenges in radiation oncology:an update of biological targets and technology[J].Science Translational Medicine,2013,5(173):173sr2.
[13]" YALAMARTY S S K,FILIPCZAK N,LI X,et al.Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM)[J].Cancers,2023,15(7):2116.
[14]" MAXWELL R,JACKSON C M,LIM M.Clinical trials investigating immune checkpoint blockade in glioblastoma[J].Current Treatment Options in Oncology,2017,18(8):51.
[15]" KAMRAN N,CALINESCU A,CANDOLFI M,et al.Recent advances and future of immunotherapy for glioblastoma[J].Expert Opinion on Biological Therapy,2016,16(10):1245-1264.
[16]" LIM M,XIA Y X,BETTEGOWDA C,et al.Current state of immunotherapy for glioblastoma[J].Nature Reviews Clinical Oncology,2018,15:422-442.
[17]" CHANDRAMOHAN V,MITCHELL D A,JOHNSON L A,et al.Antibody,T-cell and dendritic cell immunotherapy for malignant brain tumors[J].Future Oncology,2013,9(7):977-990.
[18]" BERGHOFF A S,KIESEL B,WIDHALM G,et al.Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma[J].Neuro-oncology,2015,17(8):1064-1075.
[19]" HAN S,MA E L,WANG X N,et al.Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients[J].Oncology Letters,2016,12(4):2924-2929.
[20]" WORONIECKA K,CHONGSATHIDKIET P,RHODIN K,et al.T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma[J].Clinical Cancer Research,2018,24(17):4175-4186.
[21] "SCHUPP J,KREBS F K,ZIMMER N,et al.Targeting myeloid cells in the tumor sustaining microenvironment[J].Cellular Immunology,2019,343:103713.
[22]" ALDAPE K,BRINDLE K M,CHESLER L,et al.Challenges to curing primary brain tumours[J].Nature Reviews Clinical Oncology,2019,16(8):509-520.
[23]" CHEN Z H,FENG X,HERTING C J,et al.Cellular and molecular identity of tumor-associated macrophages in glioblastoma[J].Cancer Research,2017,77(9):2266-2278.
[24]" ZHOU W C,KE S Q,HUANG Z,et al.Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth[J].Nature Cell Biology,2015,17(2):170-182.
[25]" RUFFELL B,COUSSENS L M.Macrophages and therapeutic resistance in cancer[J].Cancer Cell,2015,27(4):462-472.
[26]" MANTOVANI A,MARCHESI F,MALESCI A,et al.Tumour-associated macrophages as treatment targets in oncology[J].Nature Reviews Clinical Oncology,2017,14(7):399-416.
[27]" NOY R,POLLARD J W.Tumor-associated macrophages:from mechanisms to therapy[J].Immunity,2014,41(1):49-61.
[28]" POON C C,SARKAR S,YONG V W,et al.Glioblastoma-associated microglia and macrophages:targets for therapies to improve prognosis[J].Brain,2017,140(6):1548-1560.
[29]" YE X Z,XU S L,XIN Y H,et al.Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway[J].Journal of Immunology (Baltimore,Md),2012,189(1):444-453.
[30]" ZHU C B,MUSTAFA D,ZHENG P P,et al.Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression[J].Neuro-oncology,2017,19(5):648-659.
[31]" LI W,GRAEBER M B.The molecular profile of microglia under the influence of glioma[J].Neuro-Oncology,2012,14(8):958-978.
[32]" WANG N,LIANG H W,ZEN K.Molecular mechanisms that influence the macrophage M1-M2 polarization balance[J].Frontiers in Immunology,2014,5:614.
[33]" WILLINGHAM S B,VOLKMER J P,GENTLES A J,et al.The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(17):6662-6667.
[34]" IWASAKI A,MEDZHITOV R.Regulation of adaptive immunity by the innate immune system[J].Science,2010,327(5963):291-295.
[35]" YE Z H,YU W B,HUANG M Y,et al.Building on the backbone of CD47-based therapy in cancer:combination strategies,mechanisms,and future perspectives[J].Acta Pharmaceutica Sinica B,2023,13(4):1467-1487.
[36]" FENALTI G,VILLANUEVA N,GRIFFITH M,et al.Structure of the human marker of self 5-transmembrane receptor CD47[J].Nature Communications,2021,12(1):5218.
[37]" MILLER Y E,DANIELS G L,JONES C,et al.Identification of a cell-surface antigen produced by a gene on human chromosome 3 (Cen-Q22) and not expressed by Rh1 cells[J].American Journal of Human Genetics,1987,41(6):1061-1070.
[38]" DA FONSECA A C,BADIE B.Microglia and macrophages in malignant gliomas:recent discoveries and implications for promising therapies[J].Clinical amp; Developmental Immunology,2013,2013:264124.
[39]" LIU Y E,WANG Y J,YANG Y R,et al.Emerging phagocytosis checkpoints in cancer immunotherapy[J].Signal Transduction and Targeted Therapy,2023,8(1):104.
[40]" KAUR S,SOTO-PANTOJA D R,STEIN E V,et al.Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors[J].Scientific Reports,2013,3:1673.
[41]" VEILLETTE A,CHEN J.SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J].Trends in Immunology,2018,39(3):173-184.
[42]" ZHAO H,SONG S S,MA J W,et al.CD47 as a promising therapeutic target in oncology[J].Frontiers in Immunology,2022,13:757480.
[43]" BOUWSTRA R,VAN MEERTEN T,BREMER E.CD47-SIRPα blocking-based immunotherapy:current and prospective therapeutic strategies[J].Clinical and Translational Medicine,2022,12(8):e943.
[44]" NATH P R,PAL-NATH D,MANDAL A,et al.Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment[J].Cancer Immunology Research,2019,7(9):1547-1561.
[45]" CIOFFI M,TRABULO S,HIDALGO M,et al.Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms[J].Clinical Cancer Research,2015,21(10):2325-2337.
[46]" HUTTER G,THERUVATH J,GRAEF C M,et al.Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(3):997-1006.
[47]" REN T,BAI X Y,YANG M Z,et al.Gambogic acid suppresses nasopharyngeal carcinoma via rewiring molecular network of cancer malignancy and immunosurveillance[J].Biomedecine amp; Pharmacotherapie,2022,150:113012.
[48]" DAI S Y,LIU Y,ZHAO F M,et al.Aqueous extract of Taxus chinensis var.mairei targeting CD47 enhanced antitumor effects in non-small cell lung cancer[J].Biomedecine amp; Pharmacotherapie,2022,154:113628.
[49]" GHOSH D,FUNK C C,CABALLERO J,et al.A cell-surface membrane protein signature for glioblastoma[J].Cell Systems,2017,4(5):516-529.e7.
[50]" LI F,LV B K,LIU Y,et al.Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells[J].OncoImmunology,2018,7(2):e1391973.
[51]" SICK E,BOUKHARI A,DERAMAUDT T,et al.Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway[J].Glia,2011,59(2):308-319.
[52]" LIU X J,WU X,WANG Y M,et al.CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway[J].Oncology Research,2019,27(4):415-422.
[53]" DAUBON T,LON C,CLARKE K,et al.Deciphering the complex role of thrombospondin-1 in glioblastoma development[J].Nature Communications,2019,10(1):1146.
[54]" HU J Y,DONG F,HE Y,et al.LRIG2 promotes glioblastoma progression by modulating innate antitumor immunity through macrophage infiltration and polarization[J].Journal for Immunotherapy of Cancer,2022,10(9):e004452.
[55]" ZHANG M,HUTTER G,KAHN S A,et al.Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo[J].PLoS One,2016,11(4):e0153550.
[56]" ZHU H Y,LEISS L,YANG N,et al.Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy[J].Oncotarget,2017,8(7):12145-12157.
[57]" GHOLAMIN S,YOUSSEF O A,RAFAT M,et al.Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma[J].Innate Immunity,2020,26(2):130-137.
[58]" JIANG N,XIE B W,XIAO W W,et al.Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion[J].Nature Communications,2022,13(1):1511.
[59]" ZHOU Y,GUO Y X,CHEN L F,et al.Co-delivery of phagocytosis checkpoint and STING agonist by a Trojan horse nanocapsule for orthotopic glioma immunotherapy[J].Theranostics,2022,12(12):5488-5503.
[60]" MA D,LIU S Q,LAL B,et al.Extracellular matrix protein tenascin C increases phagocytosis mediated by CD47 loss of function in glioblastoma[J].Cancer Research,2019,79(10):2697-2708.
[61]" CHEN H P,YANG Y Y,DENG Y Q,et al.Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy[J].Journal for ImmunoTherapy of Cancer,2022,10(2):e003737.
[62]" ZHANG X Y,WANG S F,NAN Y Y,et al.Inhibition of autophagy potentiated the anti-tumor effects of VEGF and CD47 bispecific therapy in glioblastoma[J].Applied Microbiology and Biotechnology,2018,102(15):6503-6513.
[63]" TANASE C,ENCIU A M,CODRICI E,et al.Fatty acids,CD36,thrombospondin-1,and CD47 in glioblastoma:together and/or separately?[J].International Journal of Molecular Sciences,2022,23(2):604.
[64]" ZHANG P,RASHIDI A,ZHAO J F,et al.STING agonist-loaded,CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma[J].Nature Communications,2023,14(1):1610.
[65]" VON ROEMELING C A,WANG Y F,QIE Y Q,et al.Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J].Nature Communications,2020,11(1):1508.
[66]" XU B,TIAN L,CHEN J,et al.An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma[J].Nature Communications,2021,12(1):5908.
[67]" LIU S H,LIU J,LI H S,et al.An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy[J].Biomaterials,2022,287:121645.
[68]" PETTERSEN R D,HESTDAL K,OLAFSEN M K,et al.CD47 signals T cell death[J].Journal of Immunology,1999,162(12):7031-7040.
(收稿日期:2023-12-07)
(本文編輯郭懷?。?/p>