摘要:CCUS(碳捕獲、利用與封存)環(huán)境下常規(guī)波特蘭水泥耐CO2腐蝕性能較差,不能滿足長期安全封存要求。磷酸鹽改性高鋁水泥可以改善高鋁水泥強(qiáng)度衰退問題,水泥石具有較高的耐CO2腐蝕性能。測(cè)試添加不同類型磷酸鹽和加量后水泥石抗壓強(qiáng)度,分析磷酸鹽類型和加量對(duì)抗壓強(qiáng)度的影響,結(jié)合礦物組成、微觀形貌以及孔隙結(jié)構(gòu)等方面特征揭示改性水泥強(qiáng)度機(jī)制。結(jié)果表明:磷酸鹽的本身性質(zhì)對(duì)高鋁水泥抗壓強(qiáng)度影響較大,優(yōu)選出SHMP作為高鋁水泥改性材料,可以顯著提高改性后水泥的抗壓強(qiáng)度且后期強(qiáng)度不倒縮;同一齡期下,隨著SHMP摻量增加,CAP材料抗壓強(qiáng)度先增大后減小,再增大后趨于穩(wěn)定,在SHMP摻量為3%抗壓強(qiáng)度達(dá)到最大值;SHMP加量3%時(shí)會(huì)生成少量C-A-P-H凝膠,其依附在結(jié)晶鋁酸鈣水合物上,并填充在水泥顆粒之間,在水泥基質(zhì)中形成網(wǎng)狀結(jié)構(gòu)更有利于強(qiáng)度的后期發(fā)展;SHMP會(huì)抑制/轉(zhuǎn)化鋁酸鈣水合物的生成,即SHMP加量越多鋁酸鈣水合物生成越少,C-A-P-H凝膠生成越多。
關(guān)鍵詞:磷酸鹽; 高鋁水泥; 改性材料; 抗壓強(qiáng)度
中圖分類號(hào): TU 528"" 文獻(xiàn)標(biāo)志碼:A
引用格式:宋雨媛,郭辛陽,張文黎,等.磷酸鹽改性高鋁水泥強(qiáng)度性能及其機(jī)制[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(6):174-181.
SONG Yuyuan, GUO Xinyang, ZHANG Wenli, et al. Strength properties and mechanism of phosphate-modified high alumina cement[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(6):174-181.
Strength properties and mechanism of phosphate-modified
high alumina cement
SONG Yuyuan1,2,3, GUO Xinyang1,2,3, ZHANG Wenli4, BU Yuhuan1,2,3
(1.School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
2.State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China;
3. Key Laboratory of Unconventional Oil and Gas Development of Ministry of Education, China University of Petroleum(East China), Qingdao 266580, China;
4.Quality and Safety Supervision Center, China National Logging Corporation, Xi an 710000, China)
Abstract: Conventional Portland cement in CCUS (carbon capture, utilization and storage) environment has poor CO2 corrosion resistance, which cannot meet the long-term safe storage requirements. Phosphate-modified high-alumina cement can improve the strength degradation problem of high-alumina cement, and the cement stone has high CO2 corrosion resistance. The compressive strength of the cement stone was evaluated after the addition of various types and quantities of phosphate compounds, and the influence of phosphate type and dosage on the compressive strength was analyzed. The strength mechanism of modified cement was revealed by combining the characteristics of mineral composition, microstructure and pore structure. It is shown that the inherent properties of phosphate compounds have a substantial impact on high alumina cement. Sodium Hexametaphosphate (SHMP) is selected as the modifier material of high alumina cement, which significantly improves the compressive strength of the cement without any decline in strength during the later stages. Within the same curing period, as the dosage of SHMP increases, the compressive strength of the sodium hexametaphosphate chemically bonded (CAP) material initially rises, then declines, and eventually stabilizes. The maximum compressive strength is achieved at a SHMP dosage of 3%. When the SHMP dosage reaches 3%, a small amount of C-A-P-H gel forms, adhering to the crystallized calcium aluminate hydrate, filling the gaps between cement particles, and forming a mesh-like structure within the cement matrix. This mesh structure strengthens the later-stage development of strength. Furthermore, SHMP inhibits the formation of calcium aluminate hydrate or converts it into C-A-P-H gel. Consequently, an increase in SHMP dosage leads to a decrease in the generation of calcium aluminate hydrate while promoting the formation of C-A-P-H gel.
Keywords: phosphate; high alumina cement; modified material; compressive strength
隨著碳達(dá)峰碳中和目標(biāo)提出,CCUS(碳捕獲、利用與封存)技術(shù)被認(rèn)為是可大幅減少二氧化碳排放最經(jīng)濟(jì)最可行的技術(shù)之一
[1-4]。在油氣井中固井水泥環(huán)密封完整性對(duì)二氧化碳長期安全埋存起著關(guān)鍵作用[5]。常規(guī)波特蘭類油井水泥易受到二氧化碳腐蝕而失去密封作用,亟需研究新型耐腐蝕水泥[6-8]。高鋁水泥是一種已經(jīng)工業(yè)化生產(chǎn)的特種水泥,具有快速硬化、早強(qiáng)特性、耐高溫以及抗侵蝕性強(qiáng)等特點(diǎn)[9-10]。由于高鋁水泥水化產(chǎn)物會(huì)發(fā)生晶型轉(zhuǎn)變,造成水泥石后期滲透率增大和強(qiáng)度衰退等問題,造成該水泥并未被廣泛應(yīng)用[11-12]。近年來許多學(xué)者通過磷酸鹽改性高鋁水泥,發(fā)現(xiàn)既可以抑制高鋁水泥強(qiáng)度衰退,改性后水泥石又具有較高的耐二氧化碳腐蝕性能[13-17]。但是目前針對(duì)磷酸鹽改性高鋁水泥強(qiáng)度性能研究較少,關(guān)于不同類型磷酸鹽對(duì)高鋁水泥強(qiáng)度性能影響規(guī)律尚不清楚,也沒有深入探究磷酸鹽改善高鋁水泥強(qiáng)度性能機(jī)制。筆者通過試驗(yàn)研究不同磷酸鹽對(duì)高鋁水泥強(qiáng)度性能的影響,優(yōu)選出性能最佳的磷酸鹽和摻量對(duì)高鋁水泥進(jìn)行改性,探討磷酸鹽改性高鋁水泥強(qiáng)度性能的機(jī)制,為磷酸鹽改性高鋁水泥材料的進(jìn)一步研究和現(xiàn)場應(yīng)用奠定理論基礎(chǔ)。
1 試驗(yàn)材料及測(cè)試方法
1.1 試驗(yàn)材料
制作水泥石所用到的高鋁水泥(HAC)來自鄭州嘉耐特種鋁酸鹽有限公司;消泡劑(G603)由中油渤星工程科技有限公司提供。其中,高鋁水泥的化學(xué)組成及質(zhì)量分?jǐn)?shù)分別為:Al2O3(45.912%)、CaO(41.536%)、SiO2(3.752%)、TiO2(3.971%)、MgO(1.312%)、Fe2O3(1.912%),其他(1.605%)。高鋁水泥顆粒中位徑(D50)為2.856 μm,體積平均粒徑為17.93 μm。磷酸鹽使用的是分析純級(jí)別的磷酸鹽,包括:磷酸二氫銨(ADP)、磷酸二氫鈉(MSP)、磷酸氫二鈉(DSP)、磷酸三鈉(TSP)、焦磷酸鈉(TSPP)、三聚磷酸鈉(STPP)、三偏磷酸鈉(STMP)、六偏磷酸鈉(SHMP)。
1.2 試驗(yàn)方法
1.2.1 試驗(yàn)樣品制備
將高鋁水泥與磷酸鹽材料干拌混合均勻,再根據(jù)GB/T 19139-2012《油井水泥試驗(yàn)方法》標(biāo)準(zhǔn)制備水泥漿。水泥漿基礎(chǔ)配方(含量為質(zhì)量分?jǐn)?shù),下同)為高鋁水泥+磷酸鹽+0.1%消泡劑+水,水灰比(水的質(zhì)量/水泥的固體質(zhì)量)為0.44。試驗(yàn)樣品分別制備成50 mm×50 mm× 50 mm正方形試樣和Φ25 mm×50 mm圓柱試樣,養(yǎng)護(hù)條件為常壓、50 ℃。
1.2.2 抗壓強(qiáng)度測(cè)試
對(duì)已固化一定齡期的 50 mm×50 mm×50 mm 正方形試樣進(jìn)行抗壓強(qiáng)度測(cè)試。試驗(yàn)水泥塊樣品分別在水中養(yǎng)護(hù)1、3、7和28 d。為每種條件制作3個(gè)重復(fù)水泥塊樣本,以獲得測(cè)試結(jié)果的平均值和可變性。
1.2.3 膠結(jié)強(qiáng)度測(cè)試
水泥環(huán)膠結(jié)強(qiáng)度性能測(cè)試采用測(cè)量剪切膠結(jié)強(qiáng)度的方法。模擬采用Φ25 mm×50 mm圓環(huán)型模具,剪切膠結(jié)強(qiáng)度性能測(cè)量試驗(yàn)原理如圖1所示。向模
具中倒入配制好的水泥漿,對(duì)水浴養(yǎng)護(hù)7 d的樣品進(jìn)行膠結(jié)強(qiáng)度測(cè)試。
1.3 分析方法
分析方法主要有X射線衍射(XRD)、掃描電子顯微鏡(SEM)以及高壓壓汞測(cè)試(MIP)。儀器規(guī)格及分析條件如表1所示。
2 試驗(yàn)結(jié)果與分析
2.1 磷酸鹽種類對(duì)水泥石抗壓強(qiáng)度影響
不同類型磷酸鹽與高鋁水泥發(fā)生酸基反應(yīng)后形成的水泥石具有不同的強(qiáng)度性能,部分水泥石具有類似于陶瓷的硬脆特性,且磷酸鹽加量一般不超過水泥質(zhì)量的20%[18]。在固井工程中,對(duì)水泥石的強(qiáng)度性能有一定的要求,通常認(rèn)為常規(guī)水泥石的抗壓強(qiáng)度大于14 MPa才能滿足層間封隔要求[19-20]。表2為各類磷酸鹽及其特點(diǎn),針對(duì)不同類型的磷酸鹽對(duì)高鋁水泥進(jìn)行改性試驗(yàn),初步選取磷酸鹽加量(質(zhì)量分?jǐn)?shù),下同)3%(較小加量)和15%(較大加量)、對(duì)養(yǎng)護(hù)3 d的水泥石進(jìn)行抗壓強(qiáng)度性能測(cè)試。
圖2為不同種類磷酸鹽及加量情況下水泥石抗壓強(qiáng)度測(cè)試結(jié)果。其中添加ADP的水泥石由于水化時(shí)生成大量氨氣使其在固化時(shí)存留大量孔隙,從而造成水泥石強(qiáng)度急劇減小,未能測(cè)出抗壓強(qiáng)度。可以看出,與單純高鋁水泥(HAC)抗壓強(qiáng)度相比,磷酸鹽加量3%時(shí),只有加入SHMP生成的高鋁水泥-六偏磷酸鈉(CAP)材料的水泥石抗壓強(qiáng)度顯著提高。磷酸鹽加量15%時(shí),加入MSP和SHMP的水泥石抗壓強(qiáng)度均有提高,但加入SHMP的水泥石抗壓強(qiáng)度更高。故優(yōu)選出SHMP對(duì)高鋁水泥強(qiáng)度進(jìn)行改性。這與以往的相關(guān)研究結(jié)果基本是一致的,即磷酸鹽改性高鋁水泥的凝固和機(jī)械性能由所用磷酸鹽的鏈長控制,縮聚磷酸鹽改性高鋁水泥材料抗壓強(qiáng)度明顯高于正磷酸鹽[21-22]。
2.2 SHMP加量對(duì)水泥石力學(xué)參數(shù)影響
抗壓強(qiáng)度是固井水泥最為重要的力學(xué)性質(zhì)之一[23-24]。圖3為不同SHMP加量情況下水泥石固化不同齡期時(shí)的抗壓強(qiáng)度,其中CAP-x為SHMP加量x%時(shí),其水泥石抗壓強(qiáng)度達(dá)到最大值,x為質(zhì)量分?jǐn)?shù),%。由圖3看出,高鋁水泥(HAC)長期固化抗壓強(qiáng)度出現(xiàn)強(qiáng)度倒縮,28 d達(dá)到抗壓強(qiáng)度最大值26.93 MPa,90和180 d分別為24.47和25.11 MPa。但是相同固化齡期時(shí),隨著SHMP加量增大,水泥石抗壓強(qiáng)度出現(xiàn)先升高后降低的趨勢(shì),隨后再出現(xiàn)穩(wěn)定增長或趨于穩(wěn)定。固化180 d時(shí),CAP-3抗壓強(qiáng)度最高達(dá)到54.89 MPa,較相同固化齡期HAC增長了118.6%。CAP-9為SHMP加量9%,在測(cè)試的幾個(gè)磷酸鹽加量中該加量的水泥石抗壓強(qiáng)度最低。在SHMP加量為9%~15%時(shí),隨著SHMP加量增加,7 d內(nèi)的抗壓強(qiáng)度有小幅度上升后趨于穩(wěn)定,但出現(xiàn)了強(qiáng)度反復(fù),即水泥石的抗壓強(qiáng)度為3 dlt;1 dlt;7 d。固化28~180 d的抗壓強(qiáng)度波動(dòng)較小,基本趨于穩(wěn)定并未出現(xiàn)明顯的強(qiáng)度上升。
水泥石彈性模量是評(píng)價(jià)水泥石發(fā)生彈性變形難易程度的指標(biāo),彈性模量越大,水泥石脆性越強(qiáng),越容易破碎[25]。圖4為固化7 d水泥石的彈性模量和泊松比,添加SHMP改性后的CAP水泥石彈性模量均有大幅度上升,其中CAP-3彈性模量為12.56 GPa,相較于HAC增大了82.82%,說明CAP材料水泥石較HAC材料脆性增大。與圖3對(duì)比,彈性模量變化規(guī)律與抗壓強(qiáng)度變化規(guī)律基本一致,即隨著SHMP加量增大,水泥石彈性模量出現(xiàn)先升高后降低的趨勢(shì),隨后再出現(xiàn)穩(wěn)定增長或基本趨于穩(wěn)定。
水泥石膠結(jié)強(qiáng)度是水泥環(huán)能否有效防止流體竄流的關(guān)鍵因素,因此水泥石膠結(jié)強(qiáng)度作為評(píng)價(jià)固井質(zhì)量的重要指標(biāo)之一[26-27]。圖5為固化7 d水泥石的剪切膠結(jié)強(qiáng)度??梢钥闯?,隨著SHMP加量增大,水泥石的剪切膠結(jié)強(qiáng)度逐漸增大,說明SHMP可以提高水泥環(huán)的膠結(jié)強(qiáng)度,有效的改善固井質(zhì)量,防止流體竄流。
2.2.1 SHMP加量對(duì)水泥石礦物組成影響
XRD分析結(jié)果中的峰線高低主要用來判斷礦物的類型,不能判斷礦物的具體含量,但峰線的積分面積可以用來分析礦物相對(duì)含量[28]。通過XRD分析方法對(duì)固化7 d的水泥石進(jìn)行物相分析,結(jié)果如圖6所示。固化7 d的HAC主要物相有C3AH6、AH3、C2AS以及少量的C2S和CA,加入不同量SHMP的CAP材料水泥石圖譜與HAC相比總體上峰的位置不變,只是強(qiáng)度略有不同,故兩種水泥石所含的晶相礦物種類基本一致。50 ℃的固化溫度下,在XRD圖譜中無法識(shí)別CAP材料中的含磷相,這表明SHMP在50 ℃下不參與HAC水泥基質(zhì)中結(jié)晶礦物的形成。Mehul通過31P/27Al雙核磁共振(REAPDOR)試驗(yàn)證實(shí)了高鋁水泥-磷酸鹽材料主要水化產(chǎn)物中含有水合磷鋁酸鈣凝膠(C-A-P-H)[29]。然而,C-A-P-H具有無定形結(jié)構(gòu),XRD無法檢測(cè)到C-A-P-H凝膠相,但觀察到在XRD圖譜CAP材料中出現(xiàn)的以2θ=36°為中心的寬擴(kuò)散散射峰,說明水化產(chǎn)物中確實(shí)生成了凝膠相。隨著SHMP加量的增大,C2S、C3AH6的衍射峰強(qiáng)度降低甚至消失,但AH3衍射峰強(qiáng)度并沒有出現(xiàn)明顯的降低,說明SHMP的加入確實(shí)改變了HAC的傳統(tǒng)水化方式,而且隨著SHMP含量增多,會(huì)使更多的SHMP參與反應(yīng)生成更多的C-A-P-H凝膠相。
通過對(duì)固化后水泥石物相進(jìn)行了XRD Rietveld細(xì)化分析,對(duì)不同類型水泥樣品的礦物成分進(jìn)行了量化。該分析采用了一種混合方法[30]。表3為不同種類水泥石中各種礦物含量。從表中可以看出與HAC相比,隨著SHMP的含量增多,CAP材料的無定形礦物含量逐漸增加。水化產(chǎn)物的成分也發(fā)生了明顯變化,包括水榴石含量明顯減少,三水鋁石、斜硅鈣石和硅鈣石等伴生產(chǎn)物含量也減少。因此可以得出結(jié)論,無定形含量的增加是由于水榴石的轉(zhuǎn)化,而水榴石的轉(zhuǎn)化有助于提高水泥石的機(jī)械性能,同時(shí)避免了因水化產(chǎn)物晶型轉(zhuǎn)化造成的強(qiáng)度衰退。
2.2.2 SHMP加量對(duì)水泥石微觀形貌影響
利用SEM分析固化7 d的HAC、CAP-3以及CAP-15水泥石的微觀形貌,結(jié)果如圖7所示。在HAC和CAP水泥石中水化產(chǎn)物C2AH8或CAH10呈片狀聚集,C3AH6為粒狀晶體,而AH3和C-A-P-H凝膠在顆粒間形成,呈絮狀或無規(guī)則凝膠狀[31]。HAC水泥石結(jié)構(gòu)如圖7(a)所示,呈多孔結(jié)構(gòu)。HAC其主要水化產(chǎn)物為C2AH8或CAH10和C3AH6,以及AH3,如圖7(b)所示。CAP-3水泥石形成圖7(c)中的致密結(jié)構(gòu),生成的C-A-P-H凝膠包裹在水化產(chǎn)物周圍。結(jié)合圖6和圖7(d)分析,隨著水化的進(jìn)行生成的C3AH6會(huì)在水泥內(nèi)部形成骨架構(gòu)成網(wǎng)狀結(jié)構(gòu),C-A-P-H凝膠依附在其上面充填在骨架之間,使水泥結(jié)構(gòu)逐漸密實(shí),其有助于水泥基質(zhì)中無水和含水晶體的牢固結(jié)合。水泥基質(zhì)中的網(wǎng)狀結(jié)構(gòu)更有利于水泥力學(xué)性能的發(fā)展[32-33]。由圖7(e)和(f)可知,水化產(chǎn)物C3AH6隨SHMP加量增大,其含量減少,轉(zhuǎn)化形成了更多C-A-P-H凝膠。這與圖6的XRD分析結(jié)果一致。
對(duì)比3種水泥石的SEM照片可以看出,HAC與CAP材料的水化產(chǎn)物形貌差異較大,HAC水化產(chǎn)物之間黏結(jié)并不緊密,水泥石結(jié)構(gòu)略松散,而CAP-3與CAP-15較HAC結(jié)構(gòu)更加致密,顆粒之間的黏結(jié)相對(duì)獨(dú)立,由此證實(shí)加入SHMP生成C-A-P-H凝膠是水泥石抗壓強(qiáng)度提高的重要因素之一。
2.3 SHMP加量對(duì)水泥石孔隙結(jié)構(gòu)影響
水泥石的孔隙結(jié)構(gòu)是決定強(qiáng)度和耐久性的重要因素,為了進(jìn)一步證實(shí)因SHMP加入生成的C-A-P-H凝膠使水泥石結(jié)構(gòu)更加致密,對(duì)固化7 d的水泥進(jìn)行了MIP分析,孔徑分布如圖8所示。結(jié)果表明隨著SHMP加量的增大,水泥石孔徑逐漸細(xì)化,最可幾孔徑成數(shù)量級(jí)降低。HAC的最可幾孔徑為2 000 nm,而CAP-3和CAP-15僅為100和9 nm。根據(jù)孔的分類,3~10 nm的孔為凝膠孔,是凝膠在生長過程中內(nèi)部形成的孔隙,這說明SHMP的加入生成的凝膠填充了孔隙細(xì)化孔徑,可以有效改善水泥石的孔隙結(jié)構(gòu)。
2.4 磷酸鹽改性高鋁水泥強(qiáng)度性能機(jī)制
HAC與SHMP之間發(fā)生反應(yīng),生成以鋁酸鈣水合物、三水鋁石以及C-A-P-H凝膠相等組成的高鋁水泥—六偏磷酸鈉(CAP)材料。SHMP的摻量對(duì)CAP材料的礦物組成、孔隙結(jié)構(gòu)都有很大影響。少量的SHMP與HAC發(fā)生反應(yīng),生成的CAP材料其中含有相對(duì)少量的C-A-P-H凝膠以及大量的結(jié)晶鋁酸鈣水合物和三水鋁石,Al(OH)3含量基本可以忽略不計(jì)。產(chǎn)生的無定形相C-A-P-H凝膠會(huì)包裹在結(jié)晶礦物周圍,填充在水泥顆粒之間,從而形成了網(wǎng)狀結(jié)構(gòu)。這有助于水泥基質(zhì)中無水和含水晶體的牢固結(jié)合,是抗壓強(qiáng)度提升的重要因素之一,這解釋了圖3中的抗壓強(qiáng)度的突增。但是隨著SHMP加量的增大,CAP材料中的結(jié)晶鋁酸鈣水合物含量減少,如表4所示。結(jié)合圖7發(fā)現(xiàn),此時(shí)C-A-P-H凝膠會(huì)失去依附的結(jié)晶礦物導(dǎo)致CAP材料強(qiáng)度下降,但是SHMP加量的持續(xù)增大生成的C-A-P-H凝膠會(huì)充滿整個(gè)水泥基質(zhì),從而抗壓強(qiáng)度上升并趨于穩(wěn)定,即C-A-P-H凝膠承擔(dān)了主要強(qiáng)度貢獻(xiàn)。同時(shí)水泥石的膠結(jié)強(qiáng)度與生成凝膠量密切相關(guān),即凝膠量越多膠結(jié)強(qiáng)度越大。
3 結(jié) 論
(1)不同磷酸鹽改性的高鋁水泥強(qiáng)度性能差別較大,優(yōu)選出SHMP作為高鋁水泥改性材料,可以顯著提高改性高鋁水泥的抗壓強(qiáng)度且后期強(qiáng)度不倒縮。
(2)同一齡期下,隨著SHMP摻量增加,CAP材料抗壓強(qiáng)度先增大后減小,再增大后趨于穩(wěn)定,在SHMP摻量為3%抗壓強(qiáng)度達(dá)到最大值。
(3)在SHMP加量為3%時(shí),C-A-P-H凝膠依附在結(jié)晶鋁酸鈣水合物上,并填充在水泥顆粒之間,在水泥基質(zhì)中形成網(wǎng)狀結(jié)構(gòu)更有利于強(qiáng)度的后期發(fā)展。
(4)SHMP會(huì)抑制/轉(zhuǎn)化鋁酸鈣水合物的生成,即SHMP加量越多鋁酸鈣水合物生成越少,C-A-P-H凝膠生成越多。
參考文獻(xiàn):
[1] CUI Guodong, ZHANG Liang, REN Bo, et al. Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: heat mining rate and salt precipitation effects[J]. Applied Energy, 2016,183:837-852.
[2] 張賢,李陽,馬喬,等.我國碳捕集利用與封存技術(shù)發(fā)展研究[J].中國工程科學(xué),2021,23(6):70-80.
ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021,23(6):70-80.
[3] 廖廣志,何東博,王高峰,等.終極埋存情景下二氧化碳驅(qū)油極限采收率探討[J].石油勘探與開發(fā),2022,49(6):1262-1268.
LIAO Guangzhi, HE Dongbo, WANG Gaofeng, et al. Discussion on the limit recovery factor of carbon dioxide flooding in a permanent sequestration scenario[J]. Petroleum Exploration and Development, 2022,49(6):1262-1268.
[4] 任韶然,張莉,張亮.CO2地質(zhì)埋存:國外示范工程及其對(duì)中國的啟示[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,34(1):93-98.
REN Shaoran, ZHANG Li, ZHANG Liang. Geological storage of CO2: overseas demonstration projects and itsimplications to China[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010,34(1):93-98.
[5] 關(guān)志剛,鄧寬海,吳彥先,等.非常規(guī)油氣井壓裂過程中水泥環(huán)完整性實(shí)驗(yàn)評(píng)價(jià)[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,45(4):121-132.
GUAN Zhigang, DENG Kuanhai, WU Yanxian, et al. Experimental evaluation on the cement sheath integrity of unconventional oil and gas well during large-scale hydraulic fracturing[J]. Journal of Southwest Petroleum University (Science amp; Technology Edition), 2023,45(4):121-132.
[6] 步玉環(huán),沈晟達(dá),柳華杰,等.提升油氣井長效生產(chǎn)壽命的穿越型水合物層固井理念及可行性[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(4):93-101.
BU Yuhuan, SHEN Shengda, LIU Huajie, et al. Concept and feasibility of crossing type hydrate layer cementing to enhance long production life of oil and gas wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023,47(4):93-101.
[7] 丁士東,陸沛青,郭印同,等.復(fù)雜環(huán)境下水泥環(huán)全生命周期密封完整性研究進(jìn)展與展望[J].石油鉆探技術(shù),2023,51(4):104-113.
DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments[J]. Petroleum Drilling Techniques,2023,51(4):104-113.
[8] 郭辛陽,宋雨媛,秦川,等.二氧化碳埋存條件下油井水泥石腐蝕的熱力學(xué)模擬[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(5):70-78.
GUO Xinyang, SONG Yuyuan, QIN Chuan, et al. Thermodynamic simulation of oil well cement degradation under carbon dioxide sequestration condition[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020,44(5):70-78.
[9] ZHANG Z, BU Y, GUO S, et al. Thermodynamic analysis of the corrosion of high alumina cement by carbon dioxide[J]. Journal of Cleaner Production, 2023,429:139417.
[10] CHOTARD T J, BONCOEUR-MARTEL M P, SMITH A, et al. Application of X-ray computed tomography to characterise the early hydration of calcium aluminate cement[J]. Cement and Concrete Composites, 2003,25(1):145-152.
[11] MOSTAFA N Y, ZAKI Z I, ABD E O H. Chemical activation of calcium aluminate cement composites cured at elevated temperature[J]. Cement and Concrete Composites, 2012,34(10):1187-1193.
[12] 萬向臣,張健,陳小榮.頁巖油地層固井用改性鋁酸鹽水泥的水化行為及性能[J].油田化學(xué),2023,40(4):614-620,626.
WAN Xiangchen, ZHANG Jian, CHEN Xiaorong. Hydration behavior and properties of modified aluminate cement for well cementing in shale oil formation[J]. Oilfield Chemistry, 2023,40(4):614-620,626.
[13] MA W, BROWN P W. Mechanical behavior and microstructural development in phosphate modified high alumina cement[J]. Cement and Concrete Research, 1992,22:1192-1200.
[14] 方永浩,施書哲,楊南如,等.高鋁水泥磷酸鹽CBC材料的初步研究[J].南京化工大學(xué)學(xué)報(bào),1998,20(2):21-25.
FANG Yonghao, SHI Shuzhe, YANG Nanru, et al. Preliminary study on high alumina cement phosphate CBC materials [J]. Journal of Nanjing University of Chemical Technology, 1998,20(2):21-25.
[15] PALOU M, KUZIELOV E, EMLICˇKA M, et al. The influence of sodium hexametaphosphate (Na6P6O18) on hydration of calcium aluminate cement under hydrothermal condition[J]. Procedia Engineering, 2016,151:119-126.
[16] CHAVDA M A, BERNAL S A, APPERLEY D C, et al. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders[J]. Cement and Concrete Research, 2015,70:21-28.
[17] 李保亮,劉志強(qiáng).磷鋁酸鹽水泥研究進(jìn)展[J].粉煤灰,2014(2):43-46.
LI Baoliang, LIU Zhiqiang. Advance in novel phosphoaluminate cement[J]. Coal Ash, 2014(2):43-46.
[18] CHAVDA M. Phosphate-modified calcium aluminate cements[D]. Sheffield, South Yorkshire: University of Sheffield, 2015.
[19] 張華,靳建洲,劉明濤.稠油熱采井抗350 ℃高溫硅酸鹽基水泥漿[J].鉆井液與完井液,2020,37(3):363-366.
ZHANG Hua, JIN Jianzhou, LIU Mingtaol. A 350 ℃ high temperature silicate cement slurry used in cementing heavy oil thermal production wells[J]. Drilling Fluid amp; Completion Fluid, 2020,37(3):363-366.
[20] 閆炎,管志川,王慶,等.油氣井射孔對(duì)固井水泥環(huán)損傷范圍的試驗(yàn)[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,46(3):81-88.
YAN Yan, GUAN Zhichuan, WANG Qing, et al. Experiment on damage of cement sheath induced by perforation in oil and gas wells[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022,46(3):81-88.
[21] MA W, BROWN P W. Hydration of sodium phosphate-modified high alumina cement[J]. Journal of Materials Research, 1994,9(5):1291-1298.
[22] WALTER D, ODLER I. Investigation of MgO and CaO/Al2O3 polyphosphate cements[J]. Advances in Cement Research, 1996,8(29):41-46.
[23] PANG X, QIN J, SUN L, et al. Long-term strength retrogression of silica-enriched oil well cement: a comprehensive multi-approach analysis[J]. Cement and Concrete Research, 2021,144:106424.
[24] 左羅,仲冠宇,蔣廷學(xué),等.頁巖微觀結(jié)構(gòu)及力學(xué)特征變化規(guī)律研究[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,44(5):125-134.
ZUO Luo, ZHONG Guanyu, JIANG Tingxue, et al. A Study on the law of microstructure changing and mechanical properties of shale[J]. Journal of Southwest Petroleum University (Science amp; Technology Edition), 2022,44(5):125-134.
[25] 華蘇東,姚曉.油井水泥石脆性降低的途徑及其作用機(jī)理[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,31(1):108-113.
HUA Sudong, YAO Xiao. Reduction in friability of well cement stone and its function mechanism[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007,31(1):108-113.
[26] 步玉環(huán),杜嘉培,柳華杰,等.深水弱膠結(jié)地層固井強(qiáng)度梯度層理論與固化材料性能[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(4):74-83.
BU Yuhuan, DU Jiapei, LIU Huajie, et al. Theory of strength gradient layer in deepwater weakly consolidated formation and performance of cementing materials[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021,45(4):74-83.
[27] ZHANG H, LIU H, ZHENG R, et al. Application of ABAQUS flow-solid coupling model to evaluate sealing capability of sandstone formation interface based on the cracking behavior of cohesive force units[J]. Construction and Building Materials, 2023,409:133863.
[28] DE MATOS P R, NETO J S A, SAKATA R D, et al. Strategies for XRD quantitative phase analysis of ordinary and blended Portland cements[J]. Cement and Concrete Composites, 2022,131:104571.
[29] MEHUL A, SUSAN A, DAVID C, et al. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders-science direct[J]. Cement and Concrete Research, 2015,70:21-28.
[30] XU W, DAI J G, DING Z, et al. Polyphosphate-modified calcium aluminate cement under normal and elevated temperatures:phase evolution, microstructure, and mechanical properties[J]. Ceramics International, 2017,43(17):15525-15536.
[31] NABER C, STEGMEYER S, JANSEN D, et al. The PONKCS method applied for time resolved XRD quantification of supplementary cementitious material reactivity in hydrating mixtures with ordinary Portland cement[J]. Construction and Building Materials, 2019,214:449-457.
[32] 唐凡,朱永剛,張濤,等.氣井套損修復(fù)用納米SiO2/環(huán)氧樹脂復(fù)合體系的研制與應(yīng)用[J].油田化學(xué),2022,39(3):407-412.
TANG Fan, ZHU Yonggang, ZHANG Tao, et al. Preparation and application of nano-SiO2/epoxy composite system for repairing gas well casing damage[J]. Oilfield Chemistry, 2022,39(3):407-412.
[33] GUO S, MA C, LONG G, et al. Cleaner one-partgeopolymer prepared by introducing fly ash sinking spherical beads: properties and geopolymerization mechanism[J]. Journal of Cleaner Production, 2019,219:686-697.
(編輯 劉為清)