摘要
孢囊線蟲為大豆根部重要病害之一,廣泛分布于我國大豆種植區(qū),制約我國大豆產(chǎn)業(yè)發(fā)展。種植抗病品種為該病害最為經(jīng)濟(jì)有效且綠色環(huán)保的防治策略,然而目前商業(yè)化抗性資源較少。解析大豆抗孢囊線蟲的機(jī)制有利于大豆抗性基因資源挖掘和抗線蟲分子育種?;谏囼?yàn)和抗線蟲表型分析,本研究發(fā)現(xiàn)大豆R2R3MYB轉(zhuǎn)錄因子GmMYB15在植物細(xì)胞質(zhì)和細(xì)胞核中表達(dá),其轉(zhuǎn)錄水平受大豆孢囊線蟲侵染顯著誘導(dǎo),GmMYB15與咖啡酰輔酶A氧甲基轉(zhuǎn)移酶CCoAOMT、肉桂酸羥化酶C4H和肉桂酰輔酶A還原酶CCR等蛋白互作,正調(diào)控大豆對大豆孢囊線蟲抗性。研究結(jié)果為后續(xù)深入研究GmMYB15調(diào)控大豆線蟲抗性機(jī)制奠定了基礎(chǔ)。
關(guān)鍵詞
大豆;"孢囊線蟲;"抗病性;"GmMYB15
中圖分類號:
S"43245
文獻(xiàn)標(biāo)識碼:"A
DOI:"10.16688/j.zwbh.2024186
GmMYB15"positively"regulates"soybean"immunity"to"cyst"nematode
ZHU"Qun,"GUO"Xiaoli,"ZHANG"Lei*
(National"Key"Laboratory"of"Agricultural"Microbiology,"Huazhong"Agricultural"University,"Wuhan"430070,"China)
Abstract
The"soybean"cyst"nematode,"a"major"threat"to"soybean"roots,"is"widely"distributed"in"soybean"growing"areas"and"restricts"the"development"of"the"soybean"industry"in"China."Planting"diseaseresistant"varieties"is"the"most"economically"effective"and"environmentfriendly"control"strategy"for"this"disease."However,"there"are"currently"few"commercially"available"resistance"resources."Understanding"the"molecular"mechanism"of"soybean"resistant"to"cyst"nematode"is"essential"for"exploring"soybean"resistance"gene"resources"and"advancing"molecular"breeding"for"nematode"resistance."Based"on"biochemical"experiments"and"phenotypic"analysis,"we"found"that"the"R2R3MYB"transcription"factor"GmMYB15"is"expressed"in"both"the"cytoplasm"and"nucleus,"with"its"increased"transcription"level"under"cyst"nematode"infection."GmMYB15"interacts"with"various"proteins,"such"as"caffeoyl"coenzyme"A"Omethyltransferase"(CCoAOMT),"cinnamate4hydroxylase"(C4H),"and"cinnamoyl"coenzyme"A"reductase"(CCR),"and"plays"a"positive"role"in"soybean"nematode"resistance."Our"findings"lay"a"foundation"for"indepth"researches"on"the"function"of"GmMYB15"in"regulating"soybean"nematode"resistance.
Key"words
soybean;"cyst"nematode;"resistance;"GmMYB15
大豆Glycine"max"(L.)"Merr.是世界上重要的糧食和油料作物,其安全生產(chǎn)事關(guān)國家糧食安全。提高大豆單產(chǎn)水平和品質(zhì)是解決大豆危機(jī)的根本舉措。大豆孢囊線蟲Heterodera"glycines"Ichinohe(soybean"cyst"nematode,"SCN)廣泛存在于世界大豆主要生產(chǎn)國,例如美國、巴西、阿根廷、中國等,每年導(dǎo)致大豆產(chǎn)量損失5%~10%,嚴(yán)重時達(dá)30%。該線蟲在我國東北和黃淮海大豆主產(chǎn)區(qū)危害嚴(yán)重,是制約我國大豆產(chǎn)量和品質(zhì)提高的重要因素[12]。挖掘新的大豆抗線蟲基因資源,深入解析其抗病機(jī)制,對大豆抗性改良具有重要意義。
MYB轉(zhuǎn)錄因子(MYB"transcription"factor)是含有MYB結(jié)構(gòu)域的一類反式作用因子,其N端具有一段高度保守的DNA結(jié)合結(jié)構(gòu)域,該結(jié)構(gòu)域通常由1~4個氨基酸重復(fù)序列(R)構(gòu)成。依據(jù)R的數(shù)目和種類,MYB轉(zhuǎn)錄因子家族被分為4類:4RMYB(由4個R1/R2重復(fù)組成)、3RMYB/R1R2R3MYB(由R1、R2、R3組成)、1RMYB/MYBrelated(含有單個重復(fù)或不完整的R)、R2R3MYB(由R2和R3組成),其中R2R3MYB為植物MYB轉(zhuǎn)錄因子中最大的亞家族,分布于各類植物,參與植物生長發(fā)育、代謝和脅迫應(yīng)答調(diào)控[36]。
R2R3MYB在植物響應(yīng)脅迫中發(fā)揮重要作用[711]。擬南芥S1亞家族的R2R3MYB主要參與調(diào)控干旱、高溫、鹽和過強(qiáng)光照的脅迫,S2亞家族的R2R3MYB可提高植物對干旱、損傷和低溫的抗性,而S11亞家族的R2R3MYB主要參與滲透和鹽脅迫調(diào)控[1214]。GmMYB29A2參與大豆抗毒素的生物合成,增強(qiáng)大豆對大豆疫霉的抗性[15]。OsJAMyb和OsMYB30正調(diào)控水稻對稻瘟菌Pyricularia"oryzae與褐飛虱Nilaparvata"lugens的抗性[1617]。GhMYB33結(jié)合GhSPL9和GhDFR1啟動子,負(fù)調(diào)控陸地棉對棉花黃萎病菌Verticillium"dahliae抗性[18]。于擬南芥中過表達(dá)AtMYB59和AtHRS1會抑制甜菜孢囊線蟲Heterodera"schachtii的發(fā)育,擾亂合胞體形成,增強(qiáng)擬南芥對甜菜孢囊線蟲的抗性[1920]。此外,在調(diào)控植物初生和次生代謝方面,R2R3MYB主要參與苯丙烷代謝途徑的次生代謝物的合成,調(diào)控原花青素、花青素、黃酮類、黃酮醇、異黃酮類、苯酚及木質(zhì)素等苯丙烷類化合物合成[2125]。作者前期研究發(fā)現(xiàn),大豆R2R3MYB轉(zhuǎn)錄因子GmMYB15的轉(zhuǎn)錄水平受大豆孢囊線蟲侵染誘導(dǎo),本研究基于生化試驗(yàn)和表型分析探究GmMYB15生物學(xué)功能,為后續(xù)深入研究GmMYB15調(diào)控大豆線蟲抗性機(jī)制奠定基礎(chǔ)。
1"材料與方法
1.1"植物材料與線蟲
本研究以感病大豆品種‘Williams"82’(‘W82’),抗病大豆品種‘PI88788’‘PI548402’和大豆孢囊線蟲HG"type"0為研究材料。
1.2"主要培養(yǎng)基與溶液配方
萌發(fā)培養(yǎng)基(GM):"Gamborg’s"B5"31"g、蔗糖20"g、瓊脂7"g、1"000×Gamborg’s"B5"vitamin"1"mL、pH"58,ddH2O定容至1"000"mL。
共培養(yǎng)培養(yǎng)基(CCM):"Gamborg’s"B5"031"g、蔗糖30"g、MES"(05"mol/L,"pH"56)"40"mL、1"000×Gamborg’s"B5"vitamin"1"mL、半胱氨酸04"g、硫代硫酸鈉0245"g、二硫蘇糖醇0154"2"g、乙酰丁香酮(溶解于DMSO)"004"g、瓊脂5"g、pH"54,ddH2O定容至1"000"mL。
毛根培養(yǎng)基(HRM):MS基礎(chǔ)培養(yǎng)基433"g、蔗糖25"g、MES"(05"mol/L,pH"56)"6"mL、1"000×Gamborg’s"B5"vitamin"1"mL、瓊脂8"g、pH"56,ddH2O定容至1"000"mL。
YPDA培養(yǎng)基:蛋白胨200"g、酵母提取物100"g、葡萄糖200"g、腺嘌呤003"g、pH"58,ddH2O定容至1"000"mL,固體培養(yǎng)基加入20"g瓊脂。
SD培養(yǎng)基:"YNB"(yeast"nitrogen"base"w/o"amino"acids"and"ammonium"sulfate)"17"g、硫酸銨50"g、葡萄糖200"g、pH"58,ddH2O定容至1"000"mL,固體培養(yǎng)基加入20"g瓊脂。
LB培養(yǎng)基:蛋白胨10"g、酵母提取物5"g、NaCl"10"g、pH"70,ddH2O定容至1"000"mL,固體培養(yǎng)基加入15"g瓊脂。
所用試劑包括:10×TE"Buffer、10"mmol/L"EDTA(pH"75)、10"mol/L"LiAc(10×,"pH"75)、50%"PEG4000、"GUS染色液(50"mmol/L磷酸氫鈉緩沖液pH"70、10"mmol/L"EDTA、01%"Triton"X100、2"mmol/L鐵氫化鉀、2"mmol/L亞鐵氫化鉀、20"mmol/L"XGluc,現(xiàn)配現(xiàn)用)。
1.3"載體構(gòu)建
利用特異性引物(表1)從大豆cDNA中擴(kuò)增獲得GmMYB15(Glyma10g165800)編碼區(qū)序列,通過T4"DNA連接酶和限制性內(nèi)切酶Sal"I/Xbanbsp;I將其重組至過表達(dá)載體pSM1013HA,用于在大豆毛根中過表達(dá)GmMYB15(OEGmMYB15);通過比對分析GmMYB15保守片段,利用AscⅠ/SwaⅠ和BamHⅠ/AvrⅡ酶切位點(diǎn)將GmMYB15"300"bp保守片段重組至RNAi載體pG2RNAi1,用于在大豆毛根中沉默GmMYB15(RNAiGmMYB15);利用特異性引物(表1)擴(kuò)增GmMYB15啟動子序列(2"kb),通過Hind"Ⅲ與SalⅠ酶切位點(diǎn)將其重組至pSM101GUS載體;通過Gibson重組反應(yīng)與XhoⅠ及KpnⅠ酶切位點(diǎn)將GmMYB15編碼區(qū)序列克隆到pGWB5GFP載體,融合GFP標(biāo)簽,獲得pGWB5GmMYB15GFP重組載體;利用電激轉(zhuǎn)化將pSM101GmMYB153HA與pG2RNAi1GmMYB15重組載體轉(zhuǎn)化至發(fā)根農(nóng)桿菌Agrobacterium"rhizogenes"K599,將pGWB5GmMYB15GFP重組載體轉(zhuǎn)化至根癌農(nóng)桿菌Agrobacterium"tumefaciens"EHA105,菌落PCR鑒定陽性克隆后,將菌株保存至-80℃?zhèn)溆?利用NdeⅠ和SalⅠ酶切位點(diǎn)將GmMYB15編碼區(qū)序列構(gòu)建到pGBKT7載體,獲得pGBKT7GmMYB15重組載體;利用Nde"Ⅰ和EcoR"Ⅰ或BamH"Ⅰ和Xho"Ⅰ酶切位點(diǎn)將咖啡酰輔酶A氧甲基轉(zhuǎn)移酶CCoAOMT(Glyma11G054500)、肉桂酸羥化酶C4H(Glyma14G205200)、肉桂酰輔酶A還原酶CCR(Glyma11G164700)、WD40(Glyma09G063100)和活化的蛋白激酶C受體1"RACK(Glyma08G051600)克隆至pGADT7載體,獲得ADCCoAOMT、ADC4H、ADCCR、ADWD40及ADRACK重組載體;以ADT與BD53共轉(zhuǎn)作為陽性對照進(jìn)行酵母雙雜交試驗(yàn)。本研究所用引物的詳細(xì)信息見表1。
1.4"RTqPCR
取大豆根部組織經(jīng)液氮研磨后參照TRIpure"Reagent(艾德萊,RN0101)和HiScriptⅡ"QRT"SuperMix"(諾唯贊,R22201)操作說明進(jìn)行總RNA提取和反轉(zhuǎn)錄,將反轉(zhuǎn)錄得到的cDNA稀釋10倍備用;將濃度為10"μmol/L上、下游引物(表1)等體積混合后稀釋20倍,以SKIP16(Glyma12g025500)為內(nèi)參基因進(jìn)行基因表達(dá)分析;RTqPCR反應(yīng)體系如下:"2×SYBR"Green"Supper"Mix"5"μL,引物25"μL,"cDNA模板25"μL。反應(yīng)程序?yàn)椋?5℃預(yù)變性5"min;95℃變性10"s,60℃延伸30"s,40個循環(huán);最后95℃變性15"s,60℃延伸60"s,95℃變性15"s,獲得擴(kuò)增曲線和熔解曲線。
1.5"大豆抗性表型分析
1.5.1"大豆毛根轉(zhuǎn)化
利用K599介導(dǎo)的大豆毛根轉(zhuǎn)化系統(tǒng)進(jìn)行大豆抗大豆孢囊線蟲表型分析[26]。詳細(xì)步驟如下:選取均勻飽滿的‘W82’大豆放置于7"cm玻璃皿,于干燥器中利用NaClO和濃鹽酸制備氯氣,滅菌16~18"h;將滅菌大豆靜置在超凈臺中6"h,去除殘余氯氣,防止其影響種子萌發(fā);在無菌條件下將大豆種植于GM培養(yǎng)基,在28℃,光周期L∥D=16"h∥8"h下培養(yǎng)5~6"d;大豆在GM培養(yǎng)基培養(yǎng)3"d后活化含pSM101GmMYB153HA、pG2RNAi1GmMYB15、pSM1013HA及pG2RNAi1載體的農(nóng)桿菌K599,挑取單菌落于1"mL"LB液體培養(yǎng)基(含150"mg/L硫酸卡那霉素和50"mg/L硫酸鏈霉素)28℃過夜培養(yǎng),次日以1∶100比例擴(kuò)大培養(yǎng),待OD600為07時用于大豆毛根轉(zhuǎn)化。在超凈臺中將長勢良好的大豆去除種皮,切下子葉,用手術(shù)刀尖蘸取菌液劃傷子葉遠(yuǎn)軸面,將傷口向上保濕靜置30"min,隨后移至CCM培養(yǎng)基25℃黑暗共培養(yǎng)3"d,將子葉轉(zhuǎn)移至HRM培養(yǎng)基,子葉傷口向上,25℃黑暗培養(yǎng)14~16"d;利用Olympus體視顯微鏡SZX16篩選帶有綠色熒光的陽性毛根,將陽性根移至HRM培養(yǎng)基25℃黑暗培養(yǎng)5"d,取約6"cm長根尖部分于HRM培養(yǎng)基25℃黑暗培養(yǎng)3"d,截取約4"cm長根尖至HRM培養(yǎng)基25℃黑暗過夜培養(yǎng),用于次日線蟲接種。
1.5.2"線蟲接種
收集培養(yǎng)30"d的大豆孢囊線蟲孢囊,緩慢研磨后通過500目篩子收集蟲卵,使用02%疊氮化鈉溶液消毒5"min,使用流水沖洗蟲卵,除去殘留疊氮化鈉,將蟲卵置于28℃孵化3"d,3"000"r/min離心1"min收集J2s,加1"mL線蟲消毒液(0004%氯化汞、0004%疊氮化鈉、0002%"Triton"X100)消毒8"min,3"000"r/min離心1"min收集線蟲,用無菌ddH2O洗滌4次后,加入01%瓊脂糖溶液至25"μL含300條J2s,取25"μL重懸液接種至根尖上方1"cm處,25℃黑暗培養(yǎng)30"d后使用體視顯微鏡統(tǒng)計(jì)孢囊數(shù)目;不同大豆品種接種大豆孢囊線蟲時以01%瓊脂糖溶液處理作為對照組;利用K599介導(dǎo)大豆毛根轉(zhuǎn)化系統(tǒng)進(jìn)行表型分析時以轉(zhuǎn)化pSM1013HA和pG2RNAi1空載體獲得的GFP熒光陽性毛根作為對照,每組轉(zhuǎn)基因毛根數(shù)量保證15條以上。
1.6"亞細(xì)胞定位分析
利用根癌農(nóng)桿菌EHA105介導(dǎo)的煙草葉片瞬時表達(dá)系統(tǒng)進(jìn)行亞細(xì)胞定位試驗(yàn)[27]。詳細(xì)步驟如下:活化含p19的EHA105菌株(用于抑制外源DNA觸發(fā)的植物免疫反應(yīng),提高轉(zhuǎn)化效率)、含pGWB5GmMYB5GFP重組質(zhì)粒的EHA105菌株,擴(kuò)大培養(yǎng)至OD600為05,4"000"r/min離心5"min收集菌體,使用重懸液(10"mmol/L"MES"pH"56、10"mmol/L"MgCl2、02"mmol/L"Acetosyringone)重懸菌體至OD600為10,與p19菌體按1∶1混合均勻,室溫靜置2"h后注射6~8周本氏煙葉片,在28℃,光周期L∥D=16"h∥8"h條件下培養(yǎng)2"d后利用Leica激光共聚焦顯微鏡TCS"SP8在激發(fā)光488"nm和吸收光500~550"nm條件下觀察熒光信號。
1.7"轉(zhuǎn)基因毛根GUS染色
利用GUS報告基因和發(fā)根農(nóng)桿菌K599介導(dǎo)的大豆毛根轉(zhuǎn)化系統(tǒng)分析GmMYB15轉(zhuǎn)錄模式[26]。使用GmMYB15"2"kb啟動子介導(dǎo)GUS報告基因在感病大豆‘W82’和抗病大豆‘PI548402’毛根中表達(dá),接種孢囊線蟲至轉(zhuǎn)基因陽性毛根5"d和8"d后,將毛根置于六孔板中,加入GUS染色液浸沒根組織,置于真空泵中真空處理10"min后37℃靜置12"h,經(jīng)70%乙醇脫色后使用Olympus體視顯微鏡SZX16觀察并拍照。
1.8"酵母雙雜交篩選互作蛋白
1.8.1"轉(zhuǎn)化酵母感受態(tài)細(xì)胞
挑取AH109菌株單克隆于5"mL"YPDA液體培養(yǎng)基,30℃,200"r/min培養(yǎng)12"h,加入45"mL"1×YPDA液體培養(yǎng)基培養(yǎng)2~3"h至OD600為07~08,3"000"r/min離心5"min收集菌體,用50"mL"1×TE緩沖液清洗1次后,用1"mL"1×TE/LiAC"(ddH2O"800"μL、100"μL"10×TE、100"μL"10×LiAC)重懸備用;取500"ng重組質(zhì)粒pGBKT7GmMYB15、2"μL變性鮭魚精DNA、20"μL酵母感受態(tài)細(xì)胞于EP管中,加120"μL"PEGTELiAC"(50%"PEG4000"800"μL、10×TE"100"μL、10×LiAC"100"μL,現(xiàn)配現(xiàn)用),混勻后30℃,200"r/min孵育30"min,加入14"μL"DMSO,溫和混勻后42℃水浴15"min,期間顛倒混勻3次,冰上孵育2"min后3"000"r/min離心1"min收集菌體,用無菌ddH2O重懸菌體,涂布于SD/Trp平板,28℃培養(yǎng)4"d,挑取3個單克隆擴(kuò)大培養(yǎng),保存菌株備用。
1.8.2"cDNA文庫篩選
活化保存的pGBKT7GmMYB15酵母菌株,挑取單克隆于5"mL"SD/Trp液體培養(yǎng)基,30℃,200"r/min培養(yǎng)16"h,加入45"mL"1×YPDA液體培養(yǎng)基培養(yǎng)至OD600為07~08,3"000"r/min室溫離心5"min收集菌體,用5"mL"SD/Trp液體培養(yǎng)基重懸菌體,加入1"mL本實(shí)驗(yàn)室保存的大豆孢囊線蟲侵染大豆根部后的cDNA文庫,輕輕混勻,加入45"mL"2×YPDA(含50"μg/L氯霉素),30℃"30"r/min培養(yǎng)18~24"h,1"000"r/min離心10"min收集菌體,使用1"mL"1×YPDA(含50"μg/L氯霉素)清洗2次后用10"mL"05×YPDA(含50"μg/L氯霉素)重懸菌體,取200~300"μL重懸液均勻涂布于40~50個SD/TrpLeuHis"(TDO)固體培養(yǎng)板。此外,取100"μL重懸液按1/100、1/1"000、1/10"000稀釋后分別涂布SD/Leu、SD/Trp和SD/TrpLeu(DDO)平板,30℃培養(yǎng)4"d統(tǒng)計(jì)菌落數(shù),計(jì)算Mating效率;挑取SD/TrpLeuHis平板上的單克隆于SD/LeuTrpHisAde(QDO)和QDO/XGal固體培養(yǎng)基進(jìn)行復(fù)篩,挑選QDO/XGal上正常生長且變藍(lán)的單克隆進(jìn)行菌落PCR擴(kuò)增,利用T7通用引物對PCR產(chǎn)物進(jìn)行測序,通過Phytozome(https:∥phytozomenext.jgi.doe.gov/)進(jìn)行比對確定候選互作蛋白序列信息。
2"結(jié)果與分析
2.1"孢囊線蟲侵染誘導(dǎo)GmMYB15轉(zhuǎn)錄
分析本實(shí)驗(yàn)室前期大豆孢囊線蟲侵染大豆根部的RNAseq數(shù)據(jù)發(fā)現(xiàn)GmMYB15在抗病大豆品種‘PI88788’和感病大豆品種‘W82’中均受大豆孢囊線蟲侵染誘導(dǎo)(圖1a)。接種大豆孢囊線蟲至感病大豆品種‘W82’、抗病大豆品種‘PI88788’和‘PI548402’根部,3"d和5"d后取根部組織分析GmMYB15轉(zhuǎn)錄水平,結(jié)果顯示GmMYB15在大豆孢囊線蟲侵染3"d和5"d轉(zhuǎn)錄水平均顯著上調(diào)(圖1b)。利用大豆毛根轉(zhuǎn)化系統(tǒng)將含GmMYB15"2"kb啟動子與GUS報告基因的重組載體轉(zhuǎn)化到大豆毛根中,然后接種大豆孢囊線蟲分析GmMYB15表達(dá)
模式,發(fā)現(xiàn)GUS報告基因在線蟲取食位點(diǎn)特異性表達(dá)(圖1c)。上述結(jié)果表明GmMYB15在轉(zhuǎn)錄水平受大豆孢囊線蟲侵染誘導(dǎo),參與大豆與大豆孢囊線蟲互作。
2.2"GmMYB15定位細(xì)胞質(zhì)和細(xì)胞核
利用在線工具SeqNLS(http:∥mleg.cse.sc.edu/seqNLS/)和NLStradamus"(http:∥www.moseslab.csb.utoronto.ca/NLStradamus/)對GmMYB15進(jìn)行定位預(yù)測,發(fā)現(xiàn)該蛋白沒有經(jīng)典的核定位信號。為進(jìn)一步明確GmMYB15在植物細(xì)胞中的亞細(xì)胞定位,將含有融合表達(dá)載體pGWB5GmMYB15GFP的EHA105菌株注射本氏煙幼嫩葉片,表達(dá)48"h后利用激光共聚焦顯微鏡觀察熒光信號在葉表皮細(xì)胞中的分布,發(fā)現(xiàn)GmMYB15GFP在煙草葉片細(xì)胞核和細(xì)胞質(zhì)中均表達(dá)(圖2)。
2.3"GmMYB15正調(diào)控大豆對大豆孢囊線蟲的抗性
為評價GmMYB15在大豆抗大豆孢囊線蟲中的作用,利用大豆毛根轉(zhuǎn)化系統(tǒng)過表達(dá)GmMYB15,接種大豆孢囊線蟲進(jìn)行抗線蟲表型分析。RTqPCR結(jié)果顯示,大豆毛根中GmMYB15轉(zhuǎn)錄水平顯著升高(圖3a);表型分析發(fā)現(xiàn),與對照組相比,OEGmMYB15根部孢囊數(shù)量顯著減少(圖3b)。
選取300"bp"GmMYB15保守區(qū)域,構(gòu)建RNAi載體分析其表達(dá)水平,并進(jìn)行抗線蟲表型分析,發(fā)現(xiàn)RNAiGmMYB15毛根中GmMYB15轉(zhuǎn)錄水平與對照相比顯著降低,根部孢囊數(shù)量顯著增加(圖3c,d);上述結(jié)果表明,GmMYB15正調(diào)控大豆對孢囊線蟲的抗性。
2.4"GmMYB15互作蛋白篩選
為進(jìn)一步探究GmMYB15調(diào)控大豆線蟲抗性的作用機(jī)制,利用酵母雙雜交系統(tǒng)篩選GmMYB15互作蛋白,將BDGmMYB15和pGADT7空載體(AD載體)共同轉(zhuǎn)化AH109菌株,發(fā)現(xiàn)其在DDO平板上正常生長,在TDO、QDO和LacZ平板上生長受到抑制,表明GmMYB15不具有細(xì)胞毒性且無自激活活性(圖4)。以BDGmMYB15為誘餌蛋白篩選孢囊線蟲侵染的大豆根部cDNA文庫,該試驗(yàn)進(jìn)行3次重復(fù),且每次篩選效率均大于2%;共篩選到95個候選互作蛋白,進(jìn)一步利用酵母雙雜交試驗(yàn)進(jìn)行驗(yàn)證發(fā)現(xiàn)GmMYB15與咖啡酰輔酶A氧甲基轉(zhuǎn)移酶(CCoAOMT)、肉桂酸羥化酶(C4H)、肉桂酰輔酶A還原酶(CCR)、WD40和活化的蛋白激酶C受體1"(RACK)互作。
3"結(jié)論與討論
大豆孢囊線蟲作為專性定居型內(nèi)寄生線蟲,在維管束附近誘導(dǎo)形成合胞體。合胞體細(xì)胞質(zhì)稠密,代謝高度活躍以便線蟲吸取營養(yǎng)。合胞體的建立和維持對于線蟲的成功寄生至關(guān)重要,線蟲取食細(xì)胞或鄰近細(xì)胞的壞死反應(yīng)可導(dǎo)致取食細(xì)胞的瓦解,從而賦予植物線蟲抗性[2829]。在與植物寄生線蟲長期互作中,植物演化出一套復(fù)雜精密的先天免疫系統(tǒng)識別線蟲,抵御線蟲侵染與寄生。通過生物化學(xué)與遺傳學(xué)手段探索植物抗線蟲免疫反應(yīng)調(diào)控,可為作物抗線蟲分子育種提供理論基礎(chǔ)。本研究基于轉(zhuǎn)錄組數(shù)據(jù)和生化試驗(yàn)發(fā)現(xiàn),R2R3MYB轉(zhuǎn)錄因子GmMYB15受大豆孢囊線蟲侵染誘導(dǎo),表型分析發(fā)現(xiàn)該基因正調(diào)控大豆線蟲抗性,通過互作蛋白篩選初步發(fā)現(xiàn)其與多種蛋白互作,為后續(xù)深入開展GmMYB15調(diào)控大豆線蟲抗性機(jī)制研究奠定基礎(chǔ)。
R2R3MYB轉(zhuǎn)錄因子作為植物最大的MYB轉(zhuǎn)錄因子亞家族,其N端為保守的DNA結(jié)合結(jié)構(gòu)域,C端為轉(zhuǎn)錄調(diào)控域,二者共同決定R2R3MYB功能多樣性。諸多R2R3MYB的R3重復(fù)序列中具有與bHLH轉(zhuǎn)錄因子相互作用的基序(D/E)Lx2(R/K)x3Lx6Lx3R,因此該類轉(zhuǎn)錄因子可與bHLH轉(zhuǎn)錄因子及WD結(jié)構(gòu)域蛋白互作形成MYBbHLHWDR蛋白復(fù)合體(MBW復(fù)合體)[30]。如擬南芥AtMYB4及其同源蛋白(AtMYB7、AtMYB32)與bHLH蛋白TT8"(TRANSPARENT"TESTA"8)、GL3"(GLABRA"3)和EGL3"(ENHANCER"OF"GLABRA"3)相互作用抑制花青素合成,且AtMYB4通過抑制ADT6轉(zhuǎn)錄,抑制類黃酮的生物合成[31]。轉(zhuǎn)錄因子GL3、EGL3、MYB75及GLABRA1與JAZ"(JASMONATE"ZIMdomain"proteins)互作,抑制JA介導(dǎo)的花青素積累和毛狀體形成[32]。GmMYB15互作蛋白的篩選發(fā)現(xiàn),其與WD40蛋白互作,暗示GmMYB15可能參與MBW復(fù)合體形成,然而本研究未篩選到與GmMYB15互作的bHLH轉(zhuǎn)錄因子,后續(xù)仍需開展試驗(yàn)挖掘與GmMYB15互作的bHLH轉(zhuǎn)錄因子,探究其形成MBW復(fù)合體調(diào)控大豆線蟲抗性機(jī)制。
R2R3MYB轉(zhuǎn)錄因子廣泛參與調(diào)控植物生長發(fā)育和脅迫響應(yīng)。如AtMYB59調(diào)節(jié)擬南芥根生長發(fā)育[4];野草莓FveMYB117a和擬南芥AtMYB109分別調(diào)控腋芽和花粉管生長[3,6];水稻MYB蛋白MOF1影響小穗分生組織和護(hù)穎發(fā)育[5]。煙草NtMYB184結(jié)合GGTAGGTA和GTTAGGTA基序,抑制黃酮合成基因表達(dá),降低煙草黃酮含量[21]。過表達(dá)大豆GmMYBJ1和小麥TaMYBsm1使植物高度抗干旱[3334];玉米ZmMYB31轉(zhuǎn)錄激活CBF基因,提高植株低溫抗性[13];擬南芥AtMYB4及其在水稻中的同源基因OsMYB102和OsMYB108分別抑制水稻和擬南芥木質(zhì)素合成,負(fù)調(diào)控白葉枯病病原菌Xanthomonas"oryzae"pv.oryzae侵染[35]。雖然目前該類轉(zhuǎn)錄因子已被廣泛報道參與調(diào)控植物多種生命過程,但是其在植物與線蟲互作中的功能研究仍然較少。本研究雖然明確GmMYB15轉(zhuǎn)錄水平受孢囊線蟲侵染誘導(dǎo),過表達(dá)GmMYB15增強(qiáng)大豆線蟲抗性,但是其調(diào)控大豆線蟲抗性的分子機(jī)制和生物學(xué)意義仍需深入探究。
參考文獻(xiàn)
[1]"練云,"王金社,"李海朝,"等."黃淮大豆主產(chǎn)區(qū)大豆孢囊線蟲生理小種分布調(diào)查[J]."作物學(xué)報,"2016,"42(10):"14791486.
[2]"PENG"Deliang,"JIANG"Ru,"PENG"Huan,"et"al."Soybean"cyst"nematodes:"a"destructive"threat"to"soybean"production"in"China"[J/OL]."Phytopathology"Research,"2021,"3:"19."DOI:"101186/s4248302100095w.
[3]"HAN"Yafan,"QU"Minghao,"LIU"Zhongchi,"et"al."Transcription"factor"FveMYB117a"inhibits"axillary"bud"outgrowth"by"regulating"cytokinin"homeostasis"in"woodland"strawberry"[J]."Plant"Cell,"2024,"36(6):"24272446.
[4]"MU"Ruiling,"CAO"Yangrong,"LIU"Yunfeng,"et"al."An"R2R3type"transcription"factor"gene"AtMYB59"regulates"root"growth"and"cell"cycle"progression"in"Arabidopsis"[J]."Cell"Research,nbsp;2009,"19(11):"12911304.
[5]"REN"Deyong,"RAO"Yuchun,"YU"Haiping,"et"al."MORE"FLORET1"encodes"a"MYB"transcription"factor"that"regulates"spikelet"development"in"rice"[J]."Plant"Physiology,"2020,"84(1):"251265.
[6]"SO"W"M,"HUQUE"A"K"M,"SHIN"H"Y,"et"al."AtMYB109"negatively"regulates"stomatal"closure"under"osmotic"stress"in"Arabidopsis"thaliana"[J/OL]."Journal"of"Plant"Physiology,"2020,"255:"153292."DOI:"101016/j.jplph2020153292.
[7]"WUYTS"N,"LOGNAY"G,"SWENNEN"R,"et"al."Nematode"infection"and"reproduction"in"transgenic"and"mutant"Arabidopsis"and"tobacco"with"an"altered"phenylpropanoid"metabolism"[J]."Journal"of"Experimental"Botany,"2006,"57(11):"28252835.
[8]"ZHANG"Yali,"ZHANG"Chunling,"WANG"Guiluan,"et"al."The"R2R3"MYB"transcription"factor"MdMYB30"modulates"plant"resistance"against"pathogens"by"regulating"cuticular"wax"biosynthesis"[J/OL]."BMC"Plant"Biology,"2019,"19(1):"362."DOI:"101186/s1287001919184.
[9]"YUAN"Yujin,"XU"Xin,"LUO"Yingping,"et"al."R2R3"MYBdependent"auxin"signalling"regulates"trichome"formation,"and"increased"trichome"density"confers"spider"mite"tolerance"on"tomato"[J]."Plant"Biotechnology"Journal,"2021,"19(1):"138152.
[10]LIU"Tingli,"CHEN"Tianzi,"KAN"Jialiang,"et"al."The"GhMYB36"transcription"factor"confers"resistance"to"biotic"and"abiotic"stress"by"enhancing"PR1"gene"expression"in"plants"[J]."Plant"Biotechnology"Journal,"2022,"20(4):"722735.
[11]HU"Zongwei,"ZHONG"Xiao,"ZHANG"Haoran,"et"al."GhMYB18"confers"Aphisnbsp;gossypii"Glover"resistance"through"regulating"the"synthesis"of"salicylic"acid"and"flavonoids"in"cotton"plants"[J]."Plant"Cell"Reports,"2023,"42(2):"355369.
[12]DAI"Xiaoyan,"WANG"Yuanyuan,"YANG"An,"et"al."OsMYB2P1,"an"R2R3"MYB"transcription"factor,"is"involved"in"the"regulation"of"phosphatestarvation"responses"and"root"architecture"in"rice"[J]."Plant"Physiology,"2012,"159(1):"169183.
[13]LI"Meng,"LIN"Lin,"ZHANG"Yuanhu,"et"al."ZmMYB31,"a"R2R3MYB"transcription"factor"in"maize,"positively"regulates"the"expression"of"CBF"genes"and"enhances"resistance"to"chilling"and"oxidative"stress"[J]."Molecular"Biology"Reports,"2019,"46(4):"39373944.
[14]WU"Yun,"WEN"Jing,"XIA"Yiping,"et"al."Evolution"and"functional"diversification"of"R2R3MYB"transcription"factors"in"plants"[J/OL]."Horticulture"Research,"2022,"9:"uhac058."DOI:"101093/hr/uhac058.
[15]JAHAN"M"A,"HARRIS"B,"LOWERY"M,"et"al."Glyceollin"transcription"factor"GmMYB29A2"regulates"soybean"resistance"to"Phytophthora"sojae"[J]."Plant"Physiology,"2020,"183(2):"530546.
[16]HE"Jun,"LIU"Yuqiang,"YUAN"Dingyang,"et"al."An"R2R3"MYB"transcription"factor"confers"brown"planthopper"resistance"by"regulating"the"phenylalanine"ammonialyase"pathway"in"rice"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2020,"117(1):"271277.
[17]CAO"Wenlei,"CHU"Ruizhen,"ZHANG"Ying,"et"al."OsJAMyb,"a"R2R3type"MYB"transcription"factor,"enhanced"blast"resistance"in"transgenic"rice"[J]."Physiological"and"Molecular"Plant"Pathology,"2015,"154160.
[18]HU"Guang,"GE"Xiaoyang,"WANG"Zhian,"et"al."The"cotton"MYB33"gene"is"a"hub"gene"regulating"the"tradeoff"between"plant"growth"and"defense"in"Verticillium"dahliae"infection"[J]."Journal"of"Advanced"Research,"2023,"61:"117.
[19]WISNIEWSKA"A,"WOJSZKO"K,"ROZANSKA"E,"et"al."Arabidopsis"thaliana"Myb59"gene"is"involved"in"the"response"to"Heterodera"schachtii"infestation,"and"its"overexpression"disturbs"regular"development"of"nematodeinduced"syncytia"[J/OL]."International"Journal"of"Molecular"Sciences,"2021,"22(12):"6450."DOI:"103390/ijms22126450.
[20]WISNIEWSKA"A,"WOJSZKO"K,"ROZANSKA"E,"et"al."Arabidopsis"thaliana"AtHRS1"gene"is"involved"in"the"response"to"Heterodera"schachtii"infection"and"its"overexpression"hampers"development"of"syncytia"and"involves"a"jasmonic"aciddependent"mechanism"[J/OL]."Journal"of"Plant"Physiology,"2022,"272:"153680."DOI:"101016/j.jplph2022153680.
[21]SONG"Zhongbang,"ZHAO"Lu,"MA"Wenna,"et"al."Ethylene"inhibits"ABAinduced"stomatal"closure"via"regulating"NtMYB184mediated"flavonol"biosynthesis"in"tobacco"[J]."Journal"of"Experimental"Botany,"2023,"74(21):"67356748.
[22]JIANG"Leiyu,"YUE"Maolan,"LIU"Yongqiang,"et"al."A"novel"R2R3MYB"transcription"factor"FaMYB5"positively"regulates"anthocyanin"and"proanthocyanidin"biosynthesis"in"cultivated"strawberries"(Fragaria"×ananassa)"[J]."Plant"Biotechnology"Journal,"2023,"21(6):"11401158.
[23]WANG"Lijun,"LU"Wanxiang,"RAN"Lingyu,"et"al."R2R3MYB"transcription"factor"MYB6"promotes"anthocyanin"and"proanthocyanidin"biosynthesis"but"inhibits"secondary"cell"wall"formation"in"Populus"tomentosa"[J]."Plant"Journal,"2019,"99(4):"733751.
[24]NAIK"J,"RAJPUT"R,"PUCKER"B,"et"al."The"R2R3MYB"transcription"factor"MtMYB134"orchestrates"flavonol"biosynthesis"in"Medicago"truncatula"[J]."Plant"Molecular"Biology,"2021,"106(2):"157172.
[25]SAXENA"S,"PAL"L,"NAIK"J,"et"al.nbsp;The"R2R3MYBSG7"transcription"factor"CaMYB39"orchestrates"surface"phenylpropanoid"metabolism"and"pathogen"resistance"in"chickpea"[J]."New"Phytologist,"2023,"238(2):"798816.
[26]ZHANG"Lei,"ZENG"Qian,"ZHU"Qun,"et"al."Essential"roles"of"cupredoxin"family"proteins"in"soybean"cyst"nematode"resistance"[J]."Phytopathology,"2022,"112(7):"15451558.
[27]ZHANG"Lei,"ZHU"Qun,"TAN"Yuanhua,"et"al."Mitogenactivated"protein"kinases"MPK3"and"MPK6"phosphorylate"receptorlike"cytoplasmic"kinase"CDL1"to"regulate"soybean"basal"immunity"[J]."The"Plant"Cell,"2024,"36(4):"963986.
[28]KANDOTH"P"K,"MITCHUM"M"G."War"of"the"worms:"how"plants"fight"underground"attacks"[J]."Current"Opinion"in"Plant"Biology,"2013,"16(4):"457463.
[29]MITCHUM"M"G."Soybean"resistance"to"the"soybean"cyst"nematode"Heterodera"glycines:"an"update"[J]."Phytopathology,"2016,"106(12):"14441450.
[30]MA"Dawei,"CONSTABEL"C"P."MYB"repressors"as"regulators"of"phenylpropanoid"metabolism"in"plants"[J]."Trends"in"Plant"Science,"2019,"24(3):"275289.
[31]WANG"Xiaochen,"WU"Jie,"GUAN"Mengling,"et"al."Arabidopsis"MYB4"plays"dual"roles"in"flavonoid"biosynthesis"[J]."Plant"Journal,"2020,"101(3):"637652.
[32]QI"Tiancong,"SONG"Susheng,"REN"Qingcuo,"et"al."The"JasmonateZIMdomain"proteins"interact"with"the"WDrepeat/bHLH/MYB"complexes"to"regulate"jasmonatemediated"anthocyanin"accumulation"and"trichome"initiation"in"Arabidopsis"thaliana"[J]."The"Plant"Cell,"2011,"23(5):"17951814.
[33]SU"Liantai,"LI"Jingwen,"LIU"Dequan,"et"al."A"novel"MYB"transcription"factor,"GmMYBJ1,"from"soybean"confers"drought"and"cold"tolerance"in"Arabidopsis"thaliana"[J]."Gene,"2014,"538(1):"4655.
[34]LI"Mengjun,"QIAO"Yu,"LI"Yaqing,"et"al."A"R2R3MYB"transcription"factor"gene"in"common"wheat"(namely"TaMYBsm1)"involved"in"enhancement"of"drought"tolerance"in"transgenic"Arabidopsis"[J]."Journal"of"Plant"Research,"2016,"129(6):"10971107.
[35]LIN"Hui,"WANG"Muyang,"CHEN"Ying,"et"al."An"MKPMAPK"protein"phosphorylation"cascade"controls"vascular"immunity"in"plants"[J/OL]."Science"Advances,"2022,"8(10):"eabg8723."DOI:"101126/sciadv.abg8723.
(責(zé)任編輯:楊明麗)