摘要" 目的:利用兩樣本孟德爾隨機(jī)化(MR)分析的方法探究干果攝入量(DFI)與2型糖尿?。═2DM)之間的因果關(guān)系。方法:DFI的全基因組關(guān)聯(lián)分析(GWAS)數(shù)據(jù)來源于UK Biobank(421 764例),作為本項(xiàng)MR研究的暴露;另從DIAGRAM聯(lián)盟數(shù)據(jù)庫中獲取與T2DM相關(guān)的 GWAS數(shù)據(jù)(898 130例)作為結(jié)局的發(fā)現(xiàn)數(shù)據(jù)集。為了驗(yàn)證結(jié)果可靠性,在FINNGEN數(shù)據(jù)庫中獲取另一隊(duì)列人群的T2DM GWAS數(shù)據(jù)(304 769例)作為驗(yàn)證數(shù)據(jù)集。以上數(shù)據(jù)都來源于歐洲人群。主要采用逆方差加權(quán)法(IVW)、MR Egger法、加權(quán)中位數(shù)法(WME)、簡單眾數(shù)法(SM)和加權(quán)眾數(shù)法(WM)5種方法進(jìn)行MR分析,根據(jù)效應(yīng)指標(biāo)比(OR)和95%CI評估結(jié)果。結(jié)果:以IVW為主要分析方法的MR分析表明,DFI增加可降低T2DM的發(fā)生風(fēng)險(xiǎn)[IVW OR=0.434,95%CI(0.312,0.602)],其余4種方法所評估的效應(yīng)方向與IVW一致。驗(yàn)證集數(shù)據(jù)分析結(jié)果再次證實(shí)了以上發(fā)現(xiàn),在所有分析中未發(fā)現(xiàn)多效性的存在。結(jié)論:增加DFI與T2DM風(fēng)險(xiǎn)降低之間存在因果關(guān)系。
關(guān)鍵詞" 2型糖尿?。桓晒麛z入量;孟德爾隨機(jī)化
doi:10.12102/j.issn.1672-1349.2024.23.006
Relationship Between Dried Fruit Intake and Type 2 Diabetes: a Mendelian Randomization Study
YU Jinzi1, LI Yu2, XIE Fei1, LI Wanying1, LI Yihua1, LI Rong3
1. First School of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, Guangdong, China; 2.Sixth School of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine;3.The First Clinical Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510000, Guangdong, China
Corresponding Author" LI Rong, E-mail: 13798184933@126.com
Abstract" Objective:Two-sample Mendelian randomization(MR) analysis was used to investigate the relationship between dried fruit intake(DFI) and type 2 diabetes mellitus(T2DM).Methods:Genome-wide association analysis(GWAS)data for DFI(421 764 cases)were obtained from UK Biobank as exposure for this MR study,and GWAS data(898 130 cases) associated with T2DM were obtained from the DIAGRAM consortium database as a discovery dataset for outcomes.To verify the reliability of the results,the T2DM GWAS data(304 769 cases)of another cohort population was obtained in the FINNGEN database as the replication dataset.All the above data were from European populations.The inverse variance-weighted method(IVW),MR Egger method,weighted median method(WME),simple mode method(SM),and weighted majority method(WM)were used for MR analysis,and the results were evaluated according to the effect index ratio(OR)and 95%CI.Results:MR analysis with IVW as the main analysis method showed that the increase of DFI could reduce the risk of T2DM(IVW OR=0.434,95%CI 0.312-0.602),and the direction of effect evaluated by the other four methods were consistent with that of IVW.The results of replication dataset analysis reaffirmed the above findings,and no pleiotropy was found in any of the analyses.Conclusion:There is relationship between higher DFI and a reduced risk of T2DM.
Keywords" type 2 diabetes mellitus; dried fruit intake; Mendelian randomization
糖尿病的患病率在世界范圍較前逐漸上升,患病人數(shù)從2006年的2.46億人增加到2019年的4.63億
基金項(xiàng)目" 國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No.2022YFC3500103);廣東省自然科學(xué)基金項(xiàng)目(No.2021A 1515220046)
作者單位" 1.廣州中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院(廣州 510000);2.廣州中醫(yī)藥大學(xué)第六臨床醫(yī)學(xué)院;3.廣州中醫(yī)藥大學(xué)第一附屬醫(yī)院(廣州 510000)
通訊作者" "李榮,E-mail:13798184933@126.com
引用信息" 余錦紫,李雨,謝飛,等.干果攝入量與2型糖尿病因果關(guān)系的孟德爾隨機(jī)化研究[J].中西醫(yī)結(jié)合心腦血管病雜志,2024,22(23):4264-4269.
人。此外,糖尿病的發(fā)病年齡呈現(xiàn)年輕化趨勢,死亡率亦較前升高,占全因死亡率的11.3%,大約50%的病人在60歲以下因糖尿病及其并發(fā)癥死亡[1]。糖尿病的負(fù)擔(dān)不僅是一個(gè)公共衛(wèi)生問題,還造成了沉重的經(jīng)濟(jì)負(fù)擔(dān)[2]。
有研究表明,不健康的飲食習(xí)慣與糖尿病的發(fā)生風(fēng)險(xiǎn)密切相關(guān)[3]。如果遵循健康的飲食習(xí)慣可預(yù)防多達(dá)90%的2型糖尿?。╰ype 2 diabetes,T2DM)[4]。有研究認(rèn)為地中海飲食模式具有廣泛的健康效應(yīng)[5],干果是這種飲食模式中重要的組成部分。但可能因擔(dān)憂水果和蔬菜中碳水化合物含量,糖尿病病人的水果和蔬菜攝入量往往不足。食用干果具有廣泛的健康效應(yīng),有研究表明,干果不僅可以改善血糖水平和血脂狀況,還可降低心血管疾病風(fēng)險(xiǎn)及改善預(yù)后[6]。但也有研究表明,攝入干果會導(dǎo)致肥胖、升高空腹血糖水平及增加胰島素抵抗的風(fēng)險(xiǎn)[7]。但由于觀察性試驗(yàn)中往往難以排除混雜因素的干擾,因此尚不明確干果攝入量(dried fruit intake,DFI)與T2DM風(fēng)險(xiǎn)之間是否存在因果關(guān)聯(lián)。
孟德爾隨機(jī)化(Mendelian randomization,MR)研究是一種新興的流行病學(xué)研究方法,主要用于推斷暴露因素與結(jié)局之間的因果關(guān)聯(lián)[8-9]。MR利用遺傳變異作為工具變量(instrumental variables,IVs)來推斷暴露與結(jié)局的因果關(guān)聯(lián),可以有助于克服混淆和反向因果對結(jié)果的干擾。此外,由于MR研究通常是基于大規(guī)模全基因組關(guān)聯(lián)研究(genome-wide association studies,GWAS)匯總數(shù)據(jù)進(jìn)行分析的,可以明顯增強(qiáng)統(tǒng)計(jì)效力[10]。
1" 資料與方法
1.1" 研究設(shè)計(jì)
MR研究需滿足3個(gè)條件假設(shè):1)關(guān)聯(lián)性假設(shè),IVs與暴露因素強(qiáng)相關(guān);2)獨(dú)立性假設(shè),IVs與混雜因素之間相互獨(dú)立;3)排他性假設(shè),IVs不直接對結(jié)局產(chǎn)生影響。
1.2" 數(shù)據(jù)來源
DFI的GWAS數(shù)據(jù)來源于UK Biobank數(shù)據(jù)庫[11](見表1),該數(shù)據(jù)集包括含421 764 名參與者,所有參與者均被邀請回答關(guān)于DFI 的調(diào)查問卷,問題是“您每天會吃多少塊干果?(一顆李子、一顆杏干、10顆葡萄干算1塊干果,不吃就填‘0’)”,參與者通過該表格提供了過去1年干果的平均攝入量。
T2DM的發(fā)現(xiàn)集GWAS數(shù)據(jù)來源于DIAGRAM聯(lián)盟的一項(xiàng)GWAS薈萃分析[12],總共包括74 124例T2DM病例和824 006例歐洲血統(tǒng)的對照病例,且該數(shù)據(jù)集不包括UK Biobank的數(shù)據(jù),這在最大程度上避免了與暴露數(shù)據(jù)的樣本重疊。T2DM驗(yàn)證集的GWAS數(shù)據(jù)來自FINNGEN公共數(shù)據(jù)庫第7版公布的數(shù)據(jù)[13],該數(shù)據(jù)包含了304 769名參與者,其中病例49 303例,以驗(yàn)證DFI與T2DM之間因果關(guān)系的可靠性。
1.3" IVs選擇
本研究中IVs的選擇標(biāo)準(zhǔn):1)IVs與DFI的相關(guān)性閾值P<5×10-8;2)在10 mb窗口內(nèi)對連鎖不平衡進(jìn)行過濾,且僅保留r2<0.001的單核苷酸多態(tài)性位點(diǎn)(SNPs)[14];3)為了避免弱工具帶來的偏差,保留統(tǒng)計(jì)量F>10的IVs作為強(qiáng)工具用于之后的分析。F統(tǒng)計(jì)值的計(jì)算公式:F=R2(N-2)/(1-R2),R2 =2×EAF×(1-EAF)× β2/[2×EAF×(1-EAF)× β2+ 2×EAF×(1-EAF)× SE× N× β2],其中R2是由選定的工具變量解釋的暴露方差,N是DFI的樣本大小,SE是SNP的標(biāo)準(zhǔn)誤差,β是對DFI的遺傳效應(yīng)估計(jì),EAF是效應(yīng)等位基因的頻率;4)為了避免混雜因素的干擾,通過檢索PhenoScanner V2數(shù)據(jù)庫[15]剔除了體質(zhì)指數(shù)、體重[16]、糖尿病相關(guān)的SNPs。在去除與結(jié)局明顯相關(guān)(P<5×10-8)的SNPs后,執(zhí)行了MR-多效性殘差和離群值方法(MR Pleiotropy RESidual Sum and Outlier test,MR-PRESSO)去除所有P<1的離群值,最終剩余的SNPs作為DFI的IVs用于MR分析。
1.4" MR分析
研究采用逆方差加權(quán)法(inverse variance weighted,IVW)、MR Egger法、加權(quán)中位數(shù)法(weighted median estimator,WME)、簡單眾數(shù)法(simple model,SM)和加權(quán)眾數(shù)法(weighted model,WM)5種方法估計(jì)DFI與T2DM的因果效應(yīng)。使用了多種方法,因?yàn)槠鋵λ蕉嘈杂胁煌幕炯僭O(shè)。IVW法假設(shè)所有的IVs都是有效的,其利用比值法計(jì)算單個(gè)IVs的因果效應(yīng)值,最終得到所有IVs效應(yīng)值的加權(quán)平均值。因IVW法比其他4種MR方法檢驗(yàn)效能更高,在沒有定向多效性的情況下能提供一個(gè)穩(wěn)健的因果估計(jì),因此,本研究將IVW作為主要分析方法[17]。除了IVW法以外,WME、SM、WM和MR Egger法作為補(bǔ)充分析,雖然其統(tǒng)計(jì)效力較低,但可以增加結(jié)果的穩(wěn)健性。
1.5" 敏感性分析
為了進(jìn)一步檢驗(yàn)結(jié)果的穩(wěn)健性和可靠性,本研究使用了Cochran′s Q檢驗(yàn)、MR Egger截距檢驗(yàn)和留一法(LOO)分析來評價(jià)MR結(jié)果。采用Cochran′s Q檢驗(yàn)和漏斗圖來檢測潛在異質(zhì)性的存在[18],評估由于不同分析平臺、實(shí)驗(yàn)條件、分析人群等造成SNP的測量誤差而帶來因果效應(yīng)估計(jì)的可能偏倚,Cochran′s Q檢驗(yàn)的P<0.05表明異質(zhì)性的存在。通過MR Egger截距檢驗(yàn)來檢測多效性,評估IVs是否通過除暴露以外的其他途徑影響結(jié)局,P<0.05表明存在多效性[18]。此外,采用留一法評估MR結(jié)果是否由單個(gè)變量驅(qū)動[19]。
1.6" 統(tǒng)計(jì)學(xué)處理
在本研究中,由于進(jìn)行了兩次MR分析,所以對MR假設(shè)檢驗(yàn)的結(jié)果應(yīng)用Bonferroni校正,閾值P<0.025表明具有統(tǒng)計(jì)學(xué)意義。所有統(tǒng)計(jì)分析均在R軟件(版本 3.6.1)中通過TwoSampleMR包(版本 0.4.25)進(jìn)行。
2" 結(jié)" 果
經(jīng)過Phenoscanner V2數(shù)據(jù)庫檢索,發(fā)現(xiàn)數(shù)據(jù)集中共剔除6個(gè)SNPs,分別為rs10740991、rs11772627、rs17175518、rs3101339、rs4800488、rs9385269;驗(yàn)證數(shù)據(jù)集中共剔除5個(gè)SNPs,分別為rs10740991、rs11772627、rs3101339、rs9385269;而rs746868和T2DM相關(guān),也被剔除。經(jīng)MR-PRESSO測試,在發(fā)現(xiàn)數(shù)據(jù)集中去除4個(gè)P<1的離群值,包括rs12137234、rs3764002、rs4269101、rs7582086;在驗(yàn)證數(shù)據(jù)集中去除4個(gè)P<1的離群值,包括rs12137234、rs3764002、rs7582086、rs7599488。最終發(fā)現(xiàn)數(shù)據(jù)集納入29個(gè)SNPs,驗(yàn)證數(shù)據(jù)集納入27個(gè)SNPs進(jìn)行MR分析。
2.1" MR分析
在發(fā)現(xiàn)集中,以IVW為主要分析方法的MR分析表明,增加DFI與T2DM風(fēng)險(xiǎn)降低之間存在因果關(guān)聯(lián)[OR=0.434,95%CI(0.312,0.602)]。此外,WME、SM和WM模型均表明增加DFI與T2DM風(fēng)險(xiǎn)降低之間的因果關(guān)聯(lián)成立(見表2、圖1)。雖然在MR Egger模型的計(jì)算結(jié)果中,假設(shè)檢驗(yàn)P>0.025,但暴露對結(jié)局的效應(yīng)方向與其他4種方法一致,這也增強(qiáng)了MR分析的可信度(見圖2)。
在驗(yàn)證集中,以IVW為主要分析方法的MR評估結(jié)果的假設(shè)檢驗(yàn)P<0.025,且其他4種方法的效應(yīng)方向評估與IVW一致,這進(jìn)一步驗(yàn)證了增加DFI與T2DM風(fēng)險(xiǎn)降低之間的因果關(guān)聯(lián)。
2.2" 敏感性分析
Cochran′s Q異質(zhì)性檢驗(yàn)和MR Egger截距檢驗(yàn)的P>0.05,提示當(dāng)前MR分析不存在異質(zhì)性和多效性。此外,漏斗圖是對稱的,也支持不存在異質(zhì)性的判斷(見圖3);留一法表明,MR分析結(jié)果不受單一SNPs的驅(qū)動(見圖4),同樣增加了本MR分析結(jié)果的穩(wěn)健性。
3" 討" 論
本研究首次使用MR分析方法探討DFI與T2DM之間因果關(guān)聯(lián),研究發(fā)現(xiàn),數(shù)據(jù)集與驗(yàn)證數(shù)據(jù)集的MR分析結(jié)果均表明增加DFI有助于降低T2DM的發(fā)生風(fēng)險(xiǎn),支持食用干果對于T2DM的益處。
既往已有一些研究對食用干果與T2DM風(fēng)險(xiǎn)之間的關(guān)聯(lián)進(jìn)行了有益探索。Esfahani等[20]的研究發(fā)現(xiàn),食用葡萄干可明顯降低健康人的餐后血糖和胰島素反應(yīng),這可能與其增加飽腹感、減緩胃排空、調(diào)節(jié)食欲有關(guān)[21-22]。Anderson等[23]的研究有相似發(fā)現(xiàn),食用葡萄干雖然不能改善空腹血糖狀態(tài),但對降低糖化血紅蛋白和餐后血糖有益。此外,Muraki等[24]在3項(xiàng)大型前瞻性縱向隊(duì)列研究中觀察到,食用葡萄或葡萄干、李子干等水果制品可明顯降低T2DM的風(fēng)險(xiǎn)。然而大多數(shù)研究沒有觀察到干果對空腹血糖的益處,Rankin等[25]在肥胖人群中觀察攝入葡萄干后餐后血糖及血糖反應(yīng)升高。在最近的一項(xiàng)交叉試驗(yàn)中觀察到類似的結(jié)果,攝入干果后空腹血糖明顯升高,排除了體重等因素后仍有統(tǒng)計(jì)學(xué)意義[26],這說明服用干果可能對T2DM的發(fā)生有不利影響。因此,DFI是否能降低T2DM的發(fā)生風(fēng)險(xiǎn)尚無定論,本研究發(fā)現(xiàn)增加DFI可以因果性地降低T2DM的風(fēng)險(xiǎn)。
關(guān)于食用干果可降低T2DM風(fēng)險(xiǎn)的機(jī)制目前有以下解釋。一方面,干果通常具有中或低的血糖指數(shù),并富含膳食纖維,這些因素已被證明對血糖控制和降低糖尿病風(fēng)險(xiǎn)有益[27-28]。其次,干果中的酚酸、類黃酮、類胡蘿卜素、花青素等植物化學(xué)物質(zhì)也發(fā)揮了一定作用[29]。其中類黃酮可通過降低氧化應(yīng)激損害來保持細(xì)胞功能,并抑制T2DM胰島素抵抗的發(fā)展[30]。此外,類黃酮還可以抵消與血小板過度激活和過度聚集相關(guān)的有害血管效應(yīng),這對控制和治療糖尿病及其并發(fā)癥有益[31]。
本研究利用大規(guī)模的GWAS匯總數(shù)據(jù),通過MR分析探究DFI與T2DM之間的因果關(guān)系,其優(yōu)勢在于MR分析可有效避免混雜和反向因果的影響,從而得到更具說服力的因果關(guān)聯(lián)評價(jià)結(jié)果。但本研究也有一些局限性:首先,本研究使用的GWAS數(shù)據(jù)均來源于歐洲人群,因此在將結(jié)論推之其他人群時(shí)應(yīng)該更加謹(jǐn)慎;其次,本研究中DFI的評估來自病人的問卷回答,因此可能存在一定的測量偏倚。
綜上所述,本研究采用了MR分析的方法,發(fā)現(xiàn)增加干果攝入可因果性地降低T2DM的發(fā)生風(fēng)險(xiǎn),提示攝入干果對于T2DM的潛在健康益處,但是仍然需要開展進(jìn)一步的隨機(jī)對照試驗(yàn)證實(shí)這種因果關(guān)聯(lián)。
參考文獻(xiàn):
[1]" SAEEDI P,SALPEA P,KARURANGA S,et al.Mortality attributable to diabetes in 20-79 years old adults,2019 estimates:results from the International Diabetes Federation diabetes atlas,9th edition[J].Diabetes Research and Clinical Practice,2020,162:108086.
[2]" BOMMER C,SAGALOVA V,HEESEMANN E,et al.Global economic burden of diabetes in adults:projections from 2015 to 2030[J].Diabetes Care,2018,41(5):963-970.
[3]" SCHWINGSHACKL L,HOFFMANN G,LAMPOUSI A M,et al.Food groups and risk of type 2 diabetes mellitus:a systematic review and meta-analysis of prospective studies[J].European Journal of Epidemiology,2017,32(5):363-375.
[4]" LEY S H,ARDISSON KORAT A V,SUN Q,et al.Contribution of the nurses′ health studies to uncovering risk factors for type 2 diabetes:diet,lifestyle,biomarkers,and genetics[J].American Journal of Public Health,2016,106(9):1624-1630.
[5]" SALAS-SALVAD J,BULL M,ESTRUCH R,et al.Prevention of diabetes with Mediterranean diets:a subgroup analysis of a randomized trial[J].Annals of Internal Medicine,2014,160(1):1-10.
[6]" CARUGHI A,F(xiàn)EENEY M J,KRIS-ETHERTON P,et al.Pairing nuts and dried fruit for cardiometabolic health[J].Nutrition Journal,2016,15:23.
[7]" SIEVENPIPER J L.Sickeningly sweet:does sugar cause chronic disease? No[J].Canadian Journal of Diabetes,2016,40(4):287-295.
[8]" MOKRY L E,AHMAD O,F(xiàn)ORGETTA V,et al.Mendelian randomisation applied to drug development in cardiovascular disease:a review[J].Journal of Medical Genetics,2015,52(2):71-79.
[9]" BOEHM F J,ZHOU X.Statistical methods for Mendelian randomization in genome-wide association studies:a review[J].Computational and Structural Biotechnology Journal,2022,20:2338-2351.
[10]" BURGESS S,SCOTT R A,TIMPSON N J,et al.Using published data in Mendelian randomization:a blueprint for efficient identification of causal risk factors[J].European Journal of Epidemiology,2015,30(7):543-552.
[11]" RUSK N.The UK biobank[J].Nature Methods,2018,15(12):1001.
[12]" MAHAJAN A,TALIUN D,THURNER M,et al.Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J].Nature Genetics,2018,50(11):1505-1513.
[13]" KURKI M I,KARJALAINEN J,PALTA P,et al.FinnGen provides genetic insights from a well-phenotyped isolated population[J].Nature,2023,613:508-518.
[14]" HEMANI G,ZHENG J,ELSWORTH B,et al.The MR-Base platform supports systematic causal inference across the human phenome[J].eLife,2018,7:e34408.
[15]" KAMAT M A,BLACKSHAW J A,YOUNG R,et al.PhenoScanner V2:an expanded tool for searching human genotype-phenotype associations[J].Bioinformatics,2019,35(22):4851-4853.
[16]" ABRAHAM T M,PENCINA K M,PENCINA M J,et al.Trends in diabetes incidence:the Framingham heart study[J].Diabetes Care,2015,38(3):482-487.
[17]" LIN Z T,DENG Y Q,PAN W.Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model[J].PLoS Genetics,2021,17(11):e1009922.
[18]" BOWDEN J,DAVEY SMITH G,BURGESS S.Mendelian randomization with invalid instruments:effect estimation and bias detection through egger regression[J].International Journal of Epidemiology,2015,44(2):512-525.
[19]" BURGESS S,BOWDEN J,F(xiàn)ALL T,et al.Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants[J].Epidemiology,2017,28(1):30-42.
[20]" ESFAHANI A,LAM J,KENDALL C W.Acute effects of raisin consumption on glucose and insulin reponses in healthy individuals[J].Journal of Nutritional Science,2014,3:e1.
[21]nbsp; KALIORA A C,KANELLOS P T,GIOXARI A,et al.Regulation of GIP and ghrelin in healthy subjects fed on Sun-dried raisins:a pilot study with a crossover trial design[J].Journal of Medicinal Food,2017,20(3):301-308.
[22]" FURCHNER-EVANSON A,PETRISKO Y,HOWARTH L,et al.Type of snack influences satiety responses in adult women[J].Appetite,2010,54(3):564-569.
[23]" ANDERSON J W,WEITER K M,CHRISTIAN A L,et al.Raisins compared with other snack effects on glycemia and blood pressure:a randomized,controlled trial[J].Postgraduate Medicine,2014,126(1):37-43.
[24]" MURAKI I,IMAMURA F,MANSON J E,et al.Fruit consumption and risk of type 2 diabetes:results from three prospective longitudinal cohort studies[J].BMJ,2013,347:f5001.
[25]" RANKIN J W,ANDREAE M C,OLIVER CHEN C Y,et al.Effect of raisin consumption on oxidative stress and inflammation in obesity[J].Diabetes,Obesity amp; Metabolism,2008,10(11):1086-1096.
[26]" SULLIVAN V K,PETERSEN K S,KRIS-ETHERTON P M.Dried fruit consumption and cardiometabolic health:a randomised crossover trial[J].British Journal of Nutrition,2020,124(9):912-921.
[27]" CHANDALIA M,GARG A,LUTJOHANN D,et al.Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus[J].The New England Journal of Medicine,2000,342(19):1392-1398.
[28]" InterAct Consortium.Dietary fibre and incidence of type 2 diabetes in eight European countries:the EPIC-InterAct study and a meta-analysis of prospective studies[J].Diabetologia,2015,58(7):1394-1408.
[29]" BHUPATHIRAJU S N,TOBIAS D K,MALIK V S,et al.Glycemic index,glycemic load,and risk of type 2 diabetes:results from 3 large US cohorts and an updated meta-analysis[J].The American Journal of Clinical Nutrition,2014,100(1):218-232.
[30]" COZMA A I,SIEVENPIPER J L,DE SOUZA R J,et al.Effect of fructose on glycemic control in diabetes:a systematic review and meta-analysis of controlled feeding trials[J].Diabetes Care,2012,35(7):1611-1620.
[31]" SALLES B C C,LEME K C,DA SILVA M A,et al.Protective effect of flavonoids from passiflora edulis Sims on diabetic complications in rats[J].Journal of Pharmacy and Pharmacology,2021,73(10):1361-1368.
(收稿日期:2024-02-06)
(本文編輯郭懷?。?/p>