亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        硬腦膜在顱骨/腦膜/腦組織系統(tǒng)生長發(fā)育中的作用機制研究進展

        2024-12-31 00:00:00劉松李文斌邵國張春陽馮士軍
        天津醫(yī)藥 2024年11期

        摘要:硬腦膜是貼覆在顱骨內(nèi)表面且包繞大腦的一層質(zhì)韌的纖維結締組織膜,作為腦組織與顱骨間的緩沖性橋梁結構,其生理功能及在顱骨發(fā)育和修復中的作用一直是研究的熱點。近年來研究發(fā)現(xiàn),硬腦膜在顱骨的生長過程中不僅直接參與顱骨的發(fā)育,還分泌多種控制中樞神經(jīng)系統(tǒng)發(fā)育的細胞因子,兩者間有豐富的物質(zhì)交換與細胞遷移。該文從硬腦膜在顱骨發(fā)育及修復中的作用進行綜述,為進一步發(fā)現(xiàn)硬腦膜在顱骨發(fā)育及修復中的相關機制提供線索。

        關鍵詞:硬腦膜;顱骨發(fā)育;顱骨損傷修復

        中圖分類號:R651.1+9 文獻標志碼:A DOI:10.11958/20240842

        Research progress on the mechanism of dura mater in the growth and development of skull/meninges/brain tissue system

        LIU Song1, LI Wenbin1, SHAO Guo2, ZHANG Chunyang2, FENG Shijun2△

        1 The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology,

        Baotou 014010, China; 2 Engineering Technology Center for Bone Tissue Regeneration and

        Injury Repair in Inner Mongolia Autonomous Region

        △Corresponding Author E-mail: fsj18047211139@126.com

        Abstract:" Dura mater is a tough collagen connective tissue attached to inner surface of skull and wrapped around brain. As a buffer bridge between brain tissue and skull, its physiological function and role in skull development and repair have always been a focus of research. Recent studies have found that dura mater not only directly participates in skull development during skull growth, but also secretes a variety of cytokines that control the development of central nervous system. There are abundant material exchange and cell communication between the two. This article reviews the role of dura in development and repair of skull, and provides clues for further discovery of the relevant mechanisms of dura in development and repair of skull.

        Key words: dura mater; skull development; skull injury repair

        硬腦膜是貼覆在顱骨內(nèi)表面且包繞大腦的一層質(zhì)韌的纖維結締組織膜,在腦組織和顱骨的發(fā)育過程中發(fā)揮著重要的作用,尤其是未成熟的硬腦膜可分泌多種信號因子,促使成骨細胞轉(zhuǎn)化為骨細胞,調(diào)節(jié)顱骨發(fā)育與重塑[1-2]。硬腦膜生理結構完整性及血腦屏障功能性對維持顱骨、硬腦膜及顱腦組織之間的細胞遷移至關重要。顱骨缺損后會啟動缺損修復機制,誘導硬腦膜分泌、募集骨形態(tài)發(fā)生蛋白(bBMP)、成纖維細胞生長因子(FGF)、Runt相關轉(zhuǎn)錄因子2(Runx2)、骨鈣蛋白(osteocalcin,OCN)等成骨相關因子與成骨相關細胞加速骨再生,啟動炎癥防御反應及缺損區(qū)域血管再生,誘導缺損部位形成骨化中心以加速膜內(nèi)成骨,實現(xiàn)顱骨缺損修復及骨重塑[3-4]。硬腦膜和顱骨在來源上高度相似,位置分布又極為緊密,因此兩者在生長發(fā)育及損傷修復的過程中必然有著密切的細胞遷移和廣泛的物質(zhì)聯(lián)系,但目前對其中涉及的具體分子機制尚不明確。本文擬對現(xiàn)有的研究進行總結,為進一步了解硬腦膜在顱骨發(fā)育及修復中的作用提供線索。

        1 腦膜的生理學概述

        1.1 腦膜生理結構 成人腦膜為環(huán)繞大腦的3層具有不同生物學特性的膜性結構,由外及內(nèi)為硬腦膜、蛛網(wǎng)膜和軟腦膜,在顱骨與腦組織之間起到重要緩沖作用。最外層的硬腦膜又分為兩部分,厚且致密與顱骨附著緊密的是外層硬腦膜,膜內(nèi)富含血管,參與顱骨內(nèi)表面骨膜發(fā)育與顱骨供血;貼近腦組織的硬腦膜稱為內(nèi)層硬腦膜,參與顱骨靜脈引流與硬膜反射活動;兩者僅在矢狀竇等靜脈竇血管走行的位置分離成明顯的兩層,形成硬腦膜反折[5]。硬腦膜反折延伸向顱腔深處,在空間上將顱腔分隔為左右大腦半球、小腦幕上下4個隔室。蛛網(wǎng)膜是主要由膠原纖維和成纖維細胞組成的海綿狀結締組織,外層類似顆粒狀,內(nèi)層是蛛網(wǎng)膜小梁。軟腦膜是緊密黏附在大腦表面的單細胞膜,最靠近腦組織的分化為軟腦膜基底部,其細胞外基質(zhì)中富含層黏連蛋白、膠原蛋白Ⅳ[6-7]。腦膜的反折處形成硬膜外腔、硬膜下間隙與蛛網(wǎng)膜下腔,在蛛網(wǎng)膜下腔中有腦脊液穿行。硬腦膜包繞在中樞神經(jīng)系統(tǒng)(CNS)的外表面,是3層腦膜結構中質(zhì)地最堅韌的一層,在CNS中發(fā)揮了重要作用[8]。

        1.2 腦淋巴系統(tǒng) 腦淋巴系統(tǒng)主要是指星形膠質(zhì)細胞末端足包裹血管壁形成的環(huán)形血管周圍空間間隙(perivascular space,PVS),該系統(tǒng)對維持顱內(nèi)穩(wěn)態(tài)至關重要[9]。Louveau等[10]發(fā)現(xiàn)膠質(zhì)淋巴系統(tǒng)(GS)和腦膜淋巴管(MLVs)共同形成一條顱腦向外周的腦脊液(CSF)循環(huán)引流通路,可以更高效地將顱內(nèi)大分子代謝廢物由MLVs運輸?shù)筋i深部淋巴結(dCLNs)及頸淺部淋巴結(ssCLNs)。同時,硬腦膜含有大量長期駐留的免疫細胞,這些免疫細胞介導顱內(nèi)免疫監(jiān)測和防御[11-12]。MLVs的發(fā)現(xiàn)擴展了對顱腔內(nèi)環(huán)境穩(wěn)態(tài)的傳統(tǒng)認知。創(chuàng)傷性腦損傷、腦出血等誘發(fā)的急性炎癥反應會降低腦膜淋巴系統(tǒng)的清除效率,加重腦源性腦水腫的程度,隨后腦實質(zhì)中膠質(zhì)纖維酸性蛋白(GFAP)、星形膠質(zhì)細胞、小膠質(zhì)細胞等免疫細胞表達量會相應升高,分泌更多促淋巴管增生的mRNA、蛋白質(zhì)等物質(zhì),促進MLVs新生和重塑,增強MLVs對顱內(nèi)異源物質(zhì)的清除能力[13]。另有研究表明,硬腦膜淋巴系統(tǒng)對α-突觸核蛋白" " " (α-syn)、β-淀粉樣蛋白(Aβ)和Tau蛋白等毒性蛋白有清除作用,這些毒性蛋白與阿爾茨海默病的發(fā)病機制密切相關[14]。由此可知硬腦膜淋巴系統(tǒng)在維持顱腔內(nèi)環(huán)境穩(wěn)態(tài)中發(fā)揮著至關重要的作用。

        1.3 硬腦膜發(fā)育的分子學和細胞學機制 硬腦膜的發(fā)育是多細胞信號轉(zhuǎn)導通路共同調(diào)控的結果,其中叉頭盒C1(FOXC1)、黏著斑激酶(fFAK)、視黃酸(retinoic acid,RA)和轉(zhuǎn)化生長因子-β(TGF-β)等參與硬腦膜的發(fā)育過程,見表1。

        2 硬腦膜參與顱骨形成和發(fā)育

        2.1 硬腦膜與顱骨的形成 對顱骨-硬腦膜-大腦發(fā)育體系的發(fā)育過程已有諸多研究,在哺乳動物胚胎發(fā)育的第5周(E 5),MSCs由后腦枕葉大量增殖分化并向中腦和前腦擴展延伸,最后包繞整個大腦形成一層間充質(zhì)鞘,這是顱骨及頭皮的原始形態(tài),稱為初級腦膜。隨后,初級腦膜分化成硬腦膜、軟腦膜及蛛網(wǎng)膜,并在胚胎發(fā)育的第6周(E 6)逐漸形成神經(jīng)血管叢、腦細胞及腦膜內(nèi)淋巴管結構[30]。已有研究證實前腦的硬腦膜由神經(jīng)嵴分化而來,而中腦和后腦的硬腦膜則由中胚層分化而來[1]。

        通過小鼠胚胎發(fā)育模型觀察到,胚胎E 8.5和E 9.5,來自中后腦域的神經(jīng)嵴細胞與近軸中胚層細胞在Wnt/β-catenin信號傳導通路和下游因子介導下一起遷移到眶上嵴,在眶上間充質(zhì)(supraorbital mesenchyme,SOM)中形成顱骨祖細胞池,E 10.5和E 12.5時神經(jīng)嵴細胞與近軸中胚層細胞衍生的OPC在SOM中凝結[31]。OPC經(jīng)表面外胚層的經(jīng)典Wnt信號轉(zhuǎn)導通路激活,增殖分化表達Twist1、堿性磷酸酶(alkaline phosphatase,ALP)和Runx2等細胞因子,促進顱骨形成[29-30]。同時β-catenin激活OPC中的Twist1,以解除Twist1對Runx2的活性抑制,且OPC以囊膜的形式緊密排列在發(fā)育中的硬腦膜表面[31]。外間充質(zhì)層通過膜內(nèi)骨化形式,由基底部逐步向上分化,在頂端以擴展延伸的方式覆蓋大腦,促進顱骨穹窿的發(fā)育和頂端擴張;顱基底部和頜面部以軟骨化成骨的形式向上發(fā)育[31-32]。顱骨縫線的發(fā)育融合過程主要是由硬腦膜調(diào)節(jié),硬腦膜與顱骨穹窿上覆組織間相互作用并提供了諸多重要的生長調(diào)節(jié)因子、機械信號以及轉(zhuǎn)化遷移的細胞,任一環(huán)節(jié)異常均可導致發(fā)育異常。

        2.2 硬腦膜對顱骨發(fā)育的作用 顱骨與硬腦膜在結構上緊密并行排列,兩者在顱骨的形成和發(fā)育過程中存在廣泛的物質(zhì)交換與細胞遷移。將胚胎期大鼠提取的硬腦膜細胞與OPC體外共培養(yǎng)發(fā)現(xiàn),顱骨祖細胞的增殖較單獨培養(yǎng)時顯著增加[33]。小兒硬腦膜發(fā)育先于顱骨發(fā)育,嬰兒的后囟門、前外側(cè)囟門、后外側(cè)囟門、前囟門在出生后2、3、12、24個月依次閉合,額縫、失狀縫、冠狀縫和人字縫則在2、22、24、26個月依次閉合,顱縫的閉合時間稍遲于囟門,此時顱骨內(nèi)外板間無板障結構[34];14~16歲所有顱縫閉合,顱縫停止發(fā)育[35]。這可能為兩者間的細胞遷移提供了結構基礎。寇正雄等[36]進一步證實,當硬腦膜人字縫與顱骨骨縫的位置對應關系被破壞后,骨縫會提前閉合,導致顱骨骨化遲緩甚至終止。這充分證明了硬腦膜生理結構和功能完整性,尤其是顱縫縫線下方的硬腦膜在維持顱縫開放狀態(tài)上起到了重要作用,是顱骨形成與發(fā)育、損傷與修復的必要條件。

        2.3 硬腦膜參與顱骨發(fā)育的相關分子機制 顱骨祖細胞沒有特異性合成FOXC1、TGF-β和BMP等多種成骨細胞調(diào)節(jié)因子的潛力,上述細胞因子由硬腦膜分泌后遷移至顱骨,調(diào)控顱骨的形成(圖1),此過程經(jīng)歷3個關鍵時期:(1)胚胎期(硬腦膜開始形成至胎兒分娩)。此時期成骨特點是“從無到有”,主要節(jié)點有OPC在SOM中凝結、膜內(nèi)骨化形成顱蓋骨雛形、部分顱底骨軟骨化成骨、顱骨頂端化擴張和延伸[28-30]。(2)嬰兒期(0~3周歲):胎兒分娩后解除子宮容積限制至3周歲前各囟門和主要顱骨縫線未閉合期間,硬腦膜與顱骨間充分的物質(zhì)交換和細胞遷移促進顱骨快速發(fā)育[17,33]。(3)青春期前(3~16周歲):16歲所有顱縫閉合,顱骨間板障結構形成,顱腔容積基本固定,為適應生存與發(fā)育的需要,顱骨生長表現(xiàn)形式為顱骨塑形和增強硬度[34-35]。3個時期描述見表2、3。

        3 硬腦膜促進顱骨損傷修復

        硬腦膜在創(chuàng)傷、腫瘤、先天性疾病等原因?qū)е碌娘B骨缺損修復中發(fā)揮著重要的作用。在小鼠顱骨缺損模型發(fā)現(xiàn),有硬腦膜貼附的骨缺損處修復效率遠高于硬腦膜缺失處[35]。將Gli-1作為MSCs的細胞譜系追蹤標志物,發(fā)現(xiàn)損傷發(fā)生后MSCs中Gli-1細胞調(diào)控Hh信號通路轉(zhuǎn)導靶基因和Hedgehog相互作用蛋白1(Hedgehog interacting protein-1,Hhip-1)結合、增殖分化,遷移到骨缺損區(qū)域分化為骨膜、硬腦膜和骨細胞[49-50]??梢娤谛∈驧SCs中的Gli-1細胞后不會阻礙顱骨生長,而是阻礙顱骨損傷后修復的能力,由此可以推斷硬腦膜與顱骨存在密切的細胞遷移,硬腦膜促進顱骨損傷修復。張瑞欣等[53]發(fā)現(xiàn),長鏈非編碼RNA(long non-coding RNA,lnc RNA)與miRNA結合形成內(nèi)源競爭性RNA(competing endogenous RNA,ceRNA)調(diào)控下游靶基因,從而調(diào)控MSCs成骨分化過程。后續(xù)研究表明,顱骨損傷后會釋放多種炎性信號因子,其中腫瘤壞死因子α(TNF-α)與損傷修復關系密切,能夠刺激MSCs產(chǎn)生并釋放大量外泌體[54];外泌體攜帶大量功能性微小核糖核酸分子(microRNA,miR),如miR-23a-3p可加快小鼠缺損修復進程。這意味著硬腦膜與顱骨間的細胞遷移對促進顱骨缺損區(qū)域的損傷修復至關重要[55]。

        4 硬腦膜對顱腦發(fā)育的影響

        顱骨-硬腦膜-大腦在生理結構上的并行排列構成了一個整體結構單元,腦組織的正常發(fā)育依賴于硬腦膜發(fā)育速率、顱骨發(fā)育速率、顱縫閉合速率、顱底和穹窿部融合速率之間協(xié)調(diào)同步的結果。在0~3歲的顱骨骨折患兒中,由于患兒顱腦發(fā)育較快,大腦的快速發(fā)育以及顱腔內(nèi)外壓力差共同導致顱骨缺損局部一直存在向外的擴張力;與此同時,顱腔內(nèi)壓與外界大氣壓壓力差變化激活顱蓋骨局部的FAK-磷脂酰肌醇3-激酶/絲氨酸蘇氨酸蛋白激酶(PI3K/AKT)信號通路,增加下游相關因子的表達和質(zhì)膜通透性[56-57]。硬腦膜除了分泌細胞因子促進顱骨發(fā)育外,似乎也與神經(jīng)元發(fā)育有關。BMP除前文提到的可以促進皮質(zhì)形成和皮質(zhì)神經(jīng)元的遷移外,高表達的BMP結構亞型BMP-2和BMP-4還可促進大腦靜脈血管的形成和側(cè)支循環(huán)的建立[58]。最后,對硬腦膜細胞譜系追蹤與單細胞DNA測序發(fā)現(xiàn),硬腦膜參與皮質(zhì)神經(jīng)元干細胞庫的建立,深入影響了顱內(nèi)血管化與神經(jīng)系統(tǒng)的發(fā)育[59]。顱骨-硬腦膜-大腦體系三者間的物質(zhì)交換與細胞遷移協(xié)調(diào)著其整體的發(fā)育,當這種協(xié)調(diào)性失去,會導致三者的發(fā)育異常。

        5 總結與展望

        硬腦膜分泌的細胞因子不僅直接參與調(diào)控與維持顱骨發(fā)育的整個過程,還參與顱腦的神經(jīng)元建立、局部血管化修復受損的神經(jīng)系統(tǒng)以及向顱骨缺損局部遷移,促進缺損區(qū)域的骨再生與骨重塑,并對胚胎腦膜的功能表征——調(diào)節(jié)蛛網(wǎng)膜屏障細胞的發(fā)育、分泌大腦發(fā)育的因子以及產(chǎn)生構成軟腦膜BM的細胞外基質(zhì)蛋白,強調(diào)了顱骨-硬腦膜-大腦體系同步協(xié)調(diào)發(fā)育的重要性。隨著單細胞DNA測序、細胞譜系追蹤、腦成像工具、基因編碼傳感器和細胞特異性標記相結合技術的進步,顱骨-硬腦膜-大腦體系的新特征會逐步被發(fā)現(xiàn)。今后尚需深入探索硬腦膜與顱骨、顱腦間涉及的物質(zhì)信息傳遞與細胞遷移的方式,明確硬腦膜分泌的不同細胞因子靶點作用的信號轉(zhuǎn)導通路的分子機制,針對性地應用分子靶向藥物,定向作用于腦卒中、創(chuàng)傷性腦損傷及阿爾茲海默病等神經(jīng)系統(tǒng)常見疾病的神經(jīng)功能修復,為相關臨床診治提供新方向。

        參考文獻

        [1] ZHAO F N,ZHU J L,DONG X H,et al. The influence of extracellular vesicles secreted by dural cells on osteoblasts[J]. Mol Biotechnol,2023. doi:10.1007/s12033-023-00974-x. [Online ahead of print].

        [2] KO F C,SUMNER D R. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development?[J]. Dev Dyn,2021,250(3):377-392. doi:10.1002/dvdy.240.

        [3] YAPIJAKIS C,PACHIS N,SOTIRIADOU T,et al. Molecular mechanisms involved in craniosynostosis[J]. In Vivo,2023,37(1):36-46. doi:10.21873/invivo.13052.

        [4] DESISTO J,O'ROURKE R,JONES H E,et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function[J]. Dev Cell,2020,54(1):43-59.e4. doi:10.1016/j.devcel.2020.06.009.

        [5] SMYTH L C D,XU D,OKAR S V,et al. Identification of direct connections between the dura and the brain[J]. Nature,2024,627(8002):165-173. doi:10.1038/s41586-023-06993-7.

        [6] AHN J H,CHO H,KIM J H,et al. Meningeal lymphatic vessels at the skull base brain cerebrospinal fluid[J]. Nature,2019,572(7767):62-66. doi:10.1038/s41586-019-1419-5.

        [7] LIAO J G,HUANG Y P,WANG Q,et al. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development[J]. Cell Mol Life Sci,2022,79(3):158. doi:10.1007/s00018-022-04208-2.

        [8] LI B,WANG Y G,F(xiàn)AN Y,et al. Cranial suture mesenchymal stem cells:insights and advances[J]. Biomolecules,2021,11(8):1129. doi:10.3390/biom11081129.

        [9] PATRICK E E,F(xiàn)LEETING C R,PATEL D R,et al. Corrigendum:modeling the volume of tissue activated in deep brain stimulation and its clinical influence:a review[J]. Front Hum Neurosci,2024,18:1434402. doi:10.3389/fnhum.2024.1434402.

        [10] LOUVEAU A,SMIRNOV I,KEYES T J,et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature,2015,523(7560):337-341. doi:10.1038/nature14432.

        [11] AGARWAL N,LEWIS L D,HIRSCHLER L,et al. Current understanding of the anatomy,physiology,and magnetic resonance imaging of neurofluids:update from the 2022 \"ISMRM imaging neurofluids study group\" workshop in rome[J]. J Magn Reson Imaging,2024,59(2):431-449. doi:10.1002/jmri.28759.

        [12] AKKAYA B,SHEVACH E M. Regulatory T cells:master thieves of the immune system[J]. Cell Immunol,2020,355:104160. doi:10.1016/j.cellimm.2020.104160.

        [13] LIU X H,GAO C,YUAN J Y,et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels[J]. Acta Neuropathol Commun,2020,8(1):16. doi:10.1186/s40478-020-0888-y.

        [14] DA MESQUITA S,PAPADOPOULOS Z,DYKSTRA T,et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy[J]. Nature,2021,593(7858):255-260. doi:10.1038/s41586-021-03489-0.

        [15] GILLN?S S,GALLINI R,HE L,et al. Severe cerebellar malformations in mutant mice demonstrate a role for PDGF-C/PDGFRα signalling in cerebellar development[J]. Biol Open,2022,11(8):bio059431. doi:10.1242/bio.059431.

        [16] ZHANG P G M,F(xiàn)ENG B,DAI G,et al. FOXC1 promotes osteoblastic differentiation of bone marrow mesenchymal stem cells via the Dnmt3b/CXCL12 Axis[J]. Biochem Genet,2024,62(1):176-192. doi:10.1007/s10528-023-10403-y.

        [17] ANG P S,MATRONGOLO M J,ZIETOWSKI M L,et al. Cranium growth,patterning and homeostasis[J]. Development,2022,149(22):dev201017. doi:10.1242/dev.201017.

        [18] SHROFF N P,XU P,KIM S,et al. Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development[J]. Nat Cell Biol,2024,26(4):519-529. doi:10.1038/s41556-024-01380-4.

        [19] HE W G,DENG Y X,KE K X,et al. Matricellular protein SMOC2 potentiates BMP9-Ⅰnduced osteogenic differentiation in mesenchymal stem cells through the enhancement of FAK/PI3K/AKT signaling[J]. Stem Cells Int,2023,2023:5915988. doi:10.1155/2023/5915988.

        [20] ROWE C J,NWAOLU U,SALINAS D,et al. Inhibition of focal adhesion kinase 2 results in a macrophage polarization shift to M2 which attenuates local and systemic inflammation and reduces heterotopic ossification after polysystem extremity trauma[J]. Front Immunol,2023,14:1280884. doi:10.3389/fimmu.2023.1280884.

        [21] ZHU L W,LIU Y Z,WANG A,et al. Application of BMP in bone tissue engineering[J]. Front Bioeng Biotechnol,2022,10:810880. doi:10.3389/fbioe.2022.810880.

        [22] TIAN X,VATER C,RAINA D B,et al. Co-delivery of rhBMP-2 and zoledronic acid using calcium sulfate/hydroxyapatite carrier as a bioactive bone substitute to enhance and accelerate spinal fusion[J]. Bioact Mater,2024,36:256-271. doi:10.1016/j.bioactmat.2024.02.034.

        [23] BALL J R,SHELBY T,HERNANDEZ F,et al. Delivery of growth factors to enhance bone repair[J]. Bioengineering (Basel),2023,10(11):1252. doi:10.3390/bioengineering10111252.

        [24] CUNHA F B,POMINI K T,PLEPIS A,et al. In vivo biological behavior of polymer scaffolds of natural origin in the bone repair process[J]. Molecules,2021,26(6):1598. doi:10.3390/molecules26061598.

        [25] MOFFATT P,BORASCHI-DIAZ I,MARULANDA J,et al. Calvaria bone transcriptome in mouse models of osteogenesis imperfecta[J]. Int J Mol Sci,2021,22(10):5290. doi:10.3390/ijms22105290.

        [26] XIE B C,ZHOU H,LIU H Y,et al. Salidroside alleviates dexamethasone-induced inhibition of bone formation via transforming growth factor-beta/Smad2/3 signaling pathway[J]. Phytother Res,2023,37(5):1938-1950. doi:10.1002/ptr.7711.

        [27] CHEN H R,CUI Y J,ZHANG D M,et al. The role of fibroblast growth factor 8 in cartilage development and disease[J]. J Cell Mol Med,2022,26(4):990-999. doi:10.1111/jcmm.17174.

        [28] KOMORI T. Molecular mechanism of Runx2-dependent bone development[J]. Mol Cells,2020,43(2):168-175. doi:10.14348/molcells.2019.0244.

        [29] LI Y,JIE W,QI Y L,et al. Inhibition of RIPK1 alleviating vascular smooth muscle cells osteogenic transdifferentiation via Runx2[J]. iScience,2024,27(2):108766. doi:10.1016/j.isci.2023.108766.

        [30] COMO C N,KIM S,SIEGENTHALER J. Stuck on you:meninges cellular crosstalk in development[J]. Curr Opin Neurobiol,2023,79:102676. doi:10.1016/j.conb.2023.102676.

        [31] CABRERA PEREIRA A,DASGUPTA K,HO T V,et al. Lineage-specific mutation of lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria[J]. Front Physiol,2023,14:1225118. doi:10.3389/fphys.2023.1225118.

        [32] KOMORI T. Whole aspect of Runx2 functions in skeletal development[J]. Int J Mol Sci,2022,23(10):5776. doi:10.3390/ijms23105776.

        [33] SCHAEFFER S,IADECOLA C. Revisiting the neurovascular unit[J]. Nat Neurosci,2021,24(9):1198-1209. doi:10.1038/s41593-021-00904-7.

        [34] FURTADO L,F(xiàn)ILHO J,F(xiàn)REITAS L S,et al. Anterior fontanelle closure and diagnosis of non-syndromic craniosynostosis:a comparative study using computed tomography[J]. J Pediatr (Rio J),2022,98(4):413-418. doi:10.1016/j.jped.2021.10.004.

        [35] FARMER D T,MLCOCHOVA H,ZHOU Y,et al. The developing mouse coronal suture at single-cell resolution[J]. Nat Commun,2021,12(1):4797. doi:10.1038/s41467-021-24917-9.

        [36] 寇正雄,張海燕,邵國,等. fak/twist1信號通路在顱縫閉合過程中的作用機制研究[J].安徽醫(yī)科大學學報,2023,58(1):60-66. KOU Z X,ZHANG H Y,SHAO G,et al. The mechanism of FAK/Twist1 signal pathway in the closure of cranial suture[J]. Acta Universitatis Medicinalis Anhui,2023,58(1):60-66. doi:10.19405/j.cnki.issn1000-1492.2023.01.011.

        [37] GUO J Q,YU S T,ZHANG H S,et al. Klf4 haploinsufficiency in Sp7+ lineage leads to underdeveloped mandibles and insufficient elongation of mandibular incisor[J]. Biochim Biophys Acta Mol Basis Dis,2023,1869(3):166636. doi:10.1016/j.bbadis.2022.166636.

        [38] EA C,HENNOCQ Q,PICARD A,et al. Growth charts in FGFR2- and FGFR3-related faciocraniosynostoses[J]. Bone Rep,2022,16:101524. doi:10.1016/j.bonr.2022.101524.

        [39] MA L,CHANG Q,PEI F,et al. Skull progenitor cell-driven meningeal lymphatic restoration improves neurocognitive functions in craniosynostosis[J]. Cell Stem Cell,2023,30(11):1472-1485. doi:10.1016/j.stem.2023.09.012.

        [40] SONG C,LI T,ZHANG C,et al. RA-induced prominence-specific response resulted in distinctive regulation of wnt and osteogenesis[J]. Life Sci Alliance,2023,6(10):e202302013. doi:10.26508/lsa.202302013.

        [41] KHALID A B,PENCE J,SUTHON S,et al. GATA4 regulates mesenchymal stem cells via direct transcriptional regulation of the WNT signalosome[J]. Bone,2021,144:115819. doi:10.1016/j.bone.2020.115819.

        [42] KOMORI T. What is the function of osteocalcin?[J]. J Oral Biosci,2020,62(3):223-227. doi:10.1016/j.job.2020.05.004.

        [43] HASAN M R,TAKATALO M,MA H,et al. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1[J]. Elife,2020,9:e55829. doi:10.7554/eLife.55829.

        [44] LEE S B,LEE H J,PARK J B. Bone morphogenetic protein-9 promotes osteogenic differentiation and mineralization in human stem-cell-derived spheroids[J]. Medicina (Kaunas),2023,59(7):1315. doi:10.3390/medicina59071315.

        [45] WANG H,QI L L,SHEMA C,et al. Advances in the role and mechanism of fibroblasts in fracture healing[J]. Front Endocrinol (Lausanne),2024,15:1350958. doi:10.3389/fendo.2024.1350958.

        [46] LIU J Q,XIAO Q,XIAO J N,et al. Wnt/β-catenin signalling:function,biological mechanisms,and therapeutic opportunities[J]. Signal Transduct Target Ther,2022,7(1):3. doi:10.1038/s41392-021-00762-6.

        [47] ALDAWOOD Z A,MANCINELLI L,GENG X,et al. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration[J]. Proc Natl Acad Sci U S A,2023,120(16):e2120826120. doi:10.1073/pnas.2120826120.

        [48] FAN X,WAARDENBERG A J,DEMUTH M,et al. TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation[J]. Mol Cell Biol,2020,40(11):e00663-00619. doi:10.1128/MCB.00663-19.

        [49] DI PIETRO L,BARBA M,PRAMPOLINI C,et al. GLI1 and AXIN2 are distinctive markers of human calvarial mesenchymal stromal cells in nonsyndromic craniosynostosis[J]. Int J Mol Sci,2020,21(12):4356. doi:10.3390/ijms21124356.

        [50] WU L D,LIU Z X,XIAO L,et al. The role of Gli1(+) mesenchymal stem cells in osteogenesis of craniofacial bone[J]. Biomolecules,2023,13(9):1351. doi:10.3390/biom13091351.

        [51] SHIN H R,KIM B S,KIM H J,et al. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in apert syndrome model mice[J]. J Cell Physiol,2022,237(4):2155-2168. doi:10.1002/jcp.30682.

        [52] DEBNATH S,YALLOWITZ A R,MCCORMICK J,et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature,2018,562(7725):133-139. doi:10.1038/s41586-018-0554-8.

        [53] 張瑞欣,董語迪,肖建輝. lncRNA調(diào)控間充質(zhì)干細胞向成骨細胞分化的研究進展[J]. 天津醫(yī)藥,2021,49(6):662-667. ZHANG R X,DONG Y D,XIAO J H. Research progress on lncRNA regulation of mesenchymal stem cell differentiation into osteoblasts[J]. Tianjin Med J,2021,49(6):662-667. doi:10.11958/20203229.

        [54] NESPOLI E,HAKANI M,HEIN T M,et al. Glial cells react to closed head injury in a distinct and spatiotemporally orchestrated manner[J]. Sci Rep,2024,14(1):2441. doi:10.1038/s41598-024-52337-4.

        [55] HU H X,ZHANG H,BU Z H,et al. Small extracellular vesicles released from bioglass/hydrogel scaffold promote vascularized bone regeneration by transferring miR-23a-3p[J]. Int J Nanomedicine,2022,17:6201-6220. doi:10.2147/ⅠJN.S389471.

        [56] SUN Y T,LI Y X,ZHANG Y,et al. A Polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways[J]. Mater Sci Eng C Mater Biol Appl,2021,131:112482. doi:10.1016/j.msec.2021.112482.

        [57] 曹志威,邵國,張春陽. 硬腦膜對顱骨生長發(fā)育影響的研究現(xiàn)狀[J]. 中華神經(jīng)外科雜志,2022,38(5):537-540. CAO Z W,SHAO G,ZHANG C Y. Research status of the influence of dura mater on skull growth and development[J]. Chinese Journal of Neurosurgery,2022,38(5):537-540. doi:10.3760/cma.j.cn112050-20210617-00290.

        [58] PIBOUIN-FRAGNER L,EICHMANN A,PARDANAUD L. Environmental and intrinsic modulations of venous differentiation[J]. Cell Mol Life Sci,2022,79(9):491. doi:10.1007/s00018-022-04470-4.

        [59] DECIMO I,DOLCI S,PANUCCIO G,et al. Meninges:A widespread niche of neural progenitors for the brain[J]. Neuroscientist,2021,27(5):506-528. doi:10.1177/1073858420954826.

        (2024-06-27收稿 2024-08-10修回)

        (本文編輯 胡小寧)

        精品卡一卡二乱码新区| 国产精品亚洲一区二区极品| av在线不卡一区二区三区| 国产91传媒一区二区三区| 少妇下面好紧好多水真爽播放| 国产精品深田咏美一区二区| 97久久成人国产精品免费| 国产精品性色av麻豆| 高h纯肉无码视频在线观看| 国产精品熟妇视频国产偷人| 无码一区二区三区久久精品| 亚洲精品在线一区二区| a级毛片免费观看在线播放| 嫩草影院未满十八岁禁止入内| 一区二区三区国产美女在线播放| 日韩极品在线观看视频| 国产精品久久成人网站| 欧美俄罗斯乱妇| 国产精品亚洲av网站| 邻居人妻的肉欲满足中文字幕| 肉体裸交137日本大胆摄影| 国产一区曰韩二区欧美三区| av资源吧首页在线观看| 亚洲中文字幕人妻av在线| 免费a级毛片永久免费| 中文字幕无码免费久久99| 久久综合伊人有码一区中文字幕| 久久久国产乱子伦精品| 少妇内射视频播放舔大片| 国产精品一区二区av白丝在线| 中文字幕精品一区二区三区| 久久久国产精品黄毛片| 免费国产一级特黄aa大片在线| 丰满少妇av一区二区三区| 国产在热线精品视频| 亚洲Va欧美va国产综合| 在线亚洲免费精品视频| 丰满少妇被猛烈进入高清播放| 欧美老妇与zozoz0交| 国产熟女自拍视频网站| 三级国产精品久久久99|