摘要:應(yīng)用吉木薩爾蘆草溝組儲集層露頭制備層狀試樣開展水平井壓裂物理模擬試驗。通過恒速注入和快速釋放累積高壓獲得2種增壓狀態(tài),分別對應(yīng)于常規(guī)和壓力沖擊條件。結(jié)果表明:恒速注入條件下露頭破裂壓力小于15 MPa,傾向于形成近井筒紋層縫,裂縫高度受限;在壓力沖擊條件下,井底壓力遠超巖石常規(guī)破裂壓力,所形成裂縫高度大幅提高;沖擊壓力對裂縫高度影響顯著,沖擊壓力32 MPa條件下裂縫平均高度較恒速注入壓裂增長41.2%,沖擊壓力55 MPa條件下裂縫高度較恒速注入壓裂增長1.28倍;沖擊次數(shù)的提高一定程度上可增加裂縫高度,3次沖擊壓裂較1次沖擊壓裂裂縫高度增長50%。
關(guān)鍵詞:頁巖油; 沖擊壓裂; 裂縫高度; 密集紋層; 儲層改造
中圖分類號:TE 357.1"" 文獻標志碼:A
引用格式:張嘯寰,張士誠,鄒雨時,等.沖擊壓裂技術(shù)促進頁巖油儲層縫高擴展的可行性[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2024,48(6):105-113.
ZHANG Xiaohuan, ZHANG Shicheng, ZOU Yushi, et al. Feasibility of pressure shock fracturing to improve fracture height growth in shale oil formation[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(6):105-113.
Feasibility of pressure shock fracturing to improve fracture
height growth in shale oil formation
ZHANG Xiaohuan1, ZHANG Shicheng1, ZOU Yushi1, SHI Shanzhi2, LI Jianmin2, WANG Junchao2
(1.School of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
2.Engineering Technology Institute, PetroChina Xinjiang Oilfield Company, Xinjiang 834000, China)
Abstract:The physical simulation experiment of horizontal well fracturing was carried out by using layered samples prepared from reservoir outcrops of Lucaogou Formation in Jimsar. Two pressurization states were obtained by constant speed injection and rapid release of accumulated high pressure, which correspond to conventional and pressure shock conditions, respectively. It is found that the outcrop breakdown pressure is less than 15 MPa under the condition of constant-rate injection in horizontal wells, which tends to form activated laminas near the wellbore, and the fracture height is limited. Under the condition of pressure shock, the bottom hole pressure is much higher than the conventional rock breakdown pressure, and the fracture height is greatly increased. The shock pressure has a significant impact on the fracture height. Under the condition of shock pressure of about 32 MPa, the average height of fractures increased by 41.2%. Under the shock pressure of 55 MPa, the fracture height increased by 1.28 times. The increased number of times of shock can also improve fracture height growth to a certain extent. The fracture height of three shock fracturing is 50% higher than that of one shock fracturing.
Keywords: shale oil; pressure shock fracturing; fracture height; dense laminas; reservoir stimulation
頁巖油資源已經(jīng)成為原油產(chǎn)量增長的主體,對降低中國石油對外依存度、保障國家能源安全至關(guān)重要[1-2]。通過壓裂形成較大規(guī)模的裂縫網(wǎng)絡(luò),在長寬高三維方向上立體均衡改造儲層是實現(xiàn)頁巖油資源效益開發(fā)的關(guān)鍵[3-4]。美國以水平井分段多簇壓裂為主體開發(fā)技術(shù)實現(xiàn)了頁巖油革命[5]。而中國頁巖油開發(fā)主要面向陸相盆地,儲層具有巖性復(fù)雜,層理/紋層發(fā)育的特點[6-7]。應(yīng)用現(xiàn)有水平井分段多簇壓裂技術(shù)不易形成復(fù)雜縫網(wǎng)、縫高受限嚴重,無法實現(xiàn)甜點體整體動用[8-11]。因此,亟需探索能夠削弱儲層垂向非均質(zhì)性影響,促進裂縫均衡展布、垂向穿層的針對性技術(shù)措施。大量學(xué)者通過室內(nèi)壓裂模擬試驗,研究了層狀儲層中常規(guī)壓裂工藝下水力裂縫與紋層等弱面相互作用和裂縫復(fù)雜性[12-17]。發(fā)現(xiàn)水力裂縫會穿過黏結(jié)界面,而未黏結(jié)界面會將水力裂縫截止[18]。水力裂縫從剛性介質(zhì)擴展到軟介質(zhì)時,會穿過層間界面;從軟介質(zhì)擴展到剛性介質(zhì)時,會發(fā)生截止或偏折[19]。具有層間力學(xué)性質(zhì)差異的薄互層試樣會形成復(fù)雜裂縫,原因包括層間力學(xué)性質(zhì)差異、界面剪切和界面強度[20-21]。如今,不斷增加射孔簇數(shù)、縮小簇間距、提升排量和改造規(guī)模成為非常規(guī)油氣壓裂改造技術(shù)發(fā)展的新趨勢[22-24]。而由于地層非均質(zhì)性和應(yīng)力陰影效應(yīng)的影響,不斷縮小的簇間距使得水力裂縫更難均衡起裂擴展,針對這一難題,學(xué)者提出壓力沖擊壓裂方法,并對人造水泥均質(zhì)試樣進行試驗,探討沖擊壓裂造縫效果[25]。目前紋層發(fā)育層狀儲層沖擊壓裂工藝下裂縫擴展規(guī)律研究還較少。筆者針對紋層發(fā)育層狀頁巖油儲層,設(shè)計開展真三軸水平井恒速注入壓裂、沖擊壓裂模擬試驗,通過恒速注入和快速釋放累積高壓獲得兩種增壓狀態(tài),分別對應(yīng)于常規(guī)和壓力沖擊條件,分析不同壓裂工藝下裂縫擴展規(guī)律,以從試驗角度論證壓力沖擊壓裂技術(shù)促進裂縫高度增長的可能性和沖擊壓裂削弱頁巖油儲層垂向非均質(zhì)性效果。
1 試驗樣品與試驗方法
1.1 試樣準備
準噶爾盆地吉木薩爾凹陷蘆草溝組儲集層為陸相沉積,垂向上烴源巖與儲集層交互疊置,紋層發(fā)育[26-29]。采集2類蘆草溝組頁巖野外露頭,野外露頭紋層縫發(fā)育,與蘆草溝組上甜點井下巖心內(nèi)部結(jié)構(gòu)相似(圖1(a)、(b)),并對露頭的礦物成分、巖石力學(xué)性質(zhì)進行測試分析,其基本性質(zhì)參數(shù)測試結(jié)果如表1所示。露頭與井下巖心礦物組成相似,主要礦物均為石英、長石、白云石,黏土礦物含量均極少。A類露頭抗拉強度平均9.7 MPa;B類露頭抗拉強度平均10.04 MPa,露頭抗拉強度與井下巖心相近[30]。試驗采用A類露頭與B類露頭分層黏結(jié)制作試樣,A類巖石作為中間層,B類試樣作為隔層。
壓裂試樣加工過程:首先將天然露頭加工成板材后用環(huán)氧樹脂膠將不同巖性板材黏結(jié),黏結(jié)牢固后切割加工成邊長為30 cm的立方體(圖1(c))。之后為了模擬現(xiàn)場井眼鉆進完成后下套管注水泥固井的過程,使用外徑40 mm、長度27 cm的取芯鉆頭,在立方體試樣表面中心位置沿平行紋層方向鉆取深度為25 cm的井眼。然后將外徑為38 mm,內(nèi)徑為36 mm,長度為25 cm的PVC管放入井眼中,并將環(huán)氧樹脂膠注入環(huán)空黏結(jié)PVC管和巖樣。最后使用割縫裝置在井眼內(nèi)部環(huán)形割縫,以模擬段內(nèi)多簇射孔,本次試驗為單段三簇射孔,簇間距為6 cm(圖1(d))。
1.2 試驗裝置與流程設(shè)計
為模擬水平井密切割壓裂,設(shè)計制作了水平井分段多簇壓裂試驗井筒[31](圖2)。分為外層PVC套管、內(nèi)層井筒2個部分,內(nèi)層井筒插入外層PVC套管組裝形成試驗井筒。內(nèi)層井筒為外徑35 mm、長度27 cm的鋼制井筒。在內(nèi)層井筒對應(yīng)外層套管相應(yīng)分段處設(shè)置直徑為3 mm的出液孔,并針對每個工作段的環(huán)空部分用密封膠圈封隔,以模擬封隔器的作用。
利用真三軸大尺寸水力壓裂模擬系統(tǒng)(圖3[32-33]),開展水平井多簇壓裂模擬試驗。為模擬水平井的三向地應(yīng)力狀態(tài),施加的最小水平主應(yīng)力σh平行于井筒軸線方向,垂向應(yīng)力σv和最大水平主應(yīng)力σH垂直于井筒軸線方向。受限于設(shè)備性能,根據(jù)儲集層應(yīng)力相對值設(shè)定試驗應(yīng)力參數(shù),即吉木薩爾蘆草溝組頁巖油儲集層現(xiàn)場水平應(yīng)力差為13 MPa,垂向應(yīng)力差為15 MPa[34],則垂向應(yīng)力施加25 MPa,最大水平主應(yīng)力施加23 MPa,最小水平主應(yīng)力施加10 MPa。
井口注入壓裂液經(jīng)過井筒到達井底,然后經(jīng)過分簇射孔后在水力裂縫內(nèi)流動,這個過程中裂縫入口壓力受到射孔摩阻、井筒摩阻和井底壓力的影響。在整個試驗過程中監(jiān)測泵送壓力與井口壓力,在實驗室規(guī)模的試驗中,壓裂液在井筒內(nèi)的流動摩擦可以忽略,因此井口壓力也可以被視為井底壓力。試驗設(shè)計了恒速注入壓裂、沖擊壓裂兩種泵注方式,實現(xiàn)了井筒內(nèi)的正常與壓力沖擊兩種不同增壓狀態(tài)(圖4)。常規(guī)恒速注入壓裂的井底壓力是通過恒定泵送速率連續(xù)注入壓裂液至井筒而建立的。當(dāng)注入時間到達tb,n時,水力裂縫在正常破裂壓力pb,n和下從射孔簇引發(fā)時,井底壓力迅速下降;通常,常規(guī)恒速注入壓裂中pb,n近似等于最大泵送壓力pp,max。壓力沖擊壓裂條件下,則在以恒定泵送速率注入流體的過程中,通過關(guān)閉和打開井口閥門來建立相對較高的井底壓力。當(dāng)泵送壓力升高至約1~2 MPa時,關(guān)閉井口閥門,隨后,泵送壓力迅速增加,達到最大泵送壓力pp,max,遠高于pb,n。然后打開井口閥門,井底壓力立即增加,突然加載在射孔簇上,在注入時間到達tb,h時,在更高的井底壓力pp,h下起裂水力裂縫。
在恒速注入壓裂中,3個注液段同時注入流體。在同步注入后,在每個段分別注入流體,以檢查各段壓裂效果(即檢查注入階段),因此可以在注入曲線上觀察到4段曲線(圖5(c)、(f))。檢查注入階段的注入速率與每個樣品中的前一次注入相同。如果在檢查注入過程中觀察到高注入壓力和新的裂縫產(chǎn)生,則很可能在同步壓裂過程中沒有改造到該段。如果檢查注入出現(xiàn)了平緩的注入壓力,則意味著在同步壓裂過程中,特定注液段受到改造或與其他注液段相溝通。由恒速注入壓裂巖樣壓力曲線可知,露頭破裂壓力低于15 MPa,故在閥門處憋起遠高于15 MPa的壓力(圖7)。所開展壓裂試驗參數(shù)統(tǒng)計見表2。
2 裂縫擴展規(guī)律
表3提供了六組壓裂試驗的總體觀察結(jié)果。恒速注入壓裂所產(chǎn)生裂縫均以紋層縫為主,裂縫形態(tài)簡單,平均裂縫覆蓋高度為9.23 cm,改造高度受限。采用沖擊壓裂能一定程度上改善裂縫垂向擴展困難的問題,平均裂縫覆蓋高度為15.1 cm。
2.1 恒速注入壓裂裂縫擴展特征
1號試樣采用恒速注入壓裂,為單段3簇射孔壓裂,所用壓裂液為黏度3 mPa·s的滑溜水。1號試樣三段合壓時井口壓力到達7.1 MPa后迅速下降至4.5 MPa,降幅為36.6%,后穩(wěn)定約為7 MPa。第一段檢查注入階段井口壓力升至10 MPa后略微降低,隨后穩(wěn)定至約10 MPa。二、三段檢查注入階段均難以憋起高壓,井口壓力維持在約6 MPa,表明二、三段射孔已被裂縫溝通(圖5(a))。最終試樣形成了穿過井筒的紋層縫,裂縫覆蓋高度8.46 cm,僅在中間層擴展(圖5(b))。第二段割縫處裂縫起裂并溝通近井筒兩條紋層裂縫,壓裂液迅速沿紋層濾失并激活紋層溝通另外兩段射孔,且形成紋層縫縫寬較窄,壓裂液注入壓力較高。
2號試樣泵注模式與1號相同,也為單段三簇射孔壓裂,提升壓裂液黏度至30 mPa·s。2號試樣注入壓力到8.6 MPa后,迅速降低至約3 MPa,降幅為69.8%。破裂壓力較壓裂液黏度3 mPa·s滑溜水壓裂提高了21%,峰后降幅提高了33.2%,表明起裂裂縫寬度較3 mPa·s壓裂液情況下較大。三段檢查注入階段,都不能起壓,表明3段射孔在合壓階段均已被裂縫溝通(圖5(f))。近井紋層發(fā)育易導(dǎo)致水力裂縫開啟近井紋層,并沿紋層擴展,溝通中間層4條紋層縫,裂縫覆蓋高度為10 cm,垂向擴展困難僅在中間層擴展(圖5(d)、(e))。
試驗結(jié)果表明,露頭紋層具有一定的原始開度,導(dǎo)致壓裂液易沿紋層流失,限制了人工裂縫的垂向擴展。壓裂液黏度對紋層發(fā)育巖石裂縫擴展具有重要影響。壓裂液黏度提高,縫內(nèi)壓力提高,促進形成主裂縫并穿過紋層等弱面,且能抑止壓裂液沿紋層縫濾失。壓裂液黏度30 mPa·s條件下較壓裂液黏度3 mPa·s滑溜水壓裂,縫高提高了18%。
2.2 沖擊壓裂裂縫擴展特征
3、4、5號試樣分別采用1、2、3次沖擊壓裂方式進行改造,沖擊壓力為32~36 MPa(圖7(a)~(c))。3號試樣1次沖擊壓裂所獲形態(tài)較簡單,形成1條人工垂向裂縫、2條紋層縫,裂縫覆蓋高度與2號試樣相當(dāng)為10 cm(圖6(a));4號試樣提高沖擊壓裂次數(shù)至2次,形成1條垂向人工裂縫,溝通1條垂向天然裂縫、4條紋層縫,裂縫覆蓋高度為14.3 cm(圖6(b));5號試樣將沖擊次數(shù)提高為3次,共打開3條紋層縫和1條人工垂向橫切縫。人工裂縫沿下黏結(jié)界面橫向偏移一段距離后,再次起裂向垂向延伸,突破了弱面限制,裂縫覆蓋高度達15 cm(圖6(c))。
第2次高壓沖擊后,注入壓力升高至14.4 MPa后降低至約5 MPa波動(圖7(c)),對應(yīng)裂縫偏轉(zhuǎn)擴展形態(tài)復(fù)雜。沖擊壓力32~36 MPa下,平均裂縫覆蓋高度為13.1 cm,較恒速注入壓裂提高了41.9%。3次沖擊壓裂較1次沖擊壓裂裂縫覆蓋高度增長了50%。這表明沖擊次數(shù)的提高對水力裂縫的高度擴展有較大的促進作用,當(dāng)現(xiàn)場難以實現(xiàn)超高壓沖擊時,亦可以通過增加沖擊次數(shù)來增大水力裂縫高度,采用中壓高頻的沖擊方式來促進裂縫擴展穿層。
6號試樣采用一次沖擊壓裂方式進行改造,沖擊壓力提升至55 MPa(圖7(d)),形成1條人工垂向裂縫、3條紋層縫,裂縫覆蓋高度達21 cm。6號試樣沖擊壓力較32 MPa的3、4、5號試樣提高了57%,裂縫覆蓋高度提高了60%。同時沖擊壓裂后,壓裂液注入壓力僅有約1 MPa,遠低于3、4、5號試樣,表明其引發(fā)水力裂縫的寬度較大,導(dǎo)流能力較高??梢姵邏簺_擊削弱儲層非均質(zhì)的效果較好。
李旭光等[35-36]設(shè)計了沖擊壓裂裝置,使用水泥巖樣進行了試驗?zāi)M,發(fā)現(xiàn)沖擊壓裂能有效破巖,形成能夠?qū)崿F(xiàn)自支撐而不閉合的流動通道。
本文中發(fā)現(xiàn)沖擊壓裂在一定程度上能增加頁巖油儲集層水力裂縫垂向延伸高度,對提高裂縫復(fù)雜程度有促進作用。沖擊壓裂技術(shù)下試樣平均裂縫高度達15.1 cm,且激活紋層數(shù)量較恒速注入壓裂相當(dāng),整體儲層改造體積大幅提高(圖8)。這為紋層發(fā)育層狀頁巖油儲層礦場壓裂提高裂縫復(fù)雜程度與縫控體積提供了一種新思路。
3 結(jié) 論
(1)紋層發(fā)育頁巖油儲層近井筒具有一定原始開度的紋層對人工裂縫的垂向擴展具有顯著的抑制作用。提高壓裂液黏度,有助于縫內(nèi)壓力提高,促進形成主裂縫并穿過紋層等弱面,并抑止壓裂液沿紋層縫濾失。壓裂液黏度30 mPa·s條件下較壓裂液黏度3 mPa·s條件下裂縫覆蓋高度增加了18%。
(2)應(yīng)用沖擊壓裂技術(shù)人為提升井底壓力使其遠超近井筒巖石破裂壓力,可避免井底升壓過程中起裂微裂縫溝通水平紋層,克服紋層弱面對裂縫垂向擴展的抑制,削弱紋層發(fā)育層狀頁巖油儲層垂向非均質(zhì)性對裂縫擴展的影響。
(3)沖擊壓力對裂縫高度影響顯著,沖擊壓力約32 MPa條件下裂縫平均高度較恒速注入壓裂增長41.2%;沖擊壓力55 MPa條件下,裂縫高度較恒速注入壓裂增長1.28倍,較沖擊壓力32 MPa裂縫覆蓋高度提高了60%。沖擊次數(shù)的提高一定程度上也可促進裂縫高度增長,3次沖擊壓裂較1次沖擊壓裂裂縫高度增長50%。
參考文獻:
[1] 袁士義,雷征東,李軍詩,等.陸相頁巖油開發(fā)技術(shù)進展及規(guī)模效益開發(fā)對策思考[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2023,47(5):13-24.
YUAN Shiyi, LEl Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023,47(5):13-24.
[2] 金之鈞,朱如凱,梁新平,等.當(dāng)前陸相頁巖油勘探開發(fā)值得關(guān)注的幾個問題[J].石油勘探與開發(fā),2021,48(6):1276-1287.
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021,48(6):1276-1287.
[3] 吳奇,胥云,王曉泉,等.非常規(guī)油氣藏體積改造技術(shù):內(nèi)涵、優(yōu)化設(shè)計與實現(xiàn)[J].石油勘探與開發(fā),2012,39(3):352-358.
WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2021,39(3):352-358.
[4] 胥云,雷群,陳銘,等.體積改造技術(shù)理論研究進展與發(fā)展方向[J].石油勘探與開發(fā),2018,45(5):874-887.
XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018,45(5):874-887.
[5] 李國欣,羅凱,石德勤.頁巖油氣成功開發(fā)的關(guān)鍵技術(shù)、先進理念與重要啟示:以加拿大都沃內(nèi)項目為例[J].石油勘探與開發(fā),2020,47(4):739-749.
LI Guoxin, LUO Kai, SHI Deqin. Key technologies, engineering management and important suggestions of shale oil/gas development:case study of a Duvernay shale project in Western Canada Sedimentary Basin[J]. Petroleum Exploration and Development, 2020,47(4):739-749.
[6] LI N, JIN Z J, WANG H B, et al. Investigation into shale softening induced by water/CO2-rock interaction[J]. Int J Rock Mech Min, 2023,161:105299.
[7] LI N, JIN Z J, ZHANG S C, et al. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction[J]. Petrol Explor Dev, 2023,50(3):1-11.
[8] 鮮成鋼,李國欣,李曹雄,等.陸相頁巖油效益開發(fā)的若干問題[J].地球科學(xué),2023,48(1):14-29.
XIAN Chenggang, LI Guoxin, LI Caoxiong. Key evaluation aspects for economic development of continental shale oil[J]. Earth Science, 2023,48(1):14-29.
[9] 鄒才能,馬鋒,潘松圻,等.全球頁巖油形成分布潛力及中國陸相頁巖油理論技術(shù)進展[J].地學(xué)前緣,2023,30(1):128-142.
ZOU Caineng, MA Feng, PAN Songqi, et al, Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023,30(1):128-142.
[10] 熊健,吳俊,劉向君,等.陸相頁巖儲層地質(zhì)力學(xué)特性及對壓裂效果的影響[J].西南石油大學(xué)學(xué)報(自然科學(xué)版),2023,45(5):69-80.
XONG Jian,WU Jun, LIU Xiangjun, et al. The geomechanical characteristics of the continental shale reservoirs and the influence on the fracturing effect[J]. Journal of Southwest Petroleum University (Science amp; Technology Edition), 2023,45(5):69-80.
[11] 趙文智,卞從勝,蒲秀剛,等.中國典型咸化湖盆頁巖油富集與流動特征及在“甜點”評價中的意義[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2023,47(5):25-37.
ZHAO Wenzhi, BIAN Congsheng, PU Xiugang. Enrichment and flow characteristics of shale oil in typical salinized lake basins in China and its significance for \"sweet spot\" evaluation [J]. Journal of China University of Petroleum (Edition of Natural Science), 2023,47(5):25-37.
[12] 李越,牟建業(yè),張士誠,等.塔河縫洞型碳酸鹽巖儲層裂縫擴展規(guī)律數(shù)值模擬[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2022,46(6):135-142.
LI Yue, MOU Jianye, ZHANG Shicheng, et al. Numerical simulation of fracture propagation in Tahe fracture-vuggy carbonate reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Seience), 2022,46(6):135-142.
[13] GUO T K, ZHANG S C, QU Z Q, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014,128:373-380.
[14] 張士誠,郭天魁,周彤,等.天然頁巖壓裂裂縫擴展機理試驗[J].石油學(xué)報,2014,35(3):496-503,518.
ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014,35(3):496-503,518.
[15] ZOU Y S, ZHANG S C, ZHOU T, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mech Rock Eng, 2016,49(1):33-45.
[16] LI N, ZHANG S C, ZOU Y S, et al. Experimental analysis of hydraulic fracture growth and acoustic emission response in a layered formation[J]. Rock Mech Rock Eng, 2018,51(4):1047-1062.
[17] 張士誠,李四海,鄒雨時,等.頁巖油水平井多段壓裂裂縫高度擴展試驗[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2021,45(1):77-86.
ZHANG Shicheng, LI Sihai, ZOU Yushi, et al. Experimental study on fracture height propagation during multi-stage fracturing of horizontal wells in shale oil reservoirs[J]. Journal of China University of Petroleum( Edition of Natural Science), 2021,45(1):77-86.
[18] DANESHY A A. Hydraulic fracture propagation in layered formations[J]. Society of Petroleum Engineers Journal, 1978,18(1):33-41.
[19] WU H, CHUDNOVSKY A, Dudley G K, et al. A map of fracture behavior in the vicinity of an interface[C]. Colorado American: ARMA, 2004:620.
[20] ATHAVALE A S, MISKIMINS J L. Laboratoryhydraulic fracturing tests on small homogeneous and laminated blocks[C]. Colorado American: ARMA, 2008:67.
[21] HENG S, LIU X, LI X Z, et al. Experimental and numerical study on the non-planar propagation of hydraulic fractures in shale[J]. Journal of Petroleum Science and Engineering, 2019,179:410-426.
[22] 侯向前,盧擁軍,張福祥,等.CO2在非常規(guī)油氣增產(chǎn)領(lǐng)域應(yīng)用研究進展[J].油田化學(xué),2023,40(2):356-362.
HOU Xiangqian, LU Yongjun, ZHANG Fuxiang, et al. Research progress on application of CO2, in unconventional oil and gas stimulation [J]. Oilfield Chemistry, 2023,40(2):356-362.
[23] 張志超,李紅雷,于春勇,等.CO2開發(fā)頁巖油藏研究進展[J].油田化學(xué),2023,40(3):543-549.
ZHANG Zhichao, LI Honglei, YU Chunyong, et al. Research progress of shale reservoir development with CO2[J]. Oilfield Chemistry, 2023,40(3):543-549.
[24] TANNER W, RICHARD L, CHAD S, et al. Interwellcommunication study of UWC and MWC wells in the HFTS [R]. SPE 2902960, 2018.
[25] ZENG B, LU D T, ZOU Y S, et al. Experimental study of the simultaneous initiation of multiple hydraulic fractures driven by static fatigue and pressure shock[J]. Rock Mech Rock Eng, 2020,53:5051-5067.
[26] 匡立春,唐勇,雷德文,等.準噶爾盆地二疊系咸化湖相云質(zhì)巖致密油形成條件與勘探潛力[J].石油勘探與開發(fā),2012,39(6):657-667.
KUANG Lichn, TANG Yong, LEI Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012,39(6):657-667.
[27] 楊智,侯連華,森虎,等.吉木薩爾凹陷蘆草溝組致密油、頁巖油地質(zhì)特征與勘探潛力[J].中國石油勘探,2018,23(4):76-85.
YANG Zhi, HOU Lianhua, SEN Hu, et al. Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar sag[J]. China Petroleum Exploration, 2018,23(4):76-85.
[28] 曲長勝,邱隆偉,操應(yīng)長,等.吉木薩爾凹陷二疊系蘆草溝組烴源巖有機巖石學(xué)特征及其賦存狀態(tài)[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2017,41(2):30-38.
QU Changsheng, QIU Longwei, CAO Yingchang, et al. Organic petrology characteristics and occurrence of source rocks in Permian Lucaogou Formation, Jimsar Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017,41(2):30-38.
[29] ZHANG X, ZHANG S, ZOU Y, et al. Effect of interlaminar difference on height propagation behavior of hydraulic fracture in Lucaogou Shale[C]. Colorado American: ARMA, 2022:969.
[30] 石善志,鄒雨時,王俊超,等.吉木薩爾凹陷蘆草溝組儲集層脆性特征[J].新疆石油地質(zhì),2022,43(2):169-176.
SHI Shanzhi, ZOU Yushi, WANG Junchao, et al. Brittle characteristics of Lucaogou Formation reservoir in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022,43(2):169-176.
[31] 劉乃震,張兆鵬,鄒雨時,等.致密砂巖水平井多段壓裂裂縫擴展規(guī)律[J].石油勘探與開發(fā),2018,45(6):1059-1068.
LIU Naizhen, ZHANG Zhaopeng, ZOU Yushi, et al. Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development, 2018,45(6):1059-1068.
[32] ZOU Y, MA X, ZHOU T, et al. Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling[J]. Rock Mech Rock Eng, 2017,50:2381-2395.
[33] LI S, ZHANG S, ZOU Y, et al. Experimental study on the feasibility of supercritical CO2-gel fracturing for stimulating shale oil reservoirs[J]. Eng Fract Mech, 2020,238:107276.
[34] 侯冰,常智,武安安,等.吉木薩爾凹陷頁巖油密切割壓裂多簇裂縫競爭擴展模擬[J].石油學(xué)報,2022,43(1):75-90.
HOU Bing, CHANG Zhi, WU Anan, et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar sag[J]. Acta Petrolei Sinica, 2022,43(1):75-90.
[35] 李旭光,孫林,陳維余,等.水力沖擊壓裂技術(shù)地面打靶模擬實驗研究[J].鉆采工藝,2021,44(4):39-42,56.
LI Xuguang, SUN Lin, CHEN Weiyu, et al. Research on ground targeting simulation experiment of hydraulic fracturing technology[J]. Drilling & Production Technology, 2021,44(4):39-42,56.
[36] 孫林,楊萬有,黃波,等.海上油田水力沖擊壓裂酸化技術(shù)研究與試驗[J].石油機械,2021,49(6):36-42.
SUN Lin, YANG Wanyou, HUANG Bo, et al. Research and experiment of hydraulic impact fracturing acidification technology in offshore oil field[J]. China Petroleum Machinery, 2021,49(6):36-42.
(編輯 劉為清)