摘要
表觀遺傳調(diào)控是指在植物生長發(fā)育以及響應(yīng)環(huán)境脅迫過程中,在不改變基因序列情況下發(fā)生的對基因表達的可遺傳調(diào)控,主要包括DNA甲基化、非編碼RNAs和組蛋白修飾。越來越多的證據(jù)表明,表觀遺傳調(diào)控在植物與線蟲互作中發(fā)揮重要作用。本文概述了全基因組DNA甲基化調(diào)控植物應(yīng)答線蟲脅迫的研究進展,綜述了非編碼RNAs在植物應(yīng)答線蟲侵染中的功能,討論了線蟲效應(yīng)蛋白在植物表觀基因組變化中的作用,以及線蟲如何誘導(dǎo)植物甲基化組發(fā)生變化,并對未來植物與線蟲互作中的表觀遺傳調(diào)控方面的研究課題進行了展望。這些結(jié)果為闡明植物與線蟲互作的表觀遺傳學(xué)機制奠定了基礎(chǔ),對于植物線蟲防控策略的制定具有重要的借鑒價值。
關(guān)鍵詞
表觀遺傳調(diào)控;"線蟲脅迫;"甲基化;"非編碼RNAs;"組蛋白
中圖分類號:
S"43245
文獻標識碼:"A
DOI:"10.16688/j.zwbh.2024250
Research"progress"on"epigenetic"regulation"in"plants’"response"to"nematode"stress
YE"Deyou1*,"QI"Yonghong2
(1."Institute"of"Vegetables,"Gansu"Academy"of"Agricultural"Sciences,"Lanzhou"730070,"China;"
2."Institute"of"Plant"Protection,"Gansu"Academy"of"Agricultural"Sciences,"Lanzhou"730070,"China)
Abstract
Epigenetic"regulation"refers"to"heritable"regulation"of"gene"expression"that"occurs"during"plant"growth,"development,"and"response"to"environmental"stress"without"altering"the"gene"sequence."It"mainly"includes"DNA"methylation,"noncoding"RNAs,"and"histone"modifications."More"and"more"evidences"suggest"that"epigenetic"regulation"play"a"crucial"role"in"plantnematode"interactions."This"paper"provides"an"overview"of"research"progress"on"the"regulation"of"plant"responses"to"nematode"stress"through"whole"genome"DNA"methylation."It"also"reviews"advances"in"the"functions"of"noncoding"RNAsnbsp;in"plant"responses"to"nematode"infection."Moreover,"the"role"of"nematode"effector"proteins"in"triggering"epigenome"changes"and"how"nematodes"induce"changes"in"the"plant"methylome"are"discussed"in"the"review."The"paper"concludes"with"prospects"for"the"future"research"topics"on"epigenetic"regulation"in"plantnematode"interactions."These"findings"lay"a"foundation"for"elucidating"the"epigenetic"mechanisms"underlying"plantnematode"interactions"and"provide"valuable"insights"for"developing"strategies"for"plant"nematode"prevention"and"control.
Key"words
epigenetic"regulation;"nematode"stress;"methylation;"noncoding"RNAs;"histone
根結(jié)線蟲Meloidogyne"spp.、球孢囊線蟲Globodera"spp.和孢囊線蟲Heterodera"spp.是最為重要的植物寄生線蟲,在全球范圍內(nèi)廣泛分布,對農(nóng)作物生產(chǎn)構(gòu)成嚴重威脅[1]。線蟲侵入植物根系后通過形成取食位點與寄主建立寄生關(guān)系,線蟲取食位點的形成通過線蟲效應(yīng)蛋白介導(dǎo),效應(yīng)蛋白在線蟲食道腺細胞中特異表達,并通過線蟲口針注入植物根細胞中,誘導(dǎo)根細胞分化形成取食位點。根結(jié)線蟲與孢囊線蟲的取食位點不同,前者稱為巨型細胞,而后者則為合胞體,反映了不同線蟲屬間的進化差異。巨型細胞和合胞體對線蟲取食、發(fā)育和完成生活史至關(guān)重要[23]。線蟲將效應(yīng)蛋白分泌到取食位點后,通過調(diào)控一些基因表達使寄主的許多細胞過程產(chǎn)生變化[46]。目前尚不完全清楚與取食位點分化和形成相關(guān)的基因表達發(fā)生變化的機制,但現(xiàn)有研究表明,表觀遺傳修飾發(fā)揮重要作用[78]。表觀遺傳是指在不改變DNA序列的情況下基因功能發(fā)生的可遺傳的變化,而表觀遺傳調(diào)控是指在不改變基因序列的情況下通過DNA甲基化、非編碼RNAs和組蛋白修飾等協(xié)同調(diào)控基因表達的可遺傳調(diào)控[7]。植物通過DNA甲基化、非編碼RNAs和組蛋白修飾[913]等表觀遺傳修飾在轉(zhuǎn)錄和轉(zhuǎn)錄后水平調(diào)節(jié)基因表達來響應(yīng)線蟲侵染。近年來,一些有關(guān)調(diào)控因子的研究使人們對植物與線蟲互作的表觀遺傳修飾的復(fù)雜性及重要意義有了更清晰的認識。表觀遺傳修飾是一種動態(tài)的調(diào)控過程,寄主植物利用表觀遺傳修飾
實現(xiàn)對病原侵染高效、快速的細胞響應(yīng)。然而,寄生線蟲可以利用植物的表觀遺傳使寄主植物的基礎(chǔ)性遺傳調(diào)控發(fā)生改變。本文綜述了植物應(yīng)答線蟲脅迫的表觀遺傳調(diào)控研究進展,并對表觀遺傳修飾如何影響植物與線蟲互作進行了討論。
1"植物通過DNA甲基化應(yīng)答線蟲脅迫
DNA甲基化是一種表觀遺傳學(xué)標記,主要發(fā)生在CpG、CpHpG或CpHpH(后文簡稱CG、CHG、CHH)序列的胞嘧啶上[1415]。DNA甲基化主要在DNA甲基轉(zhuǎn)移酶MET1,色甲基化酶CMT3與結(jié)構(gòu)域重排甲基轉(zhuǎn)移酶DRM2的作用下,通過RNA介導(dǎo)的DNA甲基化"(RNAdirected"DNA"methylation,"RdDM)途徑和不依賴RdDM途徑建立和維持[14,"1617]。DRM2主要通過RdDM途徑被引導(dǎo)到CG、CHG或CHH序列背景的DNA位點,使DNA甲基化,非RdDM途徑也可以引導(dǎo)DRM2建立DNA甲基化,但水平相對較低[1819]。DNA甲基化在植物響應(yīng)生物脅迫過程中發(fā)揮調(diào)控作用。Rambani等[20]對大豆孢囊線蟲Heterodera"glycines"(soybean"cyst"nematode,"SCN)侵染的大豆根系DNA進行測序獲得了DNA甲基化圖譜,該圖譜揭示了大豆與SCN親和性互作中根系甲基化組的主要特征,SCN侵染改變了根系DNA甲基化特征,低甲基化明顯多于高甲基化,其他植物病原親和性互作研究也證實,DNA去甲基化受病原誘導(dǎo)而激活[9,"2123]。Rambani等[20]還發(fā)現(xiàn)6%的差異甲基化區(qū)域在CG、CHG和CHH"3種序列背景下均可被甲基化。這說明在CG、CHG和CHH序列中,DNA甲基化通常獨立于其他序列發(fā)生,但靶標區(qū)域的胞嘧啶甲基化也有可能發(fā)生,且在SCN侵染過程中具有生物學(xué)意義。與甲基化發(fā)生前的原基因相比,DNA差異甲基化優(yōu)先發(fā)生在新復(fù)制基因中。因此,SCN誘導(dǎo)的差異甲基化有助于新復(fù)制基因的劑量平衡,這些基因的功能與植物防衛(wèi)反應(yīng)密切相關(guān)。SCN誘導(dǎo)的差異甲基化影響許多基因的表達,這些基因在合胞體中差異表達且與影響合胞體結(jié)構(gòu)和線蟲發(fā)病機制的生物過程有關(guān),包括表觀遺傳修飾、信號轉(zhuǎn)導(dǎo)、防衛(wèi)反應(yīng)、細胞壁生物合成與基因調(diào)控等。
DNA甲基化模式與合胞體發(fā)育和維持階段基因表達變化有關(guān)。Hewezi等[11]研究發(fā)現(xiàn),甜菜孢囊線蟲Heterodera"schachtii"(beet"cyst"nematode,"BCN)侵染擬南芥后,2個侵染階段根系DNA甲基化組均發(fā)生顯著改變,并且普遍存在低甲基化,占所有差異甲基化區(qū)域的90%以上。每個侵染階段都伴隨著不同的DNA甲基化模式,這些模式優(yōu)先與蛋白質(zhì)編碼基因和轉(zhuǎn)座子"(transposable"elements,"TEs)的特定區(qū)域相關(guān)聯(lián)。TEs和基因啟動子的高甲基化通常與24"nt的小干擾RNA"(small"interfering"RNA,"siRNA)豐度增加有關(guān),同時受甲基化序列背景和侵染階段的影響。TEs中廣泛的去甲基化在特定的序列背景"(如CG或CHG或CHH)模式下發(fā)生,并與TEs家族相關(guān),這在擬南芥小孢子和花粉細胞中曾有過報道[24]。但是,BCN誘導(dǎo)產(chǎn)生的大量高甲基化區(qū)域與siRNA豐度增加無關(guān)。Lister等[25]發(fā)現(xiàn)DNA甲基化和siRNA積累并非總是相伴發(fā)生,認為DNA甲基化可獨立于siRNA而被誘導(dǎo)。通過差異甲基化基因與差異表達基因以及合胞體中表達變化的基因之間的重疊基因的研究,發(fā)現(xiàn)BCN誘導(dǎo)的蛋白質(zhì)編碼基因中DNA甲基化變異的重要性[11]。因此,通過測定幾種啟動子和基因甲基化的TDNA插入突變體對線蟲的敏感性,可以深入了解合胞體差異甲基化基因在介導(dǎo)植物線蟲互作中的作用。盡管基因啟動子DNA甲基化影響基因轉(zhuǎn)錄,但基因甲基化的確切作用仍存在爭議。線蟲應(yīng)答基因的甲基化,一方面可能與抑制活躍轉(zhuǎn)錄基因的轉(zhuǎn)錄啟動或轉(zhuǎn)座子插入有關(guān)[2627],另一方面有助于提高剪接效率[28]。
TEs甲基化及其與蛋白質(zhì)編碼基因的鄰近程度影響基因表達[29]。對BCN侵染根的甲基化組分析表明,TEs甲基化優(yōu)先在CHH背景下啟動相鄰基因表達時發(fā)揮作用。CHH低甲基化區(qū)域通常發(fā)生在位于靠近基因3"kb內(nèi)的TEs中,BCN誘導(dǎo)的TEs低甲基化與鄰近基因的低表達有關(guān),這種關(guān)系在擬南芥受生物和非生物脅迫時也有過報道[3031]。這些TEs的DNA甲基化缺失可能是激活TEs起源的隱性轉(zhuǎn)錄物,從而干擾相鄰基因的轉(zhuǎn)錄活性,導(dǎo)致表達受限。另一種可能性是在侵染后期,這些TEs的去甲基化激活了線蟲調(diào)控基因,因為DNA甲基化有時候早于轉(zhuǎn)錄變化[11,"31]。Piya等[32]利用擬南芥BCN致病系統(tǒng)中的RNAseq數(shù)據(jù),研究了植物線蟲互作中TEs的轉(zhuǎn)錄活性及其對相鄰基因轉(zhuǎn)錄的影響。在線蟲侵染的根系中鑒定出192個差異表達TEs,大多數(shù)TEs屬于DNA轉(zhuǎn)座子RC/Helitron和MuDR家族。超過70%的差異表達TEs被定位于5"kb的基因范圍內(nèi),其中許多在合胞體中的表達發(fā)生了改變。這些差異表達基因的編碼功能涉及基因轉(zhuǎn)錄控制、初級代謝、植物細胞壁修飾、激素信號和防衛(wèi)反應(yīng)。因此,與其他生物和非生物脅迫相似,孢囊線蟲可以調(diào)控TEs及其鄰近線蟲調(diào)控基因的轉(zhuǎn)錄活性,從而促進合胞體細胞的轉(zhuǎn)錄重編程[3335]。Piya等僅發(fā)現(xiàn)了高表達TEs的表達水平發(fā)生了改變[32],因此還需要更深更高覆蓋度的RNAseq數(shù)據(jù),繪制線蟲侵染后TEs轉(zhuǎn)錄活性的完整圖譜,以及它們參與線蟲取食位點形成的轉(zhuǎn)錄重編程。
siRNAs積累和DNA甲基化重塑介導(dǎo)的表觀遺傳修飾在控制TEs遷移和增殖中發(fā)揮作用。RuizFerrer等[36]對爪哇根結(jié)線蟲Meloidogynenbsp;javanica侵染擬南芥形成的根結(jié)中與TEs相關(guān)的siRNAs進行了差異分析,發(fā)現(xiàn)22"nt和24"nt的siRNA為主要種類,與逆轉(zhuǎn)錄轉(zhuǎn)座子Gypsy和Copia家族有關(guān),這些siRNAs的積累與許多逆轉(zhuǎn)錄轉(zhuǎn)座子轉(zhuǎn)錄水平的顯著降低有關(guān)?;虮磉_定量和突變分析發(fā)現(xiàn),RdDM途徑在抑制根結(jié)中的逆轉(zhuǎn)錄轉(zhuǎn)座子元件時發(fā)揮作用,但這些元件的DNA甲基化圖譜還不清楚。在線蟲侵染引起的全基因組重編程中,需要表觀遺傳修飾來維持基因組的完整性和穩(wěn)定性。近年來對Copia型元件在調(diào)控rhg1a基因介導(dǎo)的SCN抗性中的作用有了新的認識[37]。一些大豆材料rhg1a基因中存在Copia逆轉(zhuǎn)錄轉(zhuǎn)座子,盡管該元件的存在與rhg1a表達之間沒有相關(guān)性,但元件中SCN誘導(dǎo)的表觀遺傳修飾可調(diào)控rhg1a的成熟和剪接變體,逆轉(zhuǎn)座子在線蟲侵染期間較其他類型的TEs更易受到DNA甲基化變化的影響[11]。DNA甲基化和其他表觀遺傳標記可能調(diào)控剪接因子向rhg1a前體mRNA的插入,從而影響PolⅡ延伸率以及成熟mRNA中外顯子的包含與跳躍。
線蟲侵染植物過程中抗線蟲基因可促進甲基化組重編程。Cook等[38]、Liu等[39]發(fā)現(xiàn)了與SCN抗性高度相關(guān)的2個遺傳位點Rhg1和Rhg4,Rhg1位點包含3個基因,Rhg4為僅包含編碼絲氨酸羥甲基轉(zhuǎn)移酶的單基因"(GmSHMT08)。對不同大豆材料Rhg1基因位點的DNA甲基化分析發(fā)現(xiàn),抗病品系"(含有3個Rhg1拷貝)較感病品系"(含有1個Rhg1拷貝)的DNA甲基化程度增加。在CG、CHG、CHH"3種序列背景下,特別是在3個Rhg1編碼基因的上、下游均發(fā)現(xiàn)了高甲基化模式,但這并不能說明SCN侵染后這些高甲基化基因的表達量增加,可能的原因是SCN侵染誘導(dǎo)合胞體細胞中一些基因
(如Rhg1基因的上下游基因)
低甲基化,導(dǎo)致合胞體細胞特異性基因被激活。SHMTs參與一碳代謝促進了DNA甲基化,推測Rhg4可能在SCN侵染引起的大豆根系甲基化組重編程中發(fā)揮作用,通過對GmSHMT08位點的一對近等基因系的全基因組DNA甲基化分析證實了這一推測。為應(yīng)對SCN侵染,感病近等基因系經(jīng)歷了蛋白質(zhì)編碼基因和TEs的整體DNA甲基化水平同步降低,這與功能性缺失的GmSHMT08等位基因相一致,而抗性品系在所有序列背景下甲基化水平增加,Rhg4在DNA甲基化變化中的功能為基于表觀遺傳調(diào)控的作物抗病策略提供了新思路。
2"線蟲脅迫中的植物非編碼RNAs
非編碼RNAs是指不編碼蛋白質(zhì)的RNA,植物非編碼RNAs大小通常為21~24"nt,由雙鏈RNAs"(doublestranded"RNA,"dsRNAs)通過DICER類蛋白的作用產(chǎn)生[4041]。非編碼RNAs分為兩類:21"nt微小RNA"(microRNAs或miRNAs)和21/24"nt表觀遺傳學(xué)活性小RNAs[42]。miRNAs通過與靶基因的堿基配對參與轉(zhuǎn)錄后基因沉默"(posttranscriptional"gene"silencing,"PTGS),導(dǎo)致mRNA降解或翻譯抑制[43];21/24"nt表觀遺傳學(xué)活性小RNAs主要包括siRNA和長鏈非編碼"RNAs"(long"noncoding"RNAs,"lncRNAs),其通過RdDM途徑建立DNA甲基化,參與基因和TEs的轉(zhuǎn)錄后基因沉默[42,"44]。
2.1"miRNAs
線蟲侵染后植物轉(zhuǎn)錄重編程與miRNAs基因有關(guān)。Li等[45]從SCN侵染的大豆樣本中鑒定出60個差異表達的miRNAs,其中40個為應(yīng)答SCN侵染的miRNAs[46],表明miRNAs在植物孢囊線蟲互作中發(fā)揮調(diào)控作用。Cabrera等[47]通過分析爪哇根結(jié)線蟲侵染后早期發(fā)育的根結(jié)中miRNAs,獲得了62個差異表達的miRNAs,其中11個上調(diào)表達,51個下調(diào)表達。miRNAs下調(diào)表達的功能尚不清楚,但有研究認為孢囊線蟲侵染早期miRNAs的趨勢一般為下調(diào)表達[48]。Medina等[49]從南方根結(jié)線蟲侵染擬南芥形成的根結(jié)中鑒定出24個
差異表達的miRNAs,利用啟動子報告子融合驗證了一些miRNAs在根結(jié)中的時空表達模式。Kaur等[50]從根結(jié)線蟲侵染的番茄根系鑒定出miRNAs,大部分miRNAs在植物中高度保守。許多已鑒定的miRNAs均響應(yīng)孢囊線蟲和根結(jié)線蟲侵染,并在侵染后表現(xiàn)出相同或相反的調(diào)控模式,說明兩種線蟲侵染過程具有一定的相似性,同時表明了合胞體和巨型細胞之間基因調(diào)控的巨大差異。
2.1.1"植物應(yīng)答孢囊線蟲脅迫的miRNAs
目前僅有少數(shù)響應(yīng)線蟲侵染的miRNAs完成了功能鑒定,擬南芥miR396是首個功能鑒定較為詳細的miRNA[51]。對擬南芥合胞體中miR396的表達分析發(fā)現(xiàn),miR396在合胞體由形成期向維持期的轉(zhuǎn)換中發(fā)揮重要作用。在這一轉(zhuǎn)變中,miR396下調(diào)表達預(yù)示合胞體形成階段的開始,隨后強烈誘導(dǎo)表達標志著維持階段的開始[51]。在擬南芥中,受miR396轉(zhuǎn)錄后調(diào)控的7種生長調(diào)控轉(zhuǎn)錄因子"(growthregulating"factors,"GRFs)中,只有GRF1和GRF3被證實為合胞體中miR396的靶標。當miR396或其靶基因GRF1和GRF3的表達受到干擾時,合胞體不能正常發(fā)育,導(dǎo)致J2、J3期線蟲發(fā)育受阻,擬南芥對BCN的感病性降低。這些結(jié)果表明,miR396及其靶標GRF的協(xié)同表達對合胞體的分化和發(fā)育至關(guān)重要,并且這個調(diào)控模塊的表達平衡一旦受到干擾,將會阻礙線蟲的成功寄生。miR396及其靶標GRF的協(xié)同表達通過相互反饋環(huán)介導(dǎo),其中miR396和GRF1/GRF3相互調(diào)節(jié)其表達[52]。更重要的是,通過基因表達分析發(fā)現(xiàn),這些轉(zhuǎn)錄因子在建立合胞體轉(zhuǎn)錄組中發(fā)揮關(guān)鍵調(diào)控作用[51]。對GRF調(diào)控基因的深入研究發(fā)現(xiàn),這些轉(zhuǎn)錄調(diào)節(jié)因子可能在協(xié)調(diào)線蟲取食位點的各種發(fā)育事件和寄主防御反應(yīng)間的互作中發(fā)揮重要作用[53],Piya等[54]通過染色質(zhì)免疫共沉淀測序"(ChIPSeq)測定GRF1和GRF3的直接靶標證實存在這種可能性。在1"510個已鑒定的GRF1或GRF3靶標中,有345個是在合胞體中差異表達的基因,這些基因參與細胞分化、發(fā)育和防衛(wèi)反應(yīng)等。因此,BCN通過開啟和關(guān)閉GRF1和GRF3,在合胞體啟動和維持階段重新構(gòu)建miR396參與的防御和發(fā)育途徑。Noon等[55]研究指出,miR396/GRF調(diào)控機制在大豆與SCN互作中是保守的。上述研究說明,擬南芥BCN互作模型系統(tǒng)中的發(fā)現(xiàn)可以轉(zhuǎn)化為經(jīng)濟上重要的系統(tǒng),miR396GRF調(diào)控子組分可作為選育作物抗孢囊線蟲新材料的靶標。
miRNA靶向轉(zhuǎn)錄因子能直接調(diào)控靶基因的表達,因而具有調(diào)節(jié)細胞代謝和生理功能的能力。miR858是擬南芥中為數(shù)不多的靶向多種轉(zhuǎn)錄因子的miRNAs之一。MYB83為線蟲合胞體中miR858靶向的主要MYB轉(zhuǎn)錄因子[56],miR858在合胞體中對MYB83的轉(zhuǎn)錄后抑制僅限于合胞體發(fā)育的早期階段,凸顯了這一調(diào)控系統(tǒng)在線蟲侵染起始與擴展過程中的重要性。利用功能獲得和缺失法調(diào)控miR858和MYB83表達,證實MYB83是線蟲寄生擬南芥中的正調(diào)控因子。通過RNAseq分析發(fā)現(xiàn),MYB83調(diào)控合胞體中1"286個基因,其中471個在其啟動子中含有MYB83順式結(jié)合基序,因而可作為直接靶基因[56]。對MYB83調(diào)控的基因進行分析顯示,這些基因參與了對合胞體發(fā)育和功能至關(guān)重要的細胞過程,包括硫代葡萄糖苷生物合成和防衛(wèi)反應(yīng)、激素信號通路、細胞壁修飾和糖轉(zhuǎn)運。與miR396GRF調(diào)控系統(tǒng)相似,MYB83通過反饋調(diào)控環(huán)正調(diào)控miR858表達,以調(diào)整其自身轉(zhuǎn)錄水平,從而平衡合胞體中下游靶基因的活性。miR396和miR858的功能鑒定揭示了miRNAs及其靶向的轉(zhuǎn)錄因子如何精細調(diào)控彼此表達,為研究線蟲取食位點基因的表達調(diào)控提供了新的視角。
植物線蟲大部分時間與寄主植物直接接觸,需要主動抑制寄主防衛(wèi)反應(yīng)。植物miR827賦予線蟲特異性和永久性地抵御線蟲取食位點防御信號的能力,以促進線蟲侵染及發(fā)育。miR827由單基因編碼并靶向泛素E3連接酶,E3影響氮素抑制適應(yīng)性"(nitrogen"limitation"adaptation,"NLA)。miR827在早期取食細胞內(nèi)以及發(fā)育完全的合胞體中被強烈誘導(dǎo),這與線蟲寄生階段合胞體中NLA的轉(zhuǎn)錄后沉默有關(guān)。功能分析表明,NLA在激活基礎(chǔ)防御反應(yīng)中具有突出作用,與非侵染條件下野生型植物相比,一些PR基因在NLA過表達品系中表達水平顯著增加。通過miR827過表達介導(dǎo)的NLA下調(diào)導(dǎo)致擬南芥對BCN的感病性增加,證明沉默NLA對線蟲成功寄生至關(guān)重要。相反,通過其負調(diào)控子(如miR827)的失活或非降解轉(zhuǎn)錄物的過表達來增加NLA的表達水平,使擬南芥對線蟲的抗性增強。為進一步了解miR827介導(dǎo)的NLA下調(diào)影響寄主對線蟲易感性的機制,使用酵母雙雜交"(Y2H)篩選鑒定了與NLA互作的蛋白底物。在已鑒定的底物中,許多與防御反應(yīng)有關(guān),包括病程相關(guān)蛋白4"(pathogenesis"related"protein"4,"PR4)、thaumatin超家族蛋白(thaumatin"superfamily"protein)、β1,3內(nèi)切葡聚糖酶(beta1,3endoglucanase)、木瓜蛋白酶家族半胱氨酸蛋白酶"(papain"family"cysteine"protease)、絲裂原活化蛋白"(mitogenactivated"protein,"MAP)激酶17和MAP激酶2[57]。miR827NLA調(diào)控系統(tǒng)參與控制植物對硝酸鹽和磷酸鹽缺乏的響應(yīng)[5860],暗示這一調(diào)控系統(tǒng)增加了線蟲取食位點中氮和磷的攝取和利用的可能性。
2.1.2"植物應(yīng)答根結(jié)線蟲脅迫的miRNAs
許多學(xué)者對根結(jié)線蟲誘導(dǎo)的根結(jié)中差異表達的miRNAs的功能進行了研究。Medina等[49]利用過表達和TDNA插入突變技術(shù),
研究了擬南芥與南方根結(jié)線蟲Meloidogyne"incognita親和性互作中4種差異表達miRNAs"(miR159,"miR319,"miR398,"miR408)的作用。發(fā)現(xiàn)只有miR159能改變植物對南方根結(jié)線蟲的易感性,這是由于在巨型細胞及其相鄰細胞中觀察到與成熟miR159分子相對應(yīng)的原位雜交信號,巨型細胞中miR159的高豐度與其靶基因MYB33的表達顯著降低有關(guān)。然而,miR159介導(dǎo)的MYB33在巨型細胞中的表達下調(diào)如何調(diào)控線蟲寄生還不清楚。爪哇根結(jié)線蟲侵染擬南芥形成的根結(jié)中,miR390是表達量最多的miRNAs之一[48]。已知miR390控制TAS3衍生的tasiRNAs的生物合成,TAS3與3種生長素響應(yīng)因子"(ARF3,"ARF4,"ARF5)的轉(zhuǎn)錄物結(jié)合并介導(dǎo)它們降解[61]。miR390及其TAS3靶標在受線蟲在侵染后早期的巨型細胞和根結(jié)過表達,而miR390和TAS3突變體表現(xiàn)為根結(jié)數(shù)目顯著減少。
ARF3表達受TAS3衍生的tasiRNA調(diào)控,
含有ARF3野生株系中的GUS"(β葡萄糖醛酸酶)蛋白在巨型細胞中未被激活,而含有tasiRNA抗性變異株中的GUS蛋白被激活,證實miR390和TAS3對線蟲敏感性的影響歸因于ARF3的表達水平,盡管巨型細胞中這些轉(zhuǎn)錄因子的下游組分尚未獲得鑒定,但這些發(fā)現(xiàn)為miR390/TAS3調(diào)控模塊參與抑制ARF3,以及參與ARF4和ARF5介導(dǎo)的生長素信號傳導(dǎo)在巨型細胞中的作用提供了證據(jù)。
茉莉酸"(jasmonic"acid,"JA)是一種信號分子,在植物與根結(jié)線蟲互作中發(fā)揮關(guān)鍵作用[6263]。miR319為JA響應(yīng)型miRNA,其通過靶標TCP4調(diào)節(jié)植物對南方根結(jié)線蟲的敏感性[64]。miR319過表達增強了植物對線蟲的敏感性,而TCP4過表達降低了植物對線蟲的敏感性。通過對過表達植物內(nèi)源JA水平的定量分析,發(fā)現(xiàn)TCP4過表達番茄植株對根結(jié)線蟲的敏感性降低與JA水平升高有關(guān)[64],這與TCP4在JA生物合成中的作用相一致[65]。miR172是植物中最為保守的miRNA之一,在爪哇根結(jié)線蟲誘導(dǎo)擬南芥、番茄、豌豆等形成的根結(jié)和巨型細胞中miR172被高效激活,在擬南芥爪哇根結(jié)線蟲互作體系中,miR172通過負調(diào)控AP2類靶標TOE1發(fā)揮作用[66]。通過miR172失活和過表達TOE1發(fā)現(xiàn),單株根結(jié)數(shù)目顯著減少,巨型細胞體積明顯減小??梢?,miR172介導(dǎo)的TOE1下調(diào)是巨型細胞和根結(jié)細胞分化所必需的。對TOE1的靶標,開花位點T基因(flowering"locus"T,"FT)的表達分析發(fā)現(xiàn),TOE1的下調(diào)表達有助于減輕其對FT的抑制,從而導(dǎo)致FT在巨型細胞中積累[67]。對FT功能缺失突變等位基因分析發(fā)現(xiàn),F(xiàn)T在根結(jié)和巨型細胞發(fā)育中具有重要作用。盡管TOE1和FT在巨型細胞發(fā)育中的確切功能尚不清楚,但它們可能調(diào)控與開花期類似的發(fā)育和形態(tài)通路。DíazManzano等[66]發(fā)現(xiàn),miRNA172基因家族成員在其啟動子中含有典型的生長素反應(yīng)順式元件,因此在線蟲侵染期受生長素的調(diào)控,這與ARFs對miRNA172的調(diào)控相一致[68],表明miRNA172TOE1FT調(diào)控級聯(lián)由生長素濃度和信號傳導(dǎo)驅(qū)動。
miR390TAS3ARF3和miR319TCP4調(diào)控模塊在根結(jié)線蟲侵染過程中的功能,以及miR172響應(yīng)生長素處理的相關(guān)性,暗示這些miRNAs可能在介導(dǎo)巨型細胞中生長素和JA信號通路間互作發(fā)揮作用,這一推測有待驗證。此外,南方根結(jié)線蟲侵染角瓜后,miRNAs是根結(jié)中線蟲誘導(dǎo)最豐富的sRNAs之一。Ye等[69]通過sRNAs測序獲得了565條角瓜miRNAs,鑒定出10條與根結(jié)線蟲抗性相關(guān)的角瓜miRNAs,其中miR156、miR390、miR159、miR827分別負調(diào)控其靶基因SBP、ARF3、MYB104、PTI的表達。此外,研究還發(fā)現(xiàn)miR396在根結(jié)中表達下調(diào)且幅度較大,克隆獲得角瓜miR396a及靶基因GRF,證實miR396a負調(diào)控GRF[70]。
2.2"植物中的其他小RNAs
對小RNAs產(chǎn)生受損的擬南芥突變體分析發(fā)現(xiàn),小RNAs在孢囊線蟲寄生過程中發(fā)揮調(diào)控作用。擬南芥RNA聚合酶"(rdr)和DICER類"(dcl)突變體一般表現(xiàn)為對BCN的感病性降低[45],這些突變體在響應(yīng)爪哇根結(jié)線蟲侵染時有相似的反應(yīng)[71]。此外,擬南芥ARGONAUTE突變體ago125和ago21對南方根結(jié)線蟲的感病性也降低[49],表明小RNAs的產(chǎn)生受損干擾了線蟲寄生。Medina等[72]從南方根結(jié)線蟲侵染擬南芥形成的根結(jié)中分離出小RNAs,經(jīng)測序鑒定出大量siRNA,這些siRNA在線蟲侵染后7、14"d的根結(jié)中和健康根組織間差異表達,這些siRNA分為20~22"nt和23~24"nt兩類,并被定位到蛋白質(zhì)編碼基因。異染色質(zhì)23~24"nt的siRNA家族最豐富,在基因啟動子中積累較多,而在基因中積累較少。在南方根結(jié)線蟲侵染后7、14"d,大部分siRNA在根結(jié)中的豐度高于健康根系,表明線蟲侵染激活了siRNA的產(chǎn)生[72]。將異染色質(zhì)siRNA豐度與相關(guān)基因的表達水平進行關(guān)聯(lián)性分析顯示,這些siRNA主要通過RdDM途徑調(diào)控根結(jié)基因表達。與23~24"nt的siRNA相反,20~22"nt的siRNA主要存在于基因中,其在根結(jié)中的豐度低于健康根系。Cabrera等[47]對爪哇根結(jié)線蟲侵染擬南芥根系3"d后的根結(jié)中兩類siRNAs分布進行了檢測,發(fā)現(xiàn)其與南方根結(jié)線蟲
誘導(dǎo)形成的根結(jié)中小RNAs的產(chǎn)生和積累驚人地相似。另一類調(diào)控性非編碼RNAs是lncRNAs"(long"noncoding"RNAs),lncRNAs在許多植物的發(fā)育和脅迫反應(yīng)中發(fā)揮重要的調(diào)節(jié)功能。這些lncRNAs可作為順式調(diào)控元件、小RNAs前體、蛋白質(zhì)復(fù)合物支架、RdDM途徑介質(zhì)以及miRNAs靶標發(fā)揮作用[7375],然而,響應(yīng)線蟲侵染的lncRNAs相關(guān)信息還較少。Li等[76]在南方根結(jié)線蟲侵染的煙草中鑒定獲得565個lncRNAs,這些差異表達lncRNAs的調(diào)控功能目前還不清楚。
3"組蛋白修飾參與植物與線蟲互作
基因表達的表觀遺傳調(diào)控還可以通過組蛋白修飾實現(xiàn)。組蛋白修飾是組蛋白N末端氨基酸殘基上發(fā)生的甲基化、乙?;?、磷酸化和泛素化等共價修飾,是表觀遺傳調(diào)控的重要方式和途徑[44]。組蛋白是多種生化反應(yīng)的基礎(chǔ)材料,特別是甲基化和乙酰化,它們在賴氨酸"(K)殘基處重復(fù)發(fā)生,導(dǎo)致染色質(zhì)結(jié)構(gòu)和基因轉(zhuǎn)錄發(fā)生變化[44]。組蛋白H3和H4乙?;徽J為是常染色質(zhì)標記,主要與基因轉(zhuǎn)錄有關(guān),而H3K9和H3K27甲基化則被認為是異染色質(zhì)標記,常與基因沉默有關(guān)[77]。與胞嘧啶甲基化類似,這些標記可通過組蛋白去甲基化酶和去乙?;傅募せ畋恢鲃忧宄?。組蛋白修飾酶之間的互作決定了組蛋白甲基化/乙酰化狀態(tài),從而影響染色質(zhì)對轉(zhuǎn)錄因子的可及性,導(dǎo)致基因激活或抑制[78]。
線蟲產(chǎn)生的一些分泌蛋白,可作為效應(yīng)子調(diào)節(jié)植物免疫從而促進線蟲寄生[4]。高通量測序技術(shù)的發(fā)展以及對效應(yīng)子特異性表達的線蟲食道腺細胞的準確分離[79],使得從線蟲中鑒定出效應(yīng)子成為可能。大部分線蟲效應(yīng)子與表觀遺傳修飾相關(guān)的關(guān)鍵因子具有較高的序列同源性[8083],例如SCN效應(yīng)子GLAND1,它與鏈霉菌Streptomycetes的GCN5相關(guān)N乙酰轉(zhuǎn)移酶"(GNATs)序列同源性較高,GLAND1可能是通過水平基因轉(zhuǎn)移從細菌中獲得的,而且在孢囊線蟲和腎形線蟲Rotylenchulus"reniformis中均存在同源物。GNATs是不同生物系統(tǒng)中的乙酰轉(zhuǎn)移酶,但目前僅有結(jié)核分枝桿菌Mycobacterium"tuberculosis的GNAT效應(yīng)子被報道過[84]。盡管GNATs生物學(xué)功能廣泛,但在線蟲寄生早期HgGLAND1不表達,且HgGLND1并不一定具有GNAT效應(yīng)子的防御抑制功能[83],而線蟲的防御受到抑制是線蟲成功侵染的基礎(chǔ)[8586]。此外,線蟲GNATs具有類似植物GCN5的組蛋白乙酰轉(zhuǎn)移酶活性,可調(diào)節(jié)基因乙?;剑瑢?dǎo)致基因表達變化引起植物感病性。疫霉Phytophthora效應(yīng)子PsAvh23在降低GCN5介導(dǎo)的H3K9乙?;栽鰪姶蠖垢胁⌒灾邪l(fā)揮作用[87],與線蟲寄生過程中GNATs的作用相似。鑒定線蟲GNATs的寄主互作蛋白及靶基因,對于揭示線蟲如何調(diào)控組蛋白乙?;?,進而重編程基因表達并引起致病性具有重要意義。在修飾寄主表觀基因組中具有潛在作用的其他線蟲效應(yīng)子,包括一些與蛔蟲Ascaris"suum組蛋白H4轉(zhuǎn)錄因子具有高度同源性的效應(yīng)子,這些效應(yīng)子激活組蛋白H4基因轉(zhuǎn)錄;組蛋白脫乙酰酶1使核心組蛋白的賴氨酸殘基脫乙?;?8];Set1/Ash2組蛋白甲基轉(zhuǎn)移酶復(fù)合物亞基ASH2負責(zé)組蛋白H3的Lys4甲基化[8990];peregrin優(yōu)先在lys23位點參與組蛋白H3乙酰化[91];組蛋白賴氨酸N甲基轉(zhuǎn)移酶SUV39H2特異性地使組蛋白H3的Lys9三甲基化[9293];
埃及伊蚊Aedes"aegypti的
Pob3亞基具有核小體結(jié)合因子SPN,與染色質(zhì)結(jié)構(gòu)和動力學(xué)有關(guān)[94]。
大部分線蟲效應(yīng)子與公共數(shù)據(jù)庫中已知功能的蛋白質(zhì)沒有序列相似性,但這些效應(yīng)子的功能特征暗示它們在寄主表觀遺傳修飾中發(fā)揮作用。32E03是孢囊線蟲寄生時在背腺細胞中表達的效應(yīng)子,具有功能性雙向核定位信號,與公共數(shù)據(jù)庫中的蛋白質(zhì)序列相似性不高。利用寄主誘導(dǎo)的基因沉默技術(shù)使32E03表達失活導(dǎo)致植物感病性降低,說明32E03效應(yīng)子在孢囊線蟲寄生中發(fā)揮作用。共定位分析和Y2H篩選表明,32E03與擬南芥tuin型組蛋白脫乙酰酶HDT1和組蛋白伴侶FKBP53共定位并產(chǎn)生物理互作[95]。對rRNA表達抑制劑HDT1和FKBP53的功能分析表明,32E03效應(yīng)子在線蟲寄生擬南芥期間具有調(diào)控rRNA轉(zhuǎn)錄活性的作用[9697]。Vijayapalani等[95]采用體內(nèi)表達32E03和體外重組32E03蛋白的方法測定了32E03對組蛋白乙?;降挠绊懀C實32E03導(dǎo)致rDNA染色質(zhì)區(qū)域的組蛋白H3乙?;缴撸哂薪M蛋白脫乙酰酶抑制劑的功能。組蛋白乙?;脑黾映?dǎo)致基因表達增強,在表達32E03的轉(zhuǎn)基因擬南芥中對prerRNA轉(zhuǎn)錄水平定量分析發(fā)現(xiàn),rRNA表達水平在32E03低表達品系中增加,在32E03高表達品系中降低,將rRNA正常表達與高表達、低表達品系響應(yīng)線蟲侵染的情況進行分析,發(fā)現(xiàn)32E03低表達品系對BCN的感病性增加,而高表達品系感病性降低。擬南芥中32E03表達升高觸發(fā)了rDNA的RdDM途徑,導(dǎo)致基因表達下調(diào)。這些結(jié)果說明了孢囊線蟲核效應(yīng)子以劑量依賴的方式調(diào)控寄主表觀遺傳變異,從而影響線蟲寄生和植物應(yīng)答。
4"展望
表觀遺傳調(diào)控在植物與線蟲互作中發(fā)揮重要作用。DNA甲基化、非編碼RNAs和組蛋白修飾均與植物防御線蟲有關(guān)。盡管目前對植物受線蟲脅迫后不同表觀遺傳機制間的互作知之甚少,但可以肯定的是,這些機制既可以獨立發(fā)揮作用,也可以相互影響交叉調(diào)控防衛(wèi)基因的轉(zhuǎn)錄活性。有關(guān)表觀遺傳調(diào)控在植物與線蟲互作中的作用,目前的認識還較為零散,主要基于少數(shù)表觀遺傳基因靶點。對寄主植物DNA甲基化和組蛋白修飾變化的全基因組分析,以及各種植物與線蟲互作中基因表達的變化分析,將會更好地了解植物防御線蟲的表觀遺傳調(diào)控。對線蟲基因組和轉(zhuǎn)錄組的分析也將有助于闡明與線蟲毒力和環(huán)境適應(yīng)性有關(guān)的表觀遺傳調(diào)控,高通量測序技術(shù)的發(fā)展使得完成這些研究成為可能。研究植物與線蟲互作的表觀遺傳調(diào)控如何有助于植物防御,以及線蟲如何為了自身利益而抵制防衛(wèi)反應(yīng),將為植物線蟲防控策略的制定開辟新途徑,這對于保護農(nóng)業(yè)生產(chǎn)具有重要的現(xiàn)實意義。
參考文獻
[1]"JONES"J"T,"HAEGEMAN"A,"DANCHIN"E"G,"et"al."Top"10"plantparasitic"nematodes"in"molecular"plant"pathology"[J]."Molecular"Plant"Pathology,"2013,"14(9):"946961.
[2]"BALDWIN"J"G,"NADLER"S"A,"ADAMS"B"J."Evolution"of"plant"parasitism"among"nematodes"[J]."Annual"Review"of"Phytopathology,"2004,"42:"83105.
[3]"VAN"DEN"ELSEN"S,"HOLOVACHOV"O,"KARSSEN"G,"et"al."A"phylogenetic"tree"of"nematodes"based"on"about"1200"fulllength"small"subunit"ribosomal"DNA"sequences"[J]."Nematology,"2009,"11(6):"927950.
[4]"HEWEZI"T."Cellular"signaling"pathways"and"posttranslational"modifications"mediated"by"nematode"effector"proteins"[J]."Plant"Physiology,"2015,"169(2):"10181026.
[5]"HEWEZI"T,"BAUM"T"J."Manipulation"of"plant"cells"by"cyst"and"rootknot"nematode"effectors"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(1):"916.
[6]"MITCHUM"M"G,"HUSSEY"Rnbsp;S,"BAUM"T"J,"et"al."Nematode"effector"proteins:"an"emerging"paradigm"of"parasitism"[J]."New"Phytologist,"2013,"199(4):"879894.
[7]"IKEUCHI"M,"IWASE"A,"SUGIMOTO"K."Control"of"plant"cell"differentiation"by"histone"modification"and"DNA"methylation"[J]."Current"Opinion"in"Plant"Biology,"2015,"28:"6067.
[8]"MORAO"A"K,"BOUYER"D,"ROUDIER"F."Emerging"concepts"in"chromatinlevel"regulation"of"plant"cell"differentiation:"timing,"counting,"sensing"and"maintaining"[J]."Current"Opinion"in"Plant"Biology,"2016,"34:"2734.
[9]"DELERIS"A,"HALTER"T,"NAVARRO"L."DNA"methylation"and"demethylation"in"plant"immunity"[J]."Annual"Review"of"Phytopathology,"2016,"54:"579603.
[10]FEI"Qili,"ZHANG"Yu,"XIA"Rui,"et"al."Small"RNAs"add"zing"to"the"zigzagzig"model"of"plant"defenses"[J]."Molecular"PlantMicrobe"Interactions,"2016,"29(3):"165169.
[11]HEWEZI"T,"LANE"T,"PIYA"S,"et"al."Cyst"nematode"parasitism"induces"dynamic"changes"in"the"root"epigenome"[J]."Plant"Physiology,"2017,"174(1):"405420.
[12]RAMIREZPRADO"J"S,"ABULFARAJ"A"A,"RAYAPURAM"N,"et"al."Plant"immunity:"from"signaling"to"epigenetic"control"of"defense"[J]."Trends"in"Plant"Science,"2018,"23(9):"833844.
[13]SEO"J"K,WU"J"G,"LII"Y"F,"et"al."Contribution"of"small"RNA"pathway"components"in"plant"immunity"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(6):"617625.
[14]CHAN"S"W,"HENDERSON"I"R,"JACOBSEN"S"E."Gardening"the"genome:"DNA"methylation"in"Arabidopsis"thaliana"[J]."Nature"Reviews"Genetics,"2005,"6(5):"351360.
[15]LAW"J"A,"JACOBSEN"S"E."Establishing,"maintaining"and"modifying"DNA"methylation"patterns"in"plants"and"animals"[J]."Nature"Reviews"Genetics,"2010,"11(3):"204220.
[16]CAO"Xiaofeng,"AUFSATZ"W,"ZILBERMAN"D,"et"al."Role"of"the"DRM"and"CMT3"methyltransferases"in"RNAdirected"DNA"methylation"[J]."Current"Biology,"2003,"13(24):"22122217.
[17]CAO"Xiaofeng,"JACOBSEN"S"E."Locusspecific"control"of"asymmetric"and"CpNpG"methylation"by"the"DRM"and"CMT3"methyltransferase"genes"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2002,"99(Suppl"4):"1649116498.
[18]MATZKE"M"A,"MOSHER"R"A."RNAdirected"DNA"methylation:"an"epigenetic"pathway"of"increasing"complexity"[J]."Nature"Reviews"Genetics,"2014,"15(6):"394408.
[19]ZHU"Jiankang."Active"DNA"demethylation"mediated"by"DNA"glycosylases"[J]."Annual"Review"of"Genetics,"2009,"43:"143166.
[20]RAMBANI"A,"RICE"J"H,"LIU"Jinyi,"et"al."The"methylome"of"soybean"roots"during"the"compatible"interaction"with"the"soybean"cyst"nematode"[J]."Plant"Physiology,"2015,"168(4):"13641377.
[21]HEWEZI"T,"PANTALONE"V,"BENNETT"M,"et"al."Phytopathogeninduced"changes"to"plant"methylomes"[J]."Plant"Cell"Reports,"2018,"37(1):"1723.
[22]LOPEZ"S"A,"STASSEN"J"H,"FURCI"L,"et"al."The"role"of"DNA"(de)methylation"in"immune"responsiveness"of"Arabidopsis"[J]."Plant"Journal,"2016,"88(3):"361374.
[23]YU"A,"LEPERE"G,"JAY"F,"et"al."Dynamics"and"biological"relevance"of"DNA"demethylation"in"Arabidopsis"antibacterial"defense"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2013,"110(6):"23892394.
[24]CALARCO"J"P,"BORGES"F,"DONOGHUE"M"T,"et"al."Reprogramming"of"DNA"methylation"in"pollen"guides"epigenetic"inheritance"via"small"RNA"[J]."Cell,"2012,"151(1):"194205.
[25]LISTER"R,"O’MALLEY"R"C,"TONTIFILIPPINI"J,"et"al."Highly"integrated"singlebase"resolution"maps"of"the"epigenome"in"Arabidopsis"[J]."Cell,"2008,"133(3):"523536.
[26]MAUNAKEA"A"K,"NAGARAJAN"R"P,"BILENKY"M,"et"al."Conserved"role"of"intragenic"DNA"methylation"in"regulating"alternative"promoters"[J]."Nature,"2010,"466(7303):"253257.
[27]NERI"F,"RAPELLI"S,"KREPELOVA"A,"et"al."Intragenic"DNA"methylation"prevents"spurious"transcription"initiation"[J]."Nature,"2017,"543(7643):"7277.
[28]ZILBERMAN"D,"COLEMANDERR"D,"BALLINGER"T,"et"al."Histone"H2A.Z"and"DNA"methylation"are"mutually"antagonistic"chromatin"marks"[J]."Nature,"2008,"456(7218):"125129.
[29]WANG"Xi,"WEIGEL"D,"SMITH"L"M."Transposon"variants"and"their"effects"on"gene"expression"in"Arabidopsis"[J/OL]."PLoS"Genetics,"2013,"9(2):"e1003255."DOI:"101371/journal.pgen1003255.
[30]LE"T"N,"SCHUMANN"U,"SMITH"N"A,"et"al."DNA"demethylases"target"promoter"transposable"elements"to"positively"regulate"stress"responsive"genes"in"Arabidopsis"[J/OL]."Genome"Biology,"2014,"15(9):"458."DOI:"101186/s1305901404583.
[31]SECCO"D,"WANG"Chuang,"SHOU"Huixia,"et"al."Stress"induced"gene"expression"drives"transient"DNA"methylation"changes"at"adjacent"repetitive"elements"[J/OL]."eLife,"2015,"4:"e09343."DOI:"107554/eLife09343.
[32]PIYA"S,"BENNETT"M,"RAMBANI"A,"et"al."Transcriptional"activity"of"transposable"elements"may"contribute"to"gene"expression"changes"in"the"syncytium"formed"by"cyst"nematode"in"Arabidopsis"roots"[J/OL]."Plant"Signaling"amp;"Behavior,"2017,"12(9):"e1362521."DOI:"101080/1559232420171362521.
[33]FENG"Gang,"LEEM"Y"E,"LEVIN"H"L."Transposon"integration"enhances"expression"of"stress"response"genes"[J]."Nucleic"Acids"Research,"2013,"41(2):"775789.
[34]HOSSAIN"M"S,"KAWAKATSU"T,"KIM"K"D,"et"al."Divergent"cytosine"DNA"methylation"patterns"in"singlecell,"soybean"root"hairs"[J]."New"Phytologist,"2017,"214(2):"808819.
[35]MIROUZE"M,"PASZKOWSKI"J."Epigenetic"contribution"to"stress"adaptation"in"plants"[J]."Current"Opinion"in"Plant"Biology,"2011,"14(3):"267274.
[36]RUIZFERRER"V,"CABRERA"J,"MARTINEZARGUDO"I,"et"al."Silenced"retrotransposons"are"major"rasiRNAs"targets"in"Arabidopsis"galls"induced"by"Meloidogyne"javanica"[J]."Molecular"Plant"Pathology,"2018,"19(11):"24312445.
[37]BAYLESS"A"M,"ZAPOTOCNY"R"W,"HAN"S,"et"al."The"rhg1a"(Rhg1"lowcopy)"nematode"resistance"source"harbors"a"copiafamily"retrotransposon"within"the"Rhg1encoded"αSNAP"gene"[J/OL]."Plant"Diversity,"2019,"3(8):"e00164."DOI:"101002/pld3164.
[38]COOK"D"E,"LEE"T"G,"GUO"Xiaoli,"et"al."Copy"number"variation"of"multiple"genes"at"rhg1"mediates"nematode"resistance"in"soybean"[J]."Science,"2012,"338(6111):"12061209.
[39]LIU"Shiming,"KANDOTH"P"K,"WARREN"S"D,"et"al."A"soybean"cyst"nematode"resistance"genenbsp;points"to"a"new"mechanism"of"plant"resistance"to"pathogens"[J]."Nature,"2012,"492(7428):"256260.
[40]KASSCHAU"K"D,"FAHLGREN"N,"CHAPMAN"E"J,"et"al."Genomewide"profiling"and"analysis"of"Arabidopsis"siRNAs"[J/OL]."PLoS"Biology,"2007,"5(3):"e57."DOI:"101371/journal.pbio0050057.
[41]XIE"Zhixin,"JOHANSEN"L"K,"GUSTAFSON"A"M,"et"al."Genetic"and"functional"diversification"of"small"RNA"pathways"in"plants"[J/OL]."PLoS"Biology,"2004,"2(5):"e104."DOI:"101371/journal.pbio0020104.
[42]SIMON"S"A,"MEYERS"B"C."Small"RNAmediated"epigenetic"modifications"in"plants"[J]."Current"Opinion"in"Plant"Biology,"2011,"14(2):"148155.
[43]BARTEL"D"P."MicroRNAs:"genomics,"biogenesis,"mechanism,"and"function"[J]."Cell,"2004,"116(2):"281297.
[44]KOUZARIDES"T."Chromatin"modifications"and"their"function"[J]."Cell,"2007,"128(4):"693705.
[45]LI"Xiaoyan,"WANG"Xue,"ZHANG"Shaopeng,"et"al."Identification"of"soybean"microRNAs"involved"in"soybean"cyst"nematode"infection"by"deep"sequencing"[J/OL]."PLoS"ONE,"2012,"7(6):"e39650."DOI:"101371/journal.pone0039650.
[46]TIAN"Bin,"WANG"Shichen,"TODD"T"C,"et"al."Genomewide"identification"of"soybean"microRNA"responsive"to"soybean"cyst"nematodes"infection"by"deep"sequencing"[J/OL]."BMC"Genomics,"2017,"18(1):"572."DOI:"101186/s1286401739634.
[47]CABRERA"J,"BARCALA"M,"GARCIA"A,"et"al."Differentially"expressed"small"RNAs"in"Arabidopsis"galls"formed"by"Meloidogyne"javanica:"a"functional"role"for"miR390"and"its"TAS3derived"tasiRNAs"[J]."New"Phytologist,"2016,"209(4):"16251640.
[48]HEWEZI"T,"HOWE"P,"MAIER"T"R,nbsp;et"al."Arabidopsis"small"RNAs"and"their"targets"during"cyst"nematode"parasitism"[J]."Molecular"PlantMicrobe"Interactions,"2008,"21(12):"16221634.
[49]MEDINA"C,"DA"ROCHA"M,"MAGLIANO"M,"et"al."Characterization"of"microRNAs"from"Arabidopsis"galls"highlights"a"role"for"miR159"in"the"plant"response"to"the"rootknot"nematode"Meloidogyne"incognita"[J]."New"Phytologist,"2017,"216(3):"882896.
[50]KAUR"P,"SHUKLA"N,"JOSHI"G,"et"al."Genomewide"identification"and"characterization"of"miRNAome"from"tomato"(Solanum"lycopersicum)"roots"and"rootknot"nematode"(Meloidogyne"incognita)"during"susceptible"interaction"[J/OL]."PLoS"ONE,"2017,"12(4):"e0175178."DOI:"101371/journal.pone0175178.
[51]HEWEZI"T,"MAIER"T"R,"NETTETON"D,"et"al."The"Arabidopsis"microRNA396GRF1/GRF3"regulatory"module"acts"as"a"developmental"regulator"in"the"reprogramming"of"root"cells"during"cyst"nematode"infection"[J]."Plant"Physiology,"2012,"159(1):"321335.
[52]HEWEZI"T,"BAUM"T"J."Complex"feedback"regulations"govern"the"expression"of"miRNA396"and"its"GRF"target"genes"[J]."Plant"Signaling"amp;"Behavior,"2012,"7(7):"749751.
[53]LIU"Jinyi,"RICE"J"H,"CHEN"Nana,"et"al."Synchronization"of"developmental"processes"and"defense"signaling"by"growth"regulating"transcription"factors"[J/OL]."PLoS"ONE,"2014,"9(5):"e98477."DOI:"101371/journal.pone0098477.
[54]PIYA"S,"LIU"J,"BURCHSMITH"T,"et"al."A"role"for"Arabidopsis"growthregulating"factors"1"and"3"in"growthstress"antagonism"[J]."Journal"of"Experimental"Botany,"2020,"71(4):"14021417.
[55]NOON"J"B,"HEWEZI"T,"BAUM"T"J."Homeostasis"in"the"soybean"miRNA396GRF"network"is"essential"for"productive"soybean"cyst"nematode"infections"[J]."Journal"of"Experimental"Botany,"2019,"70(5):"16531668.
[56]PIYA"S,"KIHM"C,"RICE"J"H,"et"al."Cooperative"regulatory"functions"of"miR858"and"MYB83"during"cyst"nematode"parasitism"[J]."Plant"Physiology,"2017,"174(3):"18971912.
[57]HEWEZI"T,"PIYA"S,"QI"Mingsheng,"et"al."Arabidopsis"miR827"mediates"posttranscriptional"gene"silencing"of"its"ubiquitin"E3"ligase"target"gene"in"the"syncytium"of"the"cyst"nematode"Heterodera"schachtii"to"enhance"susceptibility"[J]."Plant"Journal,"2016,"88(2):"179192.
[58]KANT"S,"PENG"Mingsheng,"ROTHSTEIN"S"J."Genetic"regulation"by"NLA"and"microRNA827"for"maintaining"nitratedependent"phosphate"homeostasis"in"Arabidopsis"[J/OL]."PLOS"Genetics,"2011,"7(3):"e1002021."DOI:"101371/journal.pgen1002021.
[59]LIN"Weiyi,"HUANG"T"K,"CHIOU"T"J."NITROGEN"LIMITATION"ADAPTATION,"a"target"of"microRNA827,"mediates"degradation"of"plasma"membranelocalized"phosphate"transporters"to"maintain"phosphate"homeostasis"in"Arabidopsis"[J]."Plant"Cell,"2013,"25(10):"40614074.
[60]PARK"B"S,"SEO"J"S,"CHUA"N"H."NITROGEN"LIMITATION"ADAPTATION"recruits"PHOSPHATE2"to"target"the"phosphate"transporter"PT2"for"degradation"during"the"regulation"of"Arabidopsis"phosphate"homeostasis"[J]."Plant"Cell,"2014,"26(1):"454464.
[61]MARIN"E,"JOUANNET"V,"HERZ"A,"et"al."miR390,"Arabidopsis"TAS3"tasiRNAs,"and"their"AUXIN"RESPONSE"FACTOR"targets"define"an"autoregulatory"network"quantitatively"regulating"lateral"root"growth"[J]."Plant"Cell,"2010,"22(4):"11041117.
[62]FAN"Jingwei,"HU"Canli,"ZHANG"Lining,"et"al."Jasmonic"acid"mediates"tomato’s"response"to"root"knot"nematodes"[J]."Journal"of"Plant"Growth"Regulation,"2015,"34:"196205.
[63]NAHAR"K,"KYNDT"T,"DE"VLEESSCHAUWER"D,"et"al."The"jasmonate"pathway"is"a"key"player"in"systemically"induced"defense"against"root"knot"nematodes"in"rice"[J]."Plant"Physiology,"2011,"157(1):"305316.
[64]ZHAO"Wenchao,"LI"Zilong,"FAN"Jingwei,"et"al."Identification"of"jasmonic"acidassociated"microRNAs"and"characterization"of"the"regulatory"roles"of"the"miR319/TCP4"module"under"rootknot"nematode"stress"in"tomato"[J]."Journal"of"Experimental"Botany,"2015,"66(15):"46534667.
[65]SCHOMMER"C,"PALATNIK"J"F,"AGGARWAL"P,"et"al."Control"of"jasmonate"biosynthesis"and"senescence"by"miR319"targets"[J/OL]."PLoS"Biology,"2008,"6(9):"e230."DOI:"101371/journal.pbio0060230.
[66]DIAZMANZANO"F"E,"CABRERA"J,"RIPOLL"J"J,"et"al."A"role"for"the"gene"regulatory"module"miRNA172/TOE1/FT"in"the"feeding"sites"induced"by"Meloidogyne"javanica"in"Arabidopsis"thaliana"[J]."New"Phytologist,"2018,"217(2):"813827.
[67]ZHANG"Bailong,"WANG"Liang,"ZENG"Liping,"et"al."Arabidopsis"TOE"proteins"convey"a"photoperiodic"signal"to"antagonize"CONSTANS"and"regulate"flowering"time"[J]."Genes"amp;"Development,"2015,"29(9):"975987.
[68]RIPPLL"J"J,"BAILEY"L"J,"MAI"Q"A,"et"al."microRNA"regulation"of"fruit"growth"[J/OL]."Nature"Plants,"2015,"1(4):"15036."DOI:"101038/NPLANTS201536.
[69]YE"Deyou,"JIANG"Ye,"WANGnbsp;Congli,"et"al."Expression"analysis"of"microRNAs"and"their"target"genes"in"Cucumis"metuliferus"infected"by"the"rootknot"nematode"Meloidogyne"incognita"[J/OL]."Physiological"and"Molecular"Plant"Pathology,"2020,"111:"101491."DOI:"101016/j.pmpp2020101491.
[70]YE"Deyou,"QI"Yonghong,"CAO"Sufang,"et"al."Identification"and"characterization"of"microRNA396"and"its"targets"in"Cucumis"metuliferus"infected"with"Meloidogyne"incognita"[J]."South"African"Journal"of"Botany,"2024,"165(2):"417427.
[71]RUIZFERRER"V,"CABRERA"J,"MARTINEZARGUDO"I,"et"al."Silenced"retrotransposons"are"major"rasiRNAs"targets"in"Arabidopsis"galls"induced"by"Meloidogyne"javanica"[J]."Molecular"Plant"Pathology,"2018,"19(11):"24312445.
[72]MEDINA"C,"DA"ROCHA"M,"MAGLIANO"M,"et"al."Characterization"of"siRNAs"clusters"in"Arabidopsis"thaliana"galls"induced"by"the"rootknot"nematode"Meloidogyne"incognita"[J/OL]."BMC"Genomics,"2018,"19(1):"943."DOI:"101186/s1286401852963.
[73]KIM"E"D,"SUNG"S."Long"noncoding"RNA:"unveiling"hidden"layer"of"gene"regulatory"networks"[J]."Trends"in"Plant"Science,"2012,"17(1):"1621.
[74]LIU"Xue,"HAO"Lili,"LI"Dayong,"et"al."Long"noncoding"RNAs"and"their"biological"roles"in"plants"[J]."Genomics"Proteomics"amp;"Bioinformatics,"2015,"13(3):"137147.
[75]NEJAT"N,"MANTRI"N."Emerging"roles"of"long"noncoding"RNAs"in"plant"response"to"biotic"and"abiotic"stresses"[J]."Critical"Reviews"in"Biotechnology,"2018,"38(1):"93105.
[76]LI"Xiaohui,"XING"Xuexia,"XU"Shixiao,"et"al."Genomewide"identification"and"functional"prediction"of"tobacco"lncRNAs"responsive"to"rootknot"nematode"stress"[J/OL]."PLoS"ONE,"2018,"13(11):"e0204506."DOI:"101371/journal.pone0204506.
[77]LAWRENCE"M,"DAUJAT"S,"SCHNEIDER"R."Lateral"thinking:"how"histone"modifications"regulate"gene"expression"[J]."Trends"in"Genetics,"2016,"32(1):"4256.
[78]GALLUSCI"P,"DAI"Z,"GENARD"M,"et"al."Epigenetics"for"plant"improvement:"current"knowledge"and"modeling"avenues"[J]."Trends"in"Plant"Science,"2017,"22(7):"610623.
[79]MAIER"T"R,"HEWEZI"T,"PENG"Jiqing,"et"al."Isolation"of"whole"esophageal"gland"cells"from"plant"parasitic"nematodes"for"transcriptome"analyses"and"effector"identification"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(1):"3135.
[80]EVESVAN"DEN"AKKER"S,"LAETSCH"D"R,"THORPE"P,"et"al."The"genome"of"the"yellow"potato"cyst"nematode,"Globodera"rostochiensis,"reveals"insights"into"the"basis"of"parasitism"and"virulence"[J/OL]."Genome"Biology,"2016,"17(1):"124."DOI:"101186/s1305901609851.
[81]GARDNER"M,"DHROSO"A,"JOHNSON"N,"et"al."Novel"global"effector"mining"from"the"transcriptome"of"early"life"stages"of"the"soybean"cyst"nematode"Heterodera"glycines"[J/OL]."Scientific"Reports,"2018,"8(1):"2505."DOI:"101038/s41598018205365.
[82]JONES"J"T,"KUMAR"A,"PYLYPENKO"L"A,"et"al."Identification"and"functional"characterization"of"effectors"in"expressed"sequence"tags"from"various"life"cycle"stages"of"the"potato"cyst"nematode"Globodera"pallida"[J]."Molecular"Plant"Pathology,"2009,"10(6):"815828.
[83]NOON"J"B,"HEWEZI"T,"MAIER"T"R,"et"al."Eighteen"new"candidate"effectors"of"the"phytonematode"Heterodera"glycines"produced"specifically"in"the"secretory"esophageal"gland"cells"during"parasitism"[J]."Phytopathology,"2015,"105(10):"13621372.
[84]KIM"K"H,"AN"D"R,"SONG"J,"et"al."Mycobacterium"tuberculosis"Eis"protein"initiates"suppression"of"host"immune"responses"by"acetylation"of"DUSP16/MKP7"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2012,"109(20):"77297734.
[85]GOVERSE"A,"SMANT"G."The"activation"and"suppression"of"plant"innate"immunity"by"parasitic"nematodes"[J]."Annual"Review"of"Phytopathology,"2014,"52:"243265.
[86]HOLBEIN"J,"GRUNDLER"F"M,"SIDDIQUE"S."Plant"basal"resistance"to"nematodes:"an"update"[J]."Journal"of"Experimental"Botany,"2016,"67(7):"20492061.
[87]KONG"Liang,"QIU"Xufang,"KANG"Jiangang,"et"al."A"Phytophthora"effector"manipulates"host"histone"acetylation"and"reprograms"defense"gene"expression"to"promote"infection"[J]."Current"Biology,"2017,"27(7):"981991.
[88]DUFOURCQ"P,"VOCTOR"M,"GAY"F,"et"al."Functional"requirement"for"histone"deacetylase"1"in"Caenorhabditis"elegans"gonadogenesis"[J]."Molecular"and"Cellular"Biology,"2002,"22(9):"30243034.
[89]GREER"E"L,"MAURES"T"J,"HAUSWIRTH"A"G,"et"al."Members"of"the"H3"lysine"4"trimethylation"complex"regulate"lifespan"in"a"germlinedependent"manner"in"C.elegans"[J]."Nature,"2010,"466(7304):"383387.
[90]XIAO"Yu,"BEDET"C,"ROBERT"V"J,"et"al."Caenorhabditis"elegans"chromatin"associated"proteins"SET2"and"ASH2"are"differentially"required"for"histone"H3"Lys"4"methylation"innbsp;embryos"and"adult"germ"cells"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2011,"108(20):"83058310.
[91]YAN"Kezhi,"ROUSSEAU"J,"LITTLEJOHN"R"O,"et"al."Mutations"in"the"chromatin"regulator"gene"BRPF1"cause"syndromic"intellectual"disability"and"deficient"histone"acetylation"[J]."American"Journal"of"Human"Genetics,"2017,"100(1):"91104.
[92]AITSIALI"S,"GUASCONI"V,"FRITSCH"L,"et"al."A"Suv39hdependent"mechanism"for"silencing"Sphase"genes"in"differentiating"but"not"in"cycling"cells"[J]."EMBO"Journal,"2004,"23(3):"605615.
[93]RICE"J"C,"BRIGGS"S"D,"UEBERHEIDE"B,"et"al."Histone"methyltransferases"direct"different"degrees"of"methylation"to"define"distinct"chromatin"domains"[J]."Molecular"Cell,"2003,"12(6):"15911598.
[94]FORMOSA"T,"ERIKSSON"P,"WITTMEYER"J,"et"al."Spt16Pob3"and"the"HMG"protein"Nhp6"combine"to"form"the"nucleosomebinding"factor"SPN"[J]."EMBO"Journal,"2001,"20(13):"35063517.
[95]VIJAYAPALANI"P,"HEWEZI"T,"PONTVIANNE"F,"et"al."An"effector"from"the"cyst"nematode"Heterodera"schachtii"derepresses"host"rRNA"genes"by"altering"histone"acetylation"[J]."The"Plant"Cell,"2018,"30(11):"27952812.
[96]LAWRENCE"R"J,"EARLEY"K,"PONTES"O,"et"al."A"concerted"DNA"methylation/histone"methylation"switch"regulates"rRNA"gene"dosage"control"and"nucleolar"dominance"[J]."Molecular"Cell,"2004,"13(4):"599609.
[97]LI"Hong,"LUAN"Sheng."AtFKBP53"is"a"histone"chaperone"required"for"repression"of"ribosomal"RNA"gene"expression"in"Arabidopsis"[J]."Cell"Research,"2010,"20(3):"357366.
(責(zé)任編輯:楊明麗)