Research progress on the application of functional near infraredspectroscopy in the diagnosis of various mental illnesses
Keywords" functional near infraredspectroscopy, fNIRS; psychiatric disorders; diagnosis; review
摘要" 對不同的精神疾病功能性紅外光學成像技術(shù)不同的激活方式和特征表現(xiàn)進行綜述,為多種精神疾病的診斷和鑒別診斷提供新的潛在生物學標志物。
關(guān)鍵詞" 功能性近紅外光學成像技術(shù);精神疾??;診斷;綜述
doi:10.12102/j.issn.1009-6493.2024.23.026
目前,臨床精神障礙診斷主要是基于臨床現(xiàn)象學,尚未發(fā)現(xiàn)確切的生物診斷標志物[1?9],因此探索可用于鑒別精神疾病生物標記物迫在眉睫。多項Meta分析結(jié)果同樣提示,不同精神障礙間存在共同的腦功能和結(jié)構(gòu)基礎(chǔ),包括高度相似的大腦結(jié)構(gòu)異常[10?17]以及任務態(tài)下相似的腦區(qū)激活等[18?21]。功能性近紅外光學成像技術(shù)(functional near infraredspectroscopy,fNIRS)通過觀察任務期間額葉、雙側(cè)顳葉的氧合血紅蛋白(oxygen?hemoglobin,oxy?Hb)以及脫氧血紅蛋白(deoxygen?hemoglobin,deoxy?Hb)含量的波動,揭示了大腦皮層的活躍性和代謝狀況。本綜述旨在探討不同精神障礙病人在功能性近紅外光學成像技術(shù)下的特征性表現(xiàn)。
1" 功能性近紅外光學成像技術(shù)概述
近年來,功能性近紅外光學成像技術(shù)是一種新興的神經(jīng)成像技術(shù),利用650~950 nm近紅外光對大腦神經(jīng)生物組織有較好的穿透性,依據(jù)神經(jīng)血管耦合機制觀察組織生理活動。主要通過監(jiān)測大腦在認知活動過程中額葉、雙側(cè)顳葉的氧合血紅蛋白、脫氧血紅蛋白等相對濃度的變化,進一步反映額顳葉皮層活躍和代謝程度及血流動力學改變,是一種無創(chuàng)的腦功能成像技術(shù)[22?23]。許多研究人員通過結(jié)合不同的認知任務下功能性近紅外光學成像技術(shù)探究精神疾病病人的腦部神經(jīng)反應模式,尤其是以言語流暢性任務(verbal fluency test,VFT)為主要的認知任務范式。該任務要求參與者在限定的時間內(nèi)完成各種形式的詞語記憶任務,可被劃分為詞義流暢任務和音韻流暢任務[24]。研究已證實,在實施中文版言語流暢性任務過程中,額葉積分值及顳葉重心值對于區(qū)分不同類型的精神疾病病人和健康對照有著極高的敏感性和特異性[25]。2019年,歐美精神病學中認知功能篩查和評估的專家共識[26]指出,功能性近紅外光學成像技術(shù)血流動力學指標有成為精神病學領(lǐng)域生物標志物的潛力,幫助指導臨床治療。因其具有很好的時間分辨率、可監(jiān)測個體的運動、操作簡便、費用比功能性磁共振成像低、適用范圍廣泛、體積相對較小等優(yōu)勢。目前功能性近紅外光學成像技術(shù)在精神科臨床診療中被廣泛使用。
2" 不同精神疾病病人功能性近紅外光學成像技術(shù)腦血流動力學各指標特征
2.1 精神分裂癥
精神分裂癥是一種常見的慢性高發(fā)病率和高致殘率精神障礙,臨床癥狀包括陽性癥狀、陰性癥狀和認知功能損害,多涉及知覺、思維、情感和行為等方面,并伴有社會功能受損,給個人、家庭和社會均帶來了巨大負擔[27]。研究表明,精神分裂癥病人在前額葉區(qū)域的活動明顯減少,如Hirata等[28]觀察到精神分裂癥病人相對于正常人的額極大腦活動減少;Reif等[29]發(fā)現(xiàn)精神分裂癥病人與健康人相比,背外側(cè)前額葉、雙側(cè)顳葉的氧合血紅蛋白濃度降低,即該區(qū)皮層激活顯著降低。同樣,精神分裂癥病人在倫敦塔任務(London tower task)[30]、面部情緒識別任務(facial emotion recognition task)[31]和持續(xù)注意任務(continuous attention task)[32]等多種認知任務中的表現(xiàn)也有類似的變化,即大腦前額葉活動減弱。除了前額葉之外,精神分裂癥病人還有顳葉血流動力學異常現(xiàn)象。研究結(jié)果顯示,精神分裂癥病人在言語流暢性任務中額顳葉區(qū)域的皮質(zhì)活動減退,且病人背外側(cè)前額葉皮層的激活水平隨病情的發(fā)展逐漸加劇[33?34]。精神分裂癥病人不僅存在額顳葉激活水平降低,在任務期開始和結(jié)束后階段,腦區(qū)激活時間和方式也存在異常改變。根據(jù)Takizawa等[35?36]研究結(jié)果顯示,健康的被試者在任務初期會快速提高雙側(cè)顳葉的氧合血紅蛋白含量,并在整個任務過程中維持激活水平,而在任務完成后,則逐步回落至基線;然而,精神分裂癥病人的雙側(cè)顳葉的氧合血紅蛋白含量在任務過程中上升緩慢,一旦任務結(jié)束立即下降,繼而再次出現(xiàn)上升趨勢。該結(jié)果提示,精神分裂癥病人在任務期間和任務結(jié)束后階段,雙側(cè)顳葉的氧合血紅蛋白存在特征性變化過程,亦可證明功能性近紅外光學成像技術(shù)有較高的時間分辨率,可準確記錄病人在整個檢查過程中的腦血流變化情況。
以上研究結(jié)果均表明,通過功能性近紅外光學成像技術(shù)可檢測到精神分裂癥病人存在異常的血流動力學變化,是一種潛在的臨床癥狀評估、早期識別病人的生物學標志。
2.2 重性抑郁障礙
重性抑郁障礙癥狀包括核心癥狀群、軀體癥狀群和心理癥狀群,其中,顯著持久的心境低落為典型核心臨床癥狀之一[37?39]。每例病人的臨床癥狀表現(xiàn)和病情的復雜程度可有較大區(qū)別,為臨床治療提出了更高的要求[37?40]。根據(jù)世界衛(wèi)生組織預測,到2030年,抑郁癥將超過缺血性心肌病,躍居成為全球患病率最高的疾病,已成為精神障礙所致疾病負擔的首要原因,是全球重大公共衛(wèi)生問題[41]。在抑郁障礙病人完善功能性近紅外光學成像技術(shù)檢查時發(fā)現(xiàn),檢測部位腦區(qū),即額葉、雙側(cè)顳葉腦區(qū)均存在血流動力學異常表現(xiàn),如存在情緒低落等核心癥狀的抑郁障礙病人較其他病人左側(cè)前額葉的激活水平顯著降低[39]。Ohta等[42]研究發(fā)現(xiàn),通過監(jiān)測重性抑郁障礙病人在執(zhí)行言語流暢性任務期間血紅蛋白含量發(fā)現(xiàn),額葉區(qū)域的雙側(cè)顳葉的氧合血紅蛋白增加減弱。Satomura等[43]研究發(fā)現(xiàn),重性抑郁障礙病人雙側(cè)額顳區(qū)的激活程度也顯著下降。Nishida等[44]研究發(fā)現(xiàn),抑郁障礙病人右側(cè)顳葉、雙側(cè)顳葉的氧合血紅蛋白濃度與抑郁癥狀嚴重程度呈正相關(guān)。不同臨床表現(xiàn)的病人在功能性近紅外光學成像技術(shù)監(jiān)測下可有不同的血流動力學表現(xiàn),這為進一步精準治療奠定了基礎(chǔ)。抑郁障礙病人常有入睡困難等睡眠障礙,是重要的臨床癥狀之一[45]。Nishida等[44]研究結(jié)果還顯示,在執(zhí)行言語流暢性任務時,伴有睡眠障礙的重性抑郁障礙病人額顳葉腦區(qū)的平均氧合血紅蛋白水平的變化較健康對照組相比顯著降低,這進一步證實了該病癥中存在著大腦額顳葉功能異常,可能與其嚴重的失眠癥狀相關(guān)。自殺意念是抑郁障礙的常見癥狀。有研究表明,與健康對照組相比,伴有自殺意念的重性抑郁障礙病人在執(zhí)行言語流暢性任務期間左側(cè)前額葉、雙側(cè)顳葉的氧合血紅蛋白的變化相對減少[46],即前額葉的激活程度與病人的自殺意念存在一定的相關(guān)性。功能性近紅外光學成像技術(shù)在執(zhí)行任務期間,血紅蛋白下降可被視為抑郁障礙潛在的生物學指標[47]。重性抑郁障礙病人額顳葉異常的血流動力學特征,可作為輔助診斷抑郁癥的指標之一[48]。
2.3 雙相情感障礙
雙相情感障礙屬于心境情感障礙,在病程發(fā)展過程中可有抑郁發(fā)作和躁狂發(fā)作的反復不規(guī)則呈現(xiàn),是一類既有躁狂發(fā)作,又有抑郁發(fā)作的常見精神障礙[49]。這種疾病的特征在于其復雜的臨床表現(xiàn),同時,可有注意力分散等認知損害癥狀[50]。在臨床病史采集及診斷過程中,雙相情感障礙病人的抑郁發(fā)作與抑郁障礙病人的抑郁癥狀相像,有時難以區(qū)分[51],而功能性近紅外光學成像技術(shù)在區(qū)分2種疾病病人中有著不俗的表現(xiàn)。Takizawa等[52]研究結(jié)果顯示,通過使用功能性近紅外光學成像技術(shù)對673例患有精神疾病的個體進行了大腦功能狀況的評估,在研究中運用了額葉和兩側(cè)顳葉的血流動力學特性構(gòu)建時間空間特性模型,并從中提取出積分值、重心值等參數(shù),借此以有效地識別重性抑郁障礙及雙相情感障礙病人。Tsujii等[53]發(fā)現(xiàn),左額極皮層在雙相情感障礙和重性抑郁障礙病人中可有不同的表現(xiàn),是可用于區(qū)分這2種疾病的重要腦區(qū)。Zhu等[51]研究發(fā)現(xiàn),雙相情感障礙病人在左額極皮層雙側(cè)顳葉的氧合血紅蛋白減少較重性抑郁障礙病人少。Feng等[54]也有類似研究結(jié)果。上述研究均表明,雙相情感障礙和重性抑郁障礙病人在前額葉的激活、血流動力學都有不同表現(xiàn),可成為鑒別2種疾病的重要方式[48]。
2.4 焦慮障礙
焦慮障礙主要表現(xiàn)為持續(xù)6個月以上的焦慮和擔心,是常見的精神疾病之一[55]。根據(jù)《精神障礙診斷與統(tǒng)計手冊(第5版)》,焦慮障礙包括廣泛性焦慮障礙(generalized anxiety disorder,GAD)、社交焦慮障礙(social anxiety disorder,SAD)、驚恐障礙(panic anxiety disorder,PD)等[56]。
2.4.1 廣泛性焦慮障礙
廣泛性焦慮障礙病人大多出現(xiàn)前額葉激活減弱。Fitzgerald等[57]發(fā)現(xiàn),廣泛性焦慮障礙病人前額葉激活存在明顯不足,且焦慮癥狀的嚴重程度與該病人前額葉激活程度呈負相關(guān),即焦慮癥狀程度越重,前額葉激活程度越低。
2.4.2 社交焦慮障礙
社交焦慮障礙病人在認知功能相關(guān)腦區(qū)激活程度較健康個體存在差異。Mizzi等[58]發(fā)現(xiàn)面對社交情境時,社交焦慮障礙病人在邊緣區(qū)域,如杏仁核、海馬體中表現(xiàn)過度活躍,而認知控制區(qū)域,如前扣帶回皮層、背外側(cè)前額葉皮層(DLPFC)則顯示激活不足。Yokoyama等[59]使用功能性近紅外光學成像技術(shù)比較社交焦慮障礙病人和健康個體在認知任務中前額葉皮質(zhì)激活的差異。
2.4.3 驚恐障礙
持續(xù)存在恐懼情緒的驚恐障礙病人前額葉皮層活性明顯下降。研究發(fā)現(xiàn),伴有廣場恐怖的驚恐障礙病人與不伴有廣場恐怖的病人相比,前額葉皮層活性顯著低下,且前額葉皮層活性與杏仁核激活程度呈正相關(guān),究其原因,杏仁核是與恐懼發(fā)生密切相關(guān)的腦區(qū),前額葉皮層激活減弱,則大腦皮層對杏仁核的抑制作用不足,從而易于引發(fā)驚恐障礙[60]。Nishimura等[61]發(fā)現(xiàn),在執(zhí)行認知任務期間,驚恐障礙病人驚恐發(fā)作頻率越高,前額葉皮層外側(cè)區(qū)域激活程度越低,由此可見,持續(xù)存在驚恐發(fā)作會使得驚恐障礙病人出現(xiàn)認知受損。
2.5 強迫障礙
強迫障礙是常見的精神疾病之一,其臨床特征是使病人不受控制地產(chǎn)生令人不安的想法和(或)進行重復性的行為[62]。強迫障礙的終身患病率為1%~3%[63],給個人及社會帶來巨大的負擔和影響[64]。衛(wèi)生經(jīng)濟學調(diào)查顯示,我國每年因強迫障礙導致的直接和間接經(jīng)濟損失約370億元[13]。背外側(cè)前額葉和后部區(qū)域可能參與強迫障礙的病理生理學過程[65]。Hirosawa等[66]發(fā)現(xiàn),與健康的對照組相比,患有強迫障礙的成年人血流動力學指標在前額葉,特別是在背外側(cè)前額葉皮層中有所減弱。Watanuki等[31]發(fā)現(xiàn),強迫障礙病人在執(zhí)行各種任務范式,包括言語流暢性任務期間表現(xiàn)出低下的神經(jīng)認知功能并存在額葉腦激活水平的下降[67]。Feng等[54]發(fā)現(xiàn),強迫障礙病人在執(zhí)行言語流暢性任務期間,額顳葉積分值及額葉斜率相比健康對照者顯著降低,提示強迫障礙病人額顳葉血流響應及激活降低,即存在功能下降。有研究探討了強迫障礙病人相比健康對照者的額顳葉相關(guān)腦區(qū)在任務下的激活延遲,發(fā)現(xiàn)強迫障礙病人的額顳葉腦區(qū)激活達峰時間明顯延遲[68]。
3" 存在的問題及展望
3.1 存在的問題
功能性近紅外光學成像技術(shù)也存在不足,如探測深度較淺,無法進一步檢測深部腦組織結(jié)構(gòu)血流動力學表現(xiàn)[69];近紅外光線在探測過程中易受皮膚、顱骨影響,使得功能性近紅外光學成像技術(shù)的空間分辨率較低[25]。
3.2 展望
功能性近紅外光學成像技術(shù)具有舒適性高、便攜、實時性、非侵入性等優(yōu)勢,對不同精神障礙有各自特征性表現(xiàn),雖仍存在部分不足,但可與顱腦磁共振或腦電圖等檢查共同完善,取長補短,在精神疾病的診斷和鑒別診斷等領(lǐng)域仍具有顯著的優(yōu)勢。
4" 小結(jié)
功能性近紅外光學成像技術(shù)是一項非侵入性技術(shù),動態(tài)監(jiān)測病人額葉、雙側(cè)顳葉因神經(jīng)活動引起的血流動力學改變。在功能性近紅外光學成像技術(shù)監(jiān)測下完成認知任務時,不同的精神障礙病人有不同的血流動力學改變的特征表現(xiàn),這些特征可作為區(qū)分不同種類精神疾病的潛在精神病學生物標志物[26],用于早期精神障礙的識別,鑒別不同的精神障礙,指導精神疾病的診治,為精準醫(yī)學提供依據(jù),具有廣闊的前景。
參考文獻:
[1]" GOLDNER E M,HSU L,WARAICH P,et al.Prevalence and incidence studies of schizophrenic disorders:a systematic review of the literature[J].Canadian Journal of Psychiatry Revue Canadienne de Psychiatrie,2002,47(9):833-843.
[2]" 施春陽,張剛,解堯,等.穩(wěn)定期精神分裂癥患者孤獨感與被動自殺意念的相關(guān)性[J].中國健康心理學雜志,2024,32(2):198-203.
[3]" WHO.Schizophrenia[EB/OL].(2022-01-10)[2023-05-10].http://www.nature.com/npjschz/.
[4]" 陸林.沈漁邨精神病學[M].6版.北京:人民衛(wèi)生出版社,2018:1.
[5]" GBD Risk Factors Collaborators.Global burden of 87 risk factors in 204 countries and territories,1990-2019:a systematic analysis for the global burden of disease study 2019[J].Lancet,2020,396(10258):1223-1249.
[6]" 武偉麗,冀紫陽,張清清,等.首發(fā)未治療抑郁障礙患者快感缺失與自殺意念的關(guān)系[J].中國心理衛(wèi)生雜志,2024,38(5):383-387.
[7]" 于海婷,周福春,薄奇靜,等.雙相情感障礙、抑郁障礙認知功能相關(guān)因素分析[J].中國醫(yī)刊,2020,55(8):917-919.
[8]" MONROE S M,HARKNESS K L.Major depression and its recurrences:life course matters[J].Annual Review of Clinical Psychology,2022,18:329-357.
[9]" LU J,XU X F,HUANG Y Q,et al.Prevalence of depressive disorders and treatment in China:a cross-sectional epidemiological study[J].The Lancet Psychiatry,2021,8(11):981-990.
[10]" 袁丹鳳,楊祥云,李占江.焦慮障礙的腦電生理研究進展[J].神經(jīng)疾病與精神衛(wèi)生,2024,24(6):423-428.
[11]" HUANG Y Q,WANG Y,WANG H,et al.Prevalence of mental disorders in China:a cross-sectional epidemiological study[J].The Lancet Psychiatry,2019,6(3):211-224.
[12]" 中華醫(yī)學會精神醫(yī)學分會《中國強迫障礙防治指南》編寫組.中國強迫障礙防治指南2016(精編版)[J].中華精神科雜志,2016,49(6):353-366.
[13]" YANG W L,TANG Z,WANG X J,et al.The cost of obsessive-compulsive disorder(OCD) in China:a multi-center cross-sectional survey based on hospitals[J].General Psychiatry,2021,34(6):e100632.
[14]" 夏舜堯,魏貴明,石川,等.難治性強迫障礙患者認知功能和血漿C反應蛋白水平的關(guān)聯(lián)[J].中國心理衛(wèi)生雜志,2023,37(12):1031-1037.
[15]" MCINTYRE R S,BERK M,BRIETZKE E,et al.Bipolar disorders[J].Lancet,2020,396(10265):1841-1856.
[16]" MERIKANGAS K R,JIN R,HE J P,et al.Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative[J].Archives of General Psychiatry,2011,68(3):241-251.
[17]" WHITEFORD H A,DEGENHARDT L,REHM J,et al.Global burden of disease attributable to mental and substance use disorders:findings from the global burden of disease study 2010[J].Lancet,2013,382(9904):1575-1586.
[18]" GBD Mental Disorders Collaborators.Global,regional,and national burden of 12 mental disorders in 204 countries and territories,1990-2019:a systematic analysis for the global burden of disease study 2019[J].The Lancet Psychiatry,2022,9(2):137-150.
[19]" OPEL N,GOLTERMANN J,HERMESDORF M,et al.Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders:a secondary analysis of mega-and meta-analytical findings from the ENIGMA consortium[J].Biological Psychiatry,2020,88(9):678-686.
[20]" JANIRI D,MOSER D A,DOUCET G E,et al.Shared neural phenotypes for mood and anxiety disorders:a meta-analysis of 226 task-related functional imaging studies[J].JAMA Psychiatry,2020,77(2):172-179.
[21]" MCTEAGUE L M,ROSENBERG B M,LOPEZ J W,et al.Identification of common neural circuit disruptions in emotional processing across psychiatric disorders[J].The American Journal of Psychiatry,2020,177(5):411-421.
[22]" BOAS D A,ELWELL C E,F(xiàn)ERRARI M,et al.Twenty years of functional near-infrared spectroscopy:introduction for the special issue[J].NeuroImage,2014,85(Pt 1):1-5.
[23]" 張福旭,張?zhí)旌?,劉曉華.基于認知任務的近紅外光學成像技術(shù)在抑郁癥中的研究進展[J].神經(jīng)疾病與精神衛(wèi)生,2020,20(2):116-120.
[24]" TSENG H J,LU C F,JENG J S,et al.Frontal asymmetry as a core feature of major depression:a functional near-infrared spectroscopy study[J].Journal of Psychiatry amp; Neuroscience,2022,47(3):E186-E193.
[25]" WEI Y Y,CHEN Q,CURTIN A,et al.Functional near-infrared spectroscopy(fNIRS) as a tool to assist the diagnosis of major psychiatric disorders in a Chinese population[J].European Archives of Psychiatry and Clinical Neuroscience,2021,271(4):745-757.
[26]" MCINTYRE R S,ANDERSON N,BAUNE B T,et al.Expert consensus on screening and assessment of cognition in psychiatry[J].CNS Spectrums,2019,24(1):154-162.
[27]" KOSHIYAMA D,F(xiàn)UKUNAGA M,OKADA N,et al.White matter microstructural alterations across four major psychiatric disorders:mega-analysis study in 2 937 individuals[J].Molecular Psychiatry,2020,25(4):883-895.
[28]" HIRATA K,EGASHIRA K,HARADA K,et al.Differences in frontotemporal dysfunction during social and non-social cognition tasks between patients with autism spectrum disorder and schizophrenia[J].Scientific Reports,2018,8(1):3014.
[29]" REIF A,SCHECKLMANN M,EIRICH E,et al.A functional promoter polymorphism of neuronal nitric oxide synthase moderates prefrontal functioning in schizophrenia[J].International Journal of Neuropsychopharmacology,2011,14(7):887-897.
[30]" XIANG Y L,LI Y,SHU C,et al.Prefrontal cortex activation during verbal fluency task and tower of London task in schizophrenia and major depressive disorder[J].Frontiers in Psychiatry,2021,12:709875.
[31]" WATANUKI T,MATSUO K,EGASHIRA K,et al.Precentral and inferior prefrontal hypoactivation during facial emotion recognition in patients with schizophrenia:a functional near-infrared spectroscopy study[J].Schizophrenia Research,2016,170(1):109-114.
[32]" CURTIN A,SUN J F,ZHAO Q F,et al.Visuospatial task-related prefrontal activity is correlated with negative symptoms in schizophrenia[J].Scientific Reports,2019,9(1):9575.
[33]" CHOU P H,YAO Y H,ZHENG R X,et al.Deep neural network to differentiate brain activity between patients with first-episode schizophrenia and healthy individuals:a multi-channel near infrared spectroscopy study[J].Frontiers in Psychiatry,2021,12:655292.
[34]" LI J,MU J L,SHEN C Y,et al.Abnormal cortical activation patterns among Chinese-speaking schizophrenia patients during category and letter verbal fluency tasks revealed by multi-channel functional near-infrared spectroscopy[J].Frontiers in Psychiatry,2021,12:790732.
[35]" TAKIZAWA R,KASAI K,KAWAKUBO Y,et al.Reduced frontopolar activation during verbal fluency task in schizophrenia:a multi-channel near-infrared spectroscopy study[J].Schizophrenia Research,2008,99(1/2/3):250-262.
[36]" SUTO T,F(xiàn)UKUDA M,ITO M,et al.Multichannel near-infrared spectroscopy in depression and schizophrenia:cognitive brain activation study[J].Biological Psychiatry,2004,55(5):501-511.
[37]" HUSAIN S F,YU R J,TANG T B,et al.Validating a functional near-infrared spectroscopy diagnostic paradigm for major depressive disorder[J].Scientific Reports,2020,10(1):9740.
[38]" TSUJII N,MIKAWA W,TSUJIMOTO E,et al.Relationship between prefrontal hemodynamic responses and quality of life differs between melancholia and non-melancholic depression[J].Psychiatry Research Neuroimaging,2016,253:26-35.
[39]" AKIYAMA T,KOEDA M,OKUBO Y,et al.Hypofunction of left dorsolateral prefrontal cortex in depression during verbal fluency task:a multi-channel near-infrared spectroscopy study[J].Journal of Affective Disorders,2018,231:83-90.
[40]" HO C S H,LIM L J H,LIM A Q,et al.Diagnostic and predictive applications of functional near-infrared spectroscopy for major depressive disorder:a systematic review[J].Frontiers in Psychiatry,2020,11:378.
[41]" 2019 China psychiatric psychological internet medical services industry white paper[EB/OL].(2022-05-13)[2023-12-12].http://www.chinaweekly.cn/39108.html.
[42]" OHTA H,YAMAGATA B,TOMIOKA H,et al.Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy[J].Depression and Anxiety,2008,25(12):1053-1059.
[43]" SATOMURA Y,SAKAKIBARA E,TAKIZAWA R,et al.Severity-dependent and-independent brain regions of major depressive disorder:a long-term longitudinal near-infrared spectroscopy study[J].Journal of Affective Disorders,2019,243:249-254.
[44]" NISHIDA M,KIKUCHI S,MATSUMOTO K,et al.Sleep complaints are associated with reduced left prefrontal activation during a verbal fluency task in patients with major depression:a multi-channel near-infrared spectroscopy study[J].Journal of Affective Disorders,2017,207:102-109.
[45]" OHAYON M M.Prevalence and correlates of nonrestorative sleep complaints[J].Archives of Internal Medicine,2005,165(1):35-41.
[46]" BAIK S Y,KIM J Y,CHOI J,et al.Prefrontal asymmetry during cognitive tasks and its relationship with suicide ideation in major depressive disorder:an fNIRS study[J].Diagnostics,2019,9(4):193.
[47]" 陽雨露,孫蘊怡,肖洪奇,等.精神疾病患者言語流暢性任務下前額葉激活特征的功能性近紅外光學成像研究[J].四川精神衛(wèi)生,2023,36(3):235-241.
[48]" 顧喬喬,王慧穎,劉聰,等.近紅外光學成像在抑郁癥診斷及療效評估中的應用[J].中華行為醫(yī)學與腦科學雜志,2021,30(9):858-864.
[49]" 和琴.雙相情感障礙伴自殺意念患者的近紅外光譜特征研究[D].南昌:南昌大學,2023.
[50]" 金志興,王媺媞,周千,等.睡眠呼吸暫停綜合征延長雙相障礙患者抑郁相的快速眼動睡眠時間并縮短躁狂相的熟睡時間[J].上海交通大學學報(醫(yī)學版),2020,40(1):51-57.
[51]" ZHU Y,QUAN W X,WANG H L,et al.Prefrontal activation during a working memory task differs between patients with unipolar and bipolar depression:a preliminary exploratory study[J].Journal of Affective Disorders,2018,225:64-70.
[52]" TAKIZAWA R,F(xiàn)UKUDA M,KAWASAKI S,et al.Neuroimaging-aided differential diagnosis of the depressive state[J].NeuroImage,2014,85(Pt 1):498-507.
[53]" TSUJII N,OTSUKA I,OKAZAKI S,et al.Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder[J].Frontiers in Psychiatry,2019,10:312.
[54]" FENG K,LAW S,RAVINDRAN N,et al.Differentiating between bipolar and unipolar depression using prefrontal activation patterns:promising results from functional near infrared spectroscopy(fNIRS) findings[J].Journal of Affective Disorders,2021,281:476-484.
[55]" 周蒙蒙,駱宏.功能性近紅外光譜在焦慮障礙診斷及療效評估中的應用研究進展[J].浙江醫(yī)學,2024,46(1):102-106;110.
[56]" 美國精神醫(yī)學學會,張道龍.精神障礙診斷與統(tǒng)計手冊:案頭參考書[M].北京:北京大學出版社,2016:1.
[57]" FITZGERALD J M,PHAN K L,KENNEDY A E,et al.Prefrontal and amygdala engagement during emotional reactivity and regulation in generalized anxiety disorder[J].Journal of Affective Disorders,2017,218:398-406.
[58]" MIZZI S,PEDERSEN M,LORENZETTI V,et al.Resting-state neuroimaging in social anxiety disorder:a systematic review[J].Molecular Psychiatry,2022,27(1):164-179.
[59]" YOKOYAMA C,KAIYA H,KUMANO H,et al.Dysfunction of ventrolateral prefrontal cortex underlying social anxiety disorder:a multi-channel NIRS study[J].NeuroImage Clinical,2015,8:455-461.
[60]" DRESLER T,GUHN A,TUPAK S V,et al.Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder[J].Journal of Neural Transmission,2013,120(1):3-29.
[61]" NISHIMURA Y,TANII H,HARA N,et al.Relationship between the prefrontal function during a cognitive task and the severity of the symptoms in patients with panic disorder:a multi-channel NIRS study[J].Psychiatry Research,2009,172(2):168-172.
[62]" GOODMAN W K,GRICE D E,LAPIDUS K A,et al.Obsessive? compulsive disorder[J].Psychiatr Clin North Am,2014,37(3):257?267.
[63]" JALAL B,CHAMBERLAIN S R,SAHAKIAN B J.Obsessive-compulsive disorder:etiology,neuropathology,and cognitive dysfunction[J].Brain and Behavior,2023,13(6):e3000.
[64]" CERVIN M.Obsessive-compulsive disorder:diagnosis,clinical features,nosology,and epidemiology[J].Psychiatric Clinics of North America,2023,46(1):1-16.
[65]" NAKAO T,OKADA K,KANBA S.Neurobiological model of obsessive-compulsive disorder:evidence from recent neuropsychological and neuroimaging findings[J].Psychiatry and Clinical Neurosciences,2014,68(8):587-605.
[66]" HIROSAWA R,NARUMOTO J,SAKAI Y,et al.Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task[J].Neuropsychiatric Disease and Treatment,2013,9:955-962.
[67]" TAKEDA T,SUMITANI S,HAMATANI S,et al.Prefrontal cortex activation during neuropsychological tasks might predict response to pharmacotherapy in patients with obsessive-compulsive disorder[J].Neuropsychiatric Disease and Treatment,2017,13:577-583.
[68]" 喬勇軍,宋小慧,謝青,等.近紅外光譜腦功能成像輔助診斷強迫障礙的臨床價值[J].中華精神科雜志,2024,57(3):147-154.
[69]" 顧喬喬.重性抑郁障礙fNIRS腦血流動力學特征與臨床癥狀及認知功能關(guān)系的研究[D].新鄉(xiāng):新鄉(xiāng)醫(yī)學院,2022.