亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        植物線蟲病感病基因研究進展及在線蟲防控中的應用潛力

        2024-12-29 00:00:00曹雨晴黃秋玲黃春暉林柏榮廖金鈴卓侃
        植物保護 2024年6期

        摘要

        植物線蟲給農(nóng)林生產(chǎn)造成重大的經(jīng)濟損失,開發(fā)高效的植物線蟲綠色防控技術十分重要。利用抗病基因培育抗病品種是防治植物線蟲病最經(jīng)濟有效的措施之一,近年發(fā)現(xiàn)編輯感病基因也可使植物產(chǎn)生抗性。文章綜述了植物感病基因在調(diào)控植物抗線蟲病方面的研究進展及利用CRISPR/Cas9技術編輯感病基因抗線蟲病的研究現(xiàn)狀,對促進感病基因在植物線蟲病防治中的應用具有重要意義。

        關鍵詞""植物線蟲;"感病基因;"CRISPR/Cas9

        中圖分類號:""S"43245

        文獻標識碼:"A

        DOI:"10.16688/j.zwbh.2024230

        Advances"in"susceptibility"genes"and"potential"control"strategy"for"plant"nematodes

        CAO"Yuqing1,"HUANG"Qiuling1,2,"HUANG"Chunhui1,"LIN"Borong1,2,"LIAO"Jinling1,"ZHUO"Kan1,2*

        (1."College"of"Plant"Protection,"South"China"Agricultural"University,"Guangzhou"510642,"China;"

        2."Guangdong"Province"Key"Laboratory"of"Microbial"Signals"and"Disease"Control,"Guangzhou"510642,"China)

        Abstract

        Plant"nematodes"cause"serious"economic"losses"in"agriculture"and"forestry,"making"the"development"of"efficient,"environmentally"friendly"control"technologies"imperative."Breeding"diseaseresistant"varieties"using"resistance"genes"is"one"of"the"most"economical"and"effective"measures."Recent"research"has"shown"that"editing"plant"susceptibility"genes"can"enhance"plant"resistance"to"nematodes."This"paper"summarizes"the"research"progress"of"regulatory"mechanism"of"susceptibility"genes,"status"of"using"CRISPR/Cas9"technology"to"modify"these"genes"for"promoting"resistance"to"plant"nematode"disease."This"review"supports"the"management"of"plant"nematodes"through"genetic"modification"strategies.

        Key"words

        plant"nematodes;"susceptibility"genes;"CRISPR/Cas9

        植物線蟲是危害植物的主要病原物之一,其寄主范圍廣、環(huán)境適應性強,幾乎可以危害所有糧食作物和經(jīng)濟作物。據(jù)統(tǒng)計,全球每年因植物線蟲危害造成的損失高達1"570億美元[1]。目前已報道的植物線蟲有4"100余種[2],其中在生產(chǎn)上造成重大經(jīng)濟損失的主要有根結線蟲Meloidogyne"spp.和孢囊線蟲(Heterodera"spp.和Globodera"spp.)等。隨著全球氣候變化、種植模式改變及機械化農(nóng)業(yè)發(fā)展,植物線蟲病害發(fā)生越發(fā)嚴重。此外,植物線蟲的侵染還能加重其他植物病原物的危害,因此開發(fā)綠色高效的植物線蟲病防控技術十分重要[3]。

        植物線蟲病的防控方法主要有化學防治、農(nóng)業(yè)防治、生物防治和抗病育種等,其中利用抗病基因(resistance"genes,"R)培育抗病品種是防治植物線蟲病最經(jīng)濟有效的措施之一。目前,一些抗線蟲基因已被克隆和鑒定,如水稻抗擬禾本科根結線蟲Meloidogyne"graminicola基因MG1和辣椒抗南方根結線蟲M.incognita基因Me3。但總體而言,目前發(fā)現(xiàn)的植物抗線蟲的R基因仍非常有限[45]。近些年,在植物中發(fā)現(xiàn)了一些能促進病原物與寄主植物親和互作的基因,這類基因與R基因相對應,被稱為感病基因(susceptibility"genes,S)。S基因是病原物成功侵染、生長發(fā)育和繁殖所必需的。研究發(fā)現(xiàn),突變S基因可使植物產(chǎn)生抗性[6]。相比于真菌、卵菌、細菌及病毒病,與植物線蟲病有關的S基因的研究起步較晚,因此,深入挖掘和鑒定這些S基因,不僅可為研究線蟲的致病機制奠定基礎,也可為今后利用基因編輯技術定向創(chuàng)制抗線蟲作物提供靶標。本文綜合國內(nèi)外大量文獻并結合本實驗室的研究結果對植物線蟲病的感病基因研究進展進行概括和綜述,并對利用CRISPR/Cas9技術編輯感病基因防控線蟲病的新策略進行討論,以期為我國植物線蟲病感病基因的研究及基于感病基因的植物線蟲防控策略制定提供參考信息。

        1"植物感病基因研究概況

        植物在生長發(fā)育過程中受到各種病原物的侵染,S基因是病原物與寄主親和互作的重要因子,其缺失會干擾寄主與病原物的親和性,限制病原物的致病能力。Van"Schie等根據(jù)病原物的侵染時期,將針對真菌、卵菌、細菌和病毒等病原微生物的植物S基因分為三類[6]:1)有利于病原物識別和侵入的S基因,如苜蓿角質(zhì)層形成相關基因MtRAM2,該基因突變后導致棕櫚疫霉Phytophthora"palmivora的附著胞形成受到干擾[7];玉米Zmgl11基因,該基因突變導致葉片角質(zhì)層中的極長鏈醛含量降低,影響白粉菌Blumeria"graminis孢子萌發(fā)從而使其侵染寄主的能力下降[8];2)負調(diào)控植物免疫的S基因,如小麥的TaRBP1、柑橘的CsGSTF1和CsGSTU18及水稻的OsPEX5,這些基因可被病原物利用負調(diào)控寄主體內(nèi)活性氧(reactive"oxygen"species,"ROS)的含量,從而促進病原物侵染[911];3)有利于病原物獲取營養(yǎng)和繁殖的S基因,如水稻蔗糖轉運相關基因OsSWEET11、OsSWEET13和OsSWEET14,這些基因的啟動子是稻黃單胞Xanthomonas"oryzae轉錄激活類效應子(transcription"activatorlike"effectors,"TALEs)的靶標,對多個SWEET基因啟動子上的TALEs結合位點進行突變,可以使水稻產(chǎn)生對白葉枯病的抗性[12]。最近"Koseoglou等提出轉運病原物效應子的基因為一類新的S基因[13],如煙草的網(wǎng)格蛋白基因NbCHC或囊泡轉運基因NbAra6,這些基因在煙草中可以包裹病原物效應子,將其運輸?shù)郊闹骷毎麅?nèi),沉默這些基因提高了植物對致病疫霉Phytophthora"infestans的抗性[14]。

        2"植物線蟲病的感病基因研究進展

        真菌、卵菌、細菌及病毒病相關的S基因研究較多,然而植物線蟲病相關的S基因報道還很少。最近,Dutta等將植物線蟲病相關的S基因分為3類,分別是:有利線蟲侵入的S基因、負調(diào)控植物免疫的S基因和有利線蟲取食和繁殖的S基因[15]。該分類本質(zhì)上與Van"Schie等對真菌、卵菌、細菌和病毒病的S基因分類相似[6]。此外,有研究發(fā)現(xiàn),參與調(diào)控植物根系分泌物的相關基因也影響植物對線蟲的吸引。因此,除了上述3類S基因外,本文提出吸引植物線蟲的基因也是一類S基因。本文對已報道的植物線蟲病S基因進行歸納總結,具體信息見表1,分類如下:

        2.1"吸引植物線蟲

        在自然界中,植物線蟲通過化感信息物質(zhì)識別寄主植物,以此來確定適宜的寄主。研究發(fā)現(xiàn)根系分泌物可能會將線蟲吸引到根系,或驅避線蟲、抑制線蟲運動甚至殺死線蟲[60]。植物激素乙烯(ethylene,"ET)在吸引線蟲的過程中可能發(fā)揮負調(diào)控作用。例如當擬南芥基因AtETO突變后,擬南芥能產(chǎn)生過量的乙烯,此時擬南芥對北方根結線蟲M.hapla和大豆孢囊線蟲H.glycines的吸引力減弱,相反,擬南芥AtEIN突變致使乙烯信號減弱,導致擬南芥對北方根結線蟲和大豆孢囊線蟲更具吸引力[1617,61],因此,AtETO可以看成一個吸引線蟲的S基因。與乙烯相反,單子葉植物的獨腳金內(nèi)酯(strigolactones,"SL)在對線蟲的吸引中發(fā)揮著正調(diào)控的功能。如沉默水稻植株中對獨腳金內(nèi)酯合成至關重要的OsMAX1基因,可減少擬禾本科根結線蟲的侵染[53],表明水稻OsMAX1是針對線蟲的S基因。然而,在雙子葉植物中,獨腳金內(nèi)酯與乙烯相似,負調(diào)控對線蟲的吸引作用,沉默擬南芥中的獨腳金內(nèi)酯生物合成基因AtMAX2反而增強了植物對甜菜孢囊線蟲H.schachtii的吸引及線蟲入侵[54,62]。

        2.2"有利線蟲侵入

        內(nèi)寄生線蟲尋找到寄主后,需通過其口針穿刺寄主或侵入寄主中進行寄生生活,因此線蟲還能影響植物基因的表達以改變根部表型,促進其順利侵入。如研究發(fā)現(xiàn),甜菜孢囊線蟲效應子HsCBP與擬南芥果膠甲酯酶AtPME3互作,當在擬南芥中過表達HsCBP時,擬南芥果膠甲酯酶活性提高且根變長,導致更多線蟲寄生擬南芥;而擬南芥AtPME3突變體的根變短,對線蟲的感病性下降,表明甜菜孢囊線蟲通過效應子HsCBP調(diào)控擬南芥AtPME3,促進根的生長,導致更多線蟲侵入[19]。此外,植物中調(diào)控側根形成的關鍵基因也影響線蟲侵入,如在擬南芥?zhèn)雀斜磉_的基因AtRPE,該基因純合突變株根長顯著變短,根數(shù)量變少,導致根上的孢囊數(shù)量減少一半[21]。而擬南芥的AtbHLH25基因同時具有調(diào)控根長和側根形成的功能,過表達AtbHLH25的擬南芥根變長,側根增多,對甜菜孢囊線蟲的感病性顯著增加[20]。

        2.3"負調(diào)控植物免疫

        與其他植物病原物類似,植物線蟲也能通過負調(diào)控植物免疫來促進自身的寄生。具體包括:1)參與寄主體內(nèi)活性氧清除。例如擬南芥鐵氧還蛋白/硫氧還蛋白還原酶(AtFTRc)在抗氧化中發(fā)揮功能,具有促進H2O2降解的能力

        ,而爪哇根結線蟲M.javanica的效應子MjTTL5與AtFTRc在質(zhì)體上相互作用,

        使植物降解H2O2能力增強,從而抑制了線蟲侵染早期植物中活性氧的積累,促進了爪哇根結線蟲的寄生,AtFTRc

        突變導致植物對爪哇根結線蟲的抗性增強[24];相似地,擬南芥AtERN1突變體表現(xiàn)出H2O2含量升高,因而對根結線蟲的抗性也增加[23]。此外,有研究發(fā)現(xiàn),擬禾本科根結線蟲的效應子MgMO289與寄主水稻銅金屬伴侶OsHPP04結合,再通過OsHPP04與水稻銅鋅超氧化物歧化酶cCu/ZnSOD2互作將Cu轉運到cCu/ZnSOD2,提高Cu/ZnSOD的活性,促進超氧陰離子(O·-2)的消除,從而抑制寄主植物的防衛(wèi)反應,提高線蟲的寄生能力,因此OsHPP04是參與O·-2清除的S基因[52]。2)參與激素調(diào)控。如擬南芥胞質(zhì)甘油醛3磷酸脫氫酶AtGAPC和受體激酶FERONIA(AtFER),它們分別是南方根結線蟲效應子MiEFF1和MiRALF的靶標,前者的突變促進了水楊酸(salicylic"acid,"SA)和茉莉酸(jasmonic"acid,"JA)途徑中防御基因的表達,從而提高了植物對線蟲的抗性;后者可磷酸化MYC2并破壞其穩(wěn)定性,從而干擾了茉莉酸信號轉導,抑制了植物免疫應答[2526]。此外,番茄的S基因SlJAM1及SlMYC2通過影響茉莉酸響應基因SlERF1的轉錄及相關復合物的形成,負調(diào)控茉莉酸介導的對根結線蟲的防御[47]。大豆受體激酶GmBIR1可干擾水楊酸信號,轉GmBIR1基因的大豆對大豆孢囊線蟲的感病性顯著提高。將GmBIR1結構域進行突變,獲得激酶活性失活的GmBIR1基因,即KDGmBIR1。有意思的是,轉KDGmBIR1的大豆反而對大豆孢囊線蟲的抗性顯著提高。進一步通過轉錄組測序分析感染線蟲的大豆組織中基因的表達變化,發(fā)現(xiàn)一些植物防御相關基因的表達模式在GmBIR1轉基因大豆和KDGmBIR1轉基因大豆中剛好相反[58],激酶活性失活可能改變了激酶介導的信號通路。由于許多蛋白激酶結構相對保守,因此通過定向精準突變植物中保守的激酶結構來提高植物對線蟲的廣譜抗性可能是今后研究的一個重要方向[63]。"

        2.4"有利線蟲取食和繁殖

        作為固著性內(nèi)寄生線蟲,根結線蟲和孢囊線蟲的2齡幼蟲侵染寄主后分別誘導形成高度修飾的取食位點:巨型細胞和合胞體。取食位點中的營養(yǎng)物質(zhì)是線蟲生長發(fā)育的唯一營養(yǎng)來源[2]。糖、氨基酸、維生素和脂質(zhì)等是線蟲吸收的重要營養(yǎng)物質(zhì)。研究發(fā)現(xiàn)孢囊線蟲侵染寄主后,合胞體中蔗糖含量明顯高于未侵染部分,將擬南芥的蔗糖轉運相關基因AtSUC4和AtSTP2進行沉默,導致線蟲發(fā)育顯著減緩[27,64];而根結線蟲可通過CLECLV1信號途徑調(diào)控根中的蔗糖水平促進其寄生,CLE3和CLV1的敲除導致根結數(shù)量顯著下降[29]。此外,擬南芥AtHIPP27基因的突變導致合胞體質(zhì)體中大淀粉粒積累,代謝異常,導致甜菜孢囊線蟲侵染下降[30]。這些結果表明,糖在線蟲寄生過程中發(fā)揮著重要功能,與糖合成或轉運相關的基因可能是線蟲的S基因。另外,研究還發(fā)現(xiàn)擬南芥被孢囊線蟲侵染后,維生素合成相關基因AtPANB1及AtPANB2的表達顯著增加,AtPANB1的突變增強了擬南芥對孢囊線蟲的抗性,表明植物線蟲可能影響寄主細胞維生素合成途徑基因的表達,確保維生素的有效和不間斷供應以維持自身發(fā)育,因此維生素合成相關基因也可能是一類線蟲的S基因[31]。

        除此之外,影響取食位點形成和維持的基因也可能是重要的線蟲病感病基因。例如,存在于植物細胞壁的擴展蛋白,是一類能使植物細胞壁松弛的活性蛋白。有研究發(fā)現(xiàn),擬南芥被孢囊線蟲侵染后,擴展蛋白基因AtEXPA3、AtEXPA6、AtEXPA8、AtEXPA10和AtEXPA16均不同程度上調(diào)表達,推測擴展蛋白可能參與合胞體形成過程中的細胞生長和細胞壁解體,作為線蟲寄生過程中的S基因[65]。南方根結線蟲效應子MiEFF18靶向擬南芥的核心剪接體蛋白AtSmD1,促進巨型細胞發(fā)育,AtSmD1突變導致巨型細胞發(fā)育出現(xiàn)缺陷,抑制了根結線蟲的侵染[36]。

        3"基于CRISPR/Cas9技術防控植物線蟲新策略

        3.1"CRISPR/Cas9基因編輯技術

        與大多數(shù)R基因介導的抗性不同,S基因介導的抗性多為隱性抗性,其產(chǎn)生的抗性相對更持久更廣譜。近年來,隨著基因編輯技術的發(fā)展,人們可以通過精準編輯S基因的某些功能區(qū)域或位點獲得沒有缺陷表型的抗性植物[66]。

        基因編輯技術是一種可以在基因組水平上對DNA序列進行改造的遺傳操作技術,主要有鋅指核酸酶(zincfinger"nucleases,ZFNs)系統(tǒng)、類轉錄激活因子效應物核酸酶(transcription"activatorlike"effector"nucleases,TALENs)系統(tǒng)、CRISPR/Cas(clustered"regularly"interspaced"short"palindromic"repeatsassociated"protein)系統(tǒng)、單堿基編輯(base"editing,"BE)系統(tǒng)和引導編輯(prime"editing,PE)系統(tǒng)。利用基因編輯技術可以使目的基因發(fā)生定向突變,從而獲得具有目標性狀的材料。其中CRISPR/Cas9系統(tǒng)主要包括單鏈引導RNA(single"guide"RNA,"sgRNA)和Cas9蛋白兩個主要元件[6768]。Cas9蛋白可識別靶序列下游的前間隔序列臨近基序(protospacer"adjacent"motif,"PAM)"5′NGG3′。當sgRNACas9復合物進入細胞,sgRNA將引導Cas9在靶標DNA序列上進行識別,然后在Cas9蛋白的RuvC和HNH"核酸酶結構域協(xié)同作用下,分別負責切割目的基因的靶標鏈和非靶標鏈,其切割位點通常在PAM序列上游第3個與第4個堿基之間,產(chǎn)生一個平末端的雙鏈斷裂缺口(doublestrand"breaks,"DSBs)[6970]。DSBs的產(chǎn)生會激活細胞啟動非同源末端連接(nonhomologous"end"joining,"NHEJ)和同源定向修復(homology"directed"repair,"HDR)的機制。修復過程中會產(chǎn)生突變,從而達到定點改造基因組的目的[71]。在現(xiàn)有的基因編輯系統(tǒng)中,CRISPR/Cas9系統(tǒng)集合了操作簡單、成本低、靶點選擇廣和效率高等優(yōu)點,已成為當今生物學領域最重要的核心技術之一。近年,CRISPR/Cas9技術在農(nóng)業(yè)領域得到廣泛應用,包括提高作物產(chǎn)量、改良作物品質(zhì)、增強作物對生物或非生物脅迫的抗性等。

        3.2"CRISPR/Cas9技術編輯感病基因獲得抗線蟲植物的研究現(xiàn)狀

        近年,人們已成功利用CRISPR/Cas9基因編輯技術編輯植物S基因來獲得抗病植物,其中大多數(shù)研究是針對真菌、卵菌、細菌和病毒病。通過CRISPR/Cas9技術敲除植物線蟲病的S基因來獲得抗病植株也有少數(shù)報道。例如,Zhang等編輯了大豆中的類受體蛋白激酶基因GmLMM1,GmLMM1的突變提高了大豆對南方根結線蟲的抗性[55]。編輯黃瓜蘋果酸合成酶基因CsMS導致黃瓜根系代謝活性減弱,影響巨型細胞的形成,使黃瓜突變體中南方根結線蟲雌蟲的數(shù)量顯著降低[59]。番茄生長素應答轉錄因子基因SlARF8A和SlARF8B被鑒定為在南方根結線蟲感染過程中可促進巨型細胞形成的S基因,基于CRISPR/Cas9技術敲除SlARF8A和SlARF8B基因,使得番茄突變株的根結數(shù)和卵囊均減少約50%,且巨型細胞比野生型番茄的巨型細胞小30%[50]。敲除擬南芥S基因AtHIPP27同樣賦予了植物對南方根結線蟲的抗性[72]。此外,Huang等利用CRISPR/Cas9技術成功編輯水稻中的免疫負調(diào)控因子OsHPP04,獲得無轉基因元件且無生長缺陷表型的水稻,使水稻對擬禾本科根結線蟲的抗性顯著提高[73]。應用CRISPR/Cas9技術編輯針對孢囊線蟲的S基因也有報道,如大豆的GmSNAP02基因被敲除后提高了大豆對大豆孢囊線蟲的抗性[56]。

        4"問題與展望

        植物線蟲病的S基因研究起步較晚,目前已獲得的S基因還較少,且廣譜抗病性的S基因仍未見報道。隨著分子生物學技術,如轉錄組學、全基因組關聯(lián)分析、線蟲與寄主植物互作分子機制研究及TDNA篩選等技術的快速發(fā)展,有望在今后篩選出更多的S基因[55,"7475]。此外,雖然S基因突變賦予植物廣譜持久的抗性,但植物S基因常具有多效性,其突變在提高抗性的同時也可能會給植物的生長發(fā)育帶來負面影響,這極大地限制了S基因在植物抗病育種中的應用[59]。然而近年人們發(fā)現(xiàn)編輯S基因中參與病原物寄生的功能區(qū)域或位點,可以保留其在植物生理過程中的功能,在克服突變S基因負面影響的同時提高對病原物的抗性。因此,隨著越來越多植物線蟲病S基因功能的解析,利用基因編輯技術對其精準定向編輯,可獲得無缺陷表型的抗線蟲植物[66]。更有意思的是,基因編輯可以不添加任何外源性的基因而獲得非轉基因的抗病植物。在一些國家,利用CRISPR/Cas編輯的植物,已經(jīng)不像轉基因植物那樣受到監(jiān)管[76]。因此,可以預見利用CRISPR/Cas技術定向編輯S基因進行抗病育種將是今后防治線蟲病的一種有效手段。

        參考文獻

        [1]"ABAD"P,"GOUZY"J,"AURY"J"M,"et"al."Genome"sequence"of"the"metazoan"plantparasitic"nematode"Meloidogyne"incognita"[J]."Nature"Biotechnology,"2008,"26(8):"909915.

        [2]"JONES"J,"HAEGEMAN"A,"DANCHIN"E,"et"al."Top"10"plantparasitic"nematodes"in"molecular"plant"pathology"[J]."Molecular"Plant"Pathology,"2013,"14(9):"946961.

        [3]"彭德良."植物線蟲病害:"我國糧食安全面臨的重大挑戰(zhàn)[J]."生物技術通報,"2021,"37(7):"12.

        [4]"WANG"Xiaomin,"CHENG"Rui,"XU"Daochao,"et"al."MG1"interacts"with"a"protease"inhibitor"and"confers"resistance"to"rice"rootknot"nematode"[J/OL]."Nature"Communications,"2023,"14(1):"3354."DOI:"10.1038/s41467023390806.

        [5]"LIU"Yang,"CAO"Hongyi,"LING"Jian,"et"al."Molecular"cloning"and"functional"analysis"of"the"pepper"resistance"gene"Me3"to"rootknot"nematode"[J]."Horticultural"Plant"Journal,"2023,"9(1):"133144.

        [6]"VAN"SCHIE"C"C"N,"TAKKEN"F"L"W."Susceptibility"genes"101:"How"to"be"a"good"host"[J]."Annual"Review"of"Phytopathology,"2014,"52:"551581."

        [7]"WANG"Ertao,"SCHORNACK"S,"MARSH"J"F,"et"al."A"common"signaling"process"that"promotes"mycorrhizal"and"oomycete"colonization"of"plants"[J]."Current"Biology,"2012,"22(23):"22422246.

        [8]"HANSJAKOB"A,"RIEDERER"M,"HILDEBRANDT"U."Wax"matters:"absence"of"verylongchain"aldehydes"from"the"leaf"cuticular"wax"of"the"glossy11"mutant"of"maize"compromises"the"prepenetration"processes"of"Blumeria"graminis"[J]."Plant"Pathology,"2011,"60(6):"11511161.

        [9]"LI"Yue,"ZHANG"Rongrong,"WU"Yu,"et"al."TaRBP1"stabilizesnbsp;TaGLTP"and"negatively"regulates"stripe"rust"resistance"in"wheat"[J]."Molecular"Plant"Pathology,"2023,"24(10):"12051219.

        [10]FU"Jia,"SU"Liyan,"FAN"Jie,"et"al."Systematic"analysis"and"functional"verification"of"citrus"glutathione"Stransferases"reveals"that"CsGSTF1"and"CsGSTU18"contribute"negatively"to"citrus"bacterial"canker"[J]."Horticultural"Plant"Journal,"2024,"10(6):"13091320."

        [11]YOU"Xiaoman,"ZHU"Shanshan,"SHENG"Haowen,"et"al."The"rice"peroxisomal"receptor"PEX5"negatively"regulates"resistance"to"rice"blast"fungus"Magnaporthe"oryzae"[J/OL]."Cell"Reports,"2023,"42(10):"113315."DOI:"10.1016/j.celrep.2023.113315.

        [12]XU"Zhengyin,"XU"Xiameng,"LI"Ying,"et"al."Tal6b/AvrXa27A,"a"hidden"TALE"targeting"the"susceptibility"gene"OsSWEET11a"and"the"resistance"gene"Xa27"in"rice"[J/OL]."Plant"Communications,"2024,"5(2):"100721."DOI:"10.1016/j.xplc.2023.100721.

        [13]KOSEOGLOU"E,"VAN"DER"WOLF"J"M,"VISSER"R,"et"al."Susceptibility"reversed:"modified"plant"susceptibility"genes"for"resistance"to"bacteria"[J]."Trends"Plant"Science,"2022,"27(1):"6979.

        [14]WANG"Haixia,"WANG"Shumei,"WANG"Wei,"et"al."Uptake"of"oomycete"RXLR"effectors"into"host"cells"by"clathrinmediated"endocytosis"[J]."Plant"Cell,"2023,"35(7):"25042526.

        [15]DUTTA"T"K,"RAY"S,"PHANI"V."The"status"of"the"CRISPR/Cas9"research"in"plantnematode"interactions"[J/OL]."Planta,"2023,"258(6):"103."DOI:"10.1007/s00425023042590.

        [16]FUDALI"S"L,"WANG"Congli,"WILLIAMSON"V"M."Ethylene"signaling"pathway"modulates"attractiveness"of"host"roots"to"the"rootknot"nematode"Meloidogyne"hapla"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(1):"7586.

        [17]HU"Yangeng,"YOU"Jia,"LI"Chunjie,"et"al."Ethylene"response"pathway"modulates"attractiveness"of"plant"roots"to"soybean"cyst"nematode"Heterodera"glycinesnbsp;[J/OL]."Scientific"Reports."2017,"23(7):"41282."DOI:"10.1038/srep41282.

        [18]CURTIS"R"H,"PANKAJ,"POWERS"S"J,"et"al."The"Arabidopsis"Fbox/Kelchrepeat"protein"At2g44130"is"upregulated"in"giant"cells"and"promotes"nematode"susceptibility"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(1):"3643.

        [19]HEWEZI"T,"HOWE"P,"MAIER"T"R,"et"al."Cellulose"binding"protein"from"the"parasitic"nematode"Heterodera"schachtii"interacts"with"Arabidopsis"pectin"methylesterase:"cooperative"cell"wall"modification"during"parasitism"[J]."Plant"Cell,"2008,"20(11):"30803093.

        [20]JIN"Jing,"HEWEZI"T,"BAUM"T"J."The"Arabidopsis"bHLH25"and"bHLH27"transcription"factors"contribute"to"susceptibility"to"the"cyst"nematode"Heterodera"schachtii"[J]."The"Plant"Journal,"2011,"65(2):"319328.

        [21]FAVERY"B,"LECOMTE"P,"GIL"N,"et"al."RPE,"a"plant"gene"involved"in"early"developmental"steps"of"nematode"feeding"cells"[J]."The"EMBO"Journal,"1998,"17(23):"67996811.

        [22]HEWEZI"T,"HOWE"P"J,"MAIER"T"R,"et"al."Arabidopsis"spermidine"synthase"is"targeted"by"an"effector"protein"of"the"cyst"nematode"Heterodera"schachtii"[J]."Plant"Physiology,"2010,"152(2):"968984."

        [23]ZHOU"Dongmei,"GODINEZVIDAL"D,"HE"Jianman,"et"al."A"Gtype"lectin"receptor"kinase"negatively"regulates"Arabidopsis"immunity"against"rootknot"nematodes"[J]."Plant"Physiology,"2023,"193(1):"721735.

        [24]LIN"Borong,"ZHUO"Kan,"CHEN"Shiyan,"et"al."A"novel"nematode"effector"suppresses"plant"immunity"by"activating"host"reactive"oxygen"speciesscavenging"system"[J]."New"Phytologist,"2016,"209(3):"11591173.

        [25]ZHANG"Xin,"PENG"Huan,"ZHU"Sirui,"et"al."Nematodeencoded"RALF"peptide"mimics"facilitate"parasitism"of"plants"through"the"FERONIA"receptor"kinase"[J]."Molecular"Plant,"2020,"13(10):"14341454.

        [26]TRUONG"N"M,"CHEN"Yongpan,"MEJIAS"J,"et"al."The"Meloidogyne"incognita"nuclear"effector"MIEFF1"interacts"with"Arabidopsis"cytosolic"glyceraldehyde3phosphate"dehydrogenases"to"promote"parasitism"[J/OL]."Frontiers"in"Plant"Science,"2021,"12:"641480."DOI:"10.3389/fpls.2021."641480.

        [27]HOFMANN"J,"WIECZOREK"K,"BLOCHL"A,"et"al."Sucrose"supply"to"nematodeinduced"syncytia"depends"on"the"apoplasmic"and"symplasmic"pathways"[J]."Journal"of"Experimental"Botany,"2007,"58(7):"15911601.

        [28]ZHOU"Yuan,"ZHAO"Dan,"DUAN"Yuxi,"et"al."AtSWEET1"negatively"regulates"plant"susceptibility"to"rootknot"nematode"disease"[J/OL]."Frontiers"in"Plant"Science,"2023,"14:"1010348."DOI:"10.3389/fpls.2023.1010348.

        [29]NAKAGAMI"S,"NOTAGUCHI"M,"KONDO"T,"et"al."Rootknot"nematode"modulates"plant"CLE3CLV1"signaling"as"a"longdistance"signal"for"successful"infection"[J/OL]."Science"Advance,"2023,"9(22):"f4803."DOI:"10.1126/sciadv.adf4803.

        [30]RADAKOVIC"Z"S,"ANJAM"M"S,"ESCOBAR"E,"et"al."Arabidopsis"HIPP27"is"a"host"susceptibility"gene"for"the"beet"cyst"nematode"Heterodera"schachtii"[J]."Molecular"Plant"Pathology,"2018,"19(8):"19171928.

        [31]SIDDIQUE"S,"RADAKOVIC"Z"S,"HILTL"C,"et"al."The"genome"and"lifestagespecific"transcriptomes"of"a"plantparasitic"nematode"and"its"host"reveal"susceptibility"genes"involved"in"transkingdom"synthesis"of"vitamin"B5"[J/OL]."Nature"Communications,"2022,"13(1):"6190."DOI:"10.1038/s4146702233769w.

        [32]ELASHRY"A,"OKUMOTO"S,"SIDDIQUE"S,"et"al."The"AAP"gene"family"for"amino"acid"permeases"contributes"to"development"of"the"cyst"nematode"Heterodera"schachtii"in"roots"of"Arabidopsis"[J]."Plant"Physiology"Biochemistry,"2013,"70:"379386.

        [33]PARIYAR"S"R,"NAKARMI"J,"ANWER"M"A,"et"al."Amino"acid"permease"6"modulates"host"response"to"cyst"nematodes"in"wheat"and"Arabidopsis"[J]."Nematology,"2018,"20(8):"737750.

        [34]GLEASON"C,"LEELARASAMEE"N,"MELDAU"D,"et"al."OPDA"has"key"role"in"regulating"plant"susceptibility"to"the"rootknot"nematode"Meloidogyne"hapla"in"Arabidopsis"[J/OL]."Frontiers"in"Plant"Science,"2016,"7:"1565."DOI:"10.3389/fpls.2016.01565.

        [35]ZHAO"Jianlong,"HUANG"Kaiwei,"LIU"Rui,"et"al."The"rootknot"nematode"effector"Mi2G02"hijacks"a"host"plant"trihelix"transcription"factor"to"promote"nematode"parasitism"[J/OL]."Plant"Communications,"2024,"5(2):"100723."DOI:"10.1016/j.xplc.2023."100723."

        [36]MEJIAS"J,"BAZIN"J,"TRUONG"N,"et"al."The"rootknot"nematode"effector"MiEFF18"interacts"with"the"plant"core"spliceosomal"protein"SmD1"required"for"giant"cell"formation"[J]."New"Phytologist,"2020,"229(6):"30373613.

        [37]SUZUKI"R,"KANNO"Y,"ABRILURIAS"P,"et"al."Local"auxin"synthesis"mediated"by"YUCCA4"induced"during"rootknot"nematode"infection"positively"regulates"gall"growth"and"nematode"development"[J/OL]."Frontiers"in"Plant"Science,"2022,"13:"1019427."DOI:"10.3389/fpls.2022."1019427.

        [38]CLMENT"M,"KETELAAR"T,"RODIUC"N,"et"al."Actindepolymerizing"factor2mediated"actin"dynamics"are"essential"for"rootknot"nematode"infection"of"Arabidopsis"[J]."Plant"Cell,"2009,"21(9):"29632979.

        [39]VERMA"A,"LEE"C,"MORRISS"S,"et"al."The"novel"cyst"nematode"effector"protein"30D08"targets"host"nuclear"functions"to"alter"gene"expression"in"feeding"sites"[J]."New"Phytologist,"2018,"219(2):"697713.

        [40]CABRERA"J,"DAZMANZANO"F"E,"SANCHEZ"M,"et"al."A"role"for"LATERAL"ORGAN"BOUNDARIESDOMAIN"16"during"the"interaction"ArabidopsisMeloidogyne"spp."provides"a"molecular"link"between"lateral"root"and"rootknot"nematode"feeding"site"development"[J]."New"Phytologist,"2014,"203(2):"632645."

        [41]DE"ALMEIDA"E"J,"KYNDT"T,"VIEIRA"P,"et"al."CCS52"and"DEL1"genes"are"key"components"of"the"endocycle"in"nematodeinduced"feeding"sites"[J]."The"Plant"Journal,"2012,"72(2):"185198.

        [42]PIYA"S,"BINDER"B"M,"HEWEZI"T."Canonical"and"noncanonical"ethylene"signaling"pathways"that"regulate"Arabidopsis"susceptibility"to"the"cyst"nematode"Heterodera"schachtii"[J]."New"Phytologist,"2019,"221(2):"946959.

        [43]CHOPRA"D,"HASAN"M"S,"MATERA"C,"et"al."Plant"parasitic"cyst"nematodes"redirect"host"indole"metabolism"via"NADPH"oxidasemediated"ROS"to"promote"infection"[J]."New"Phytologist,"2021,"232(1):"318331.

        [44]ROZANSKA"E,"KREPSKI"T,"WISNIEWSKA"A."Mutations"in"selected"abarelated"genes"reduce"level"of"Arabidopsis"thaliana"susceptibility"to"the"beet"cyst"nematode"Heterodera"schachtii"[J/OL]."Plants,"2023,"12(12):"12122299."DOI:"10.3390/plants12122299.

        [45]GRUNEWALD"W,"KARIMI"M,"WIECZOREK"K,"et"al."A"role"for"AtWRKY23"in"feeding"site"establishment"of"plantparasitic"nematodes"[J]."Plant"Physiology,"2008,"148(1):"358368.

        [46]BHATTARAI"K"K,"XIE"Qiguang,"MANTELIN"S,"etnbsp;al."Tomato"susceptibility"to"rootknot"nematodes"requires"an"intact"jasmonic"acid"signaling"pathway"[J]."Molecular"PlantMicrobe"Interactions,"2008,"21(9):"12051214."

        [47]ZOU"Jinping,"CHEN"Xinlin,"LIU"Chenxu,"et"al."Autophagy"promotes"jasmonatemediated"defense"against"nematodes"[J/OL]."Nature"Communications,"2023,"14(1):"4769."DOI:"10."1038/s4146702340472x.

        [48]CHINNAPANDI"B,"BUCKI"P,"BRAUN"M"S."SlWRKY45,"nematoderesponsive"tomato"WRKY"gene,"enhances"susceptibility"to"the"root"knot"nematode;"M.javanica"infection"[J/OL]."Plant"Signaling"Behavior,"2017,"12(12):"e1356530."DOI:"10.1080/15592324.2017.1356530.

        [49]HUANG"Huang,"ZHAO"Wenchao,"QIAO"Hui,"et"al."SlWRKY45"interacts"with"jasmonateZIM"domain"proteins"to"negatively"regulate"defense"against"the"rootknot"nematode"Meloidogyne"incognita"in"tomato"[J/OL]."Horticulture"Research,"2022,"9:"197."DOI:"10.1093/hr/uhac197.

        [50]NOUREDDINE"Y,"DA"R"M,"AN"J,"et"al."AUXIN"RESPONSIVE"FACTOR8"regulates"development"of"the"feeding"site"induced"by"rootknot"nematodes"in"tomato"[J]."Journal"of"Experimental"Botany,"2023,"74(18):"57525766.

        [51]MEJIAS"J,"CHEN"Y,"BAZIN"J,"et"al."Silencing"the"conserved"small"nuclear"ribonucleoprotein"SmD1"target"gene"alters"susceptibility"to"rootknot"nematodes"in"plants"[J]."Plant"Physiology,"2022,"189(3):"17411756.

        [52]SONG"Handa,"LIN"Borong,"HUANG"Qiulin,"et"al."The"Meloidogyne"graminicola"effector"MgMO289"targets"a"novel"copper"metallochaperone"to"suppress"immunity"in"rice"[J]."Journal"of"Experimental"Botany,"2021,"72(15):"56385655.

        [53]DIMKPA"S,"PRICE"A"H."Rice"striga"and"nematode"interactions:"implication"of"strigolactone"biosynthetic"max"1"genes"[C]∥UK"Plant"Science,"2014.

        [54]LAHARI"Z,"ULLAH"C,"KYNDT"T,"et"al."Strigolactones"enhance"rootknot"nematode"(Meloidogyne"graminicola)"infection"in"rice"by"antagonizing"the"jasmonate"pathway"[J]."New"Phytologist,"2019,"224(1):"454465.

        [55]ZHANG"Xin,"WANG"Dongmei,"CHEN"Jia,"et"al."Nematode"RALFlike"1"targets"soybean"malectinlike"receptor"kinase"to"facilitate"parasitism"[J/OL]."Frontiers"in"Plant"Science,"2021,"12:"775508."DOI:"10.3389/fpls.2021.775508.

        [56]USOVSKY"M,"GAMAGE"V"A,"MEINHARDT"C"G,"et"al."Lossoffunction"of"an"αSNAP"gene"confers"resistance"to"soybean"cyst"nematode"[J/OL]."Nature"Communications,"2023,"14(1):"7629."DOI:"10.1038/s4146702343295y.

        [57]ZHAO"Jie,"DUAN"Yukai,"KONG"Lingan,"et"al."Opposite"beet"cyst"nematode"infection"phenotypes"of"transgenic"Arabidopsis"between"overexpressing"GmSNAP18"and"AtSNAP2"and"between"overexpressing"GmSHMT08"and"AtSHMT4"[J]."Phytopathology,"2022,"112(11):"23832390.

        [58]HAWK"T,"PIYA"S,"BAHRAMI"ZADEGAN"S,"et"al."The"soybean"immune"receptor"GmBIR1"regulates"host"transcriptome,"spliceome,"and"immunity"during"cyst"nematode"infection"[J]."New"Phytologist,"2023,"239(6):"23352352.

        [59]ZHANG"Xu,"LI"Shihui,"LI"Xin,"et"al."Peatbased"hairy"root"transformation"using"Rhizobium"rhizogenes"as"a"rapid"and"efficient"tool"for"easily"exploring"potential"genes"related"to"rootknot"nematode"parasitism"and"host"response"[J/OL]."Plant"Methods,"2023,"19(1):"22."DOI:"10.1186/s13007023010033.

        [60]CURTIS"R"H."Plantnematode"interactions:"environmental"signals"detected"by"the"nematode’s"chemosensory"organs"control"changes"in"the"surface"cuticle"and"behaviour"[J]."Parasite,"2008,"15(3):"310316.

        [61]CEPULYTE"R,"DANQUAH"W"B,"BRUENING"G,"et"al."Potent"attractant"for"rootknot"nematodes"in"exudates"from"seedling"root"tips"of"two"host"species"[J/OL]."Scientific"Reports,"2018,"8(1):"10847."DOI:"10.1038/s41598018291654.

        [62]ESCUDERO"MARTINEZ"C"M,"GUARNERI"N,"OVERMARS"H,"et"al."Distinct"roles"for"strigolactones"in"cyst"nematode"parasitism"of"Arabidopsis"roots"[J]."European"Journal"of"Plant"Pathology,"2019,"154(1):"129140.

        [63]PIYA"S,"HAWK"T,"PATEL"B,"et"al."Kinasedead"mutation:"A"novel"strategy"for"improving"soybean"resistance"to"soybean"cyst"nematode"Heterodera"glycines"[J]."Molecular"Plant"Pathology,"2022,"23(3):"417430.

        [64]HOFMANN"J,"HESS"P"H,"SZAKASITS"D,"et"al."Diversity"and"activity"of"sugar"transporters"in"nematodeinduced"root"syncytia"[J]."Journal"of"Experimental"Botany,"2009,"60(11):"30853095.

        [65]WIECZOREK"K,"GOLECKI"B,"GERDES"L,"et"al."Expansins"are"involved"in"the"formation"of"nematodeinduced"syncytia"in"roots"of"Arabidopsis"thaliana"[J]."The"Plant"Journal,"2006,"48(1):"98112.

        [66]LI"Shennan,"LIN"Dexing,"ZHANG"Yunwei,"et"al."Genomeedited"powdery"mildew"resistance"in"wheat"without"growth"penalties"[J]."Nature,"2022,"602(7897):"455460.

        [67]XU"Feng,"TONG"Man,"TONG"C"S"W,"et"al."A"combinatorial"CRISPRCas9"screen"identifies"ifenprodil"as"an"adjunct"to"sorafenib"for"liver"cancer"treatment"[J]."Cancer"Research,"2021,"81(24):"62196232.

        无码国产精品一区二区免费模式| 日日噜噜噜夜夜狠狠久久蜜桃 | 97在线观看播放| ā片在线观看| 波多野无码AV中文专区 | a级福利毛片| 中文字幕这里都是精品| 不卡一区二区视频日本| 中文字幕乱偷无码av先锋蜜桃| 秋霞午夜无码鲁丝片午夜精品| 久久久久AV成人无码网站| 一本色道久久亚洲av红楼| 亚洲香蕉成人av网站在线观看| 色悠久久久久综合欧美99| 69av视频在线| 亚洲综合在不卡在线国产另类| 亚洲av日韩av永久无码下载| 无码少妇一区二区三区| 无码免费午夜福利片在线| 亚洲综合一区二区三区在线观看| 97人人模人人爽人人喊网| 国产美女遭强高潮网站| 人妻av一区二区三区高| 日韩中文字幕一区二区二区| 国产精品多p对白交换绿帽| 亚洲欧美国产日韩字幕| 午夜国产小视频在线观看黄| 亚洲中文久久精品字幕| 成人免费一区二区三区| 精品中文字幕制服中文| 天堂av国产一区二区熟女人妻| 精品国产一区二区三区2021| 无码少妇一区二区三区芒果| 中文字幕成人精品久久不卡| 精品国产一区二区三区香 | 国产一区二区三区激情视频 | 亚洲成色在线综合网站| 97久久成人国产精品免费| 一区二区三区中文字幕脱狱者| 日韩成人无码| 91久久福利国产成人精品|