[摘要] 隨著數(shù)字化技術(shù)和3D打印技術(shù)的飛速發(fā)展,數(shù)字化導(dǎo)板在口腔醫(yī)學(xué)領(lǐng)域的應(yīng)用日漸廣泛。近年來,許多學(xué)者開始將這項(xiàng)技術(shù)應(yīng)用于牙髓治療領(lǐng)域,以完成更精準(zhǔn)、更微創(chuàng)、更高效的牙髓治療。本文將對(duì)數(shù)字化導(dǎo)板技術(shù)在牙髓治療中的工作流程,以及該技術(shù)在非手術(shù)牙髓治療及根尖手術(shù)中的應(yīng)用現(xiàn)狀進(jìn)行闡述。
[關(guān)鍵詞] 數(shù)字化導(dǎo)板; 錐形束CT; 3D打印; 根管通路建立
[中圖分類號(hào)] R781.05 [文獻(xiàn)標(biāo)志碼] A [doi] 10.7518/gjkq.2024086
近年來,基于計(jì)算機(jī)技術(shù)、錐形束CT (conebeam CT,CBCT) 和3D打印技術(shù)的數(shù)字化導(dǎo)板技術(shù)在口腔醫(yī)學(xué)領(lǐng)域的應(yīng)用日益廣泛。數(shù)字化導(dǎo)板因其精確定位和精準(zhǔn)引導(dǎo)的作用,使口腔治療更安全、更微創(chuàng),且大大縮短了椅旁時(shí)間。在口腔治療領(lǐng)域,數(shù)字化導(dǎo)板技術(shù)主要應(yīng)用于口腔種植和口腔頜面外科手術(shù),在牙髓領(lǐng)域的應(yīng)用開展較晚也較少。2015年數(shù)字化導(dǎo)板被應(yīng)用在牙髓治療領(lǐng)域進(jìn)行1例發(fā)育畸形的上中切牙的根管治療[1]。此后,很多學(xué)者們開始應(yīng)用導(dǎo)板進(jìn)行牙髓鈣化患牙的根管定位。Zehnder等[2]將導(dǎo)板引導(dǎo)下的牙髓治療稱為“Guided endodontics”,該術(shù)語被沿用至今。在短短幾年內(nèi),數(shù)字化導(dǎo)板在設(shè)計(jì)上被不斷改良,精確度大大提高,應(yīng)用局限被不斷突破,這使得該技術(shù)在牙髓治療中得以推廣,除應(yīng)用于牙髓鈣化和發(fā)育畸形患牙的根管定位以外,數(shù)字化導(dǎo)板還可以引導(dǎo)纖維樁的去除、復(fù)雜根尖手術(shù)的根尖定位。本文將對(duì)數(shù)字化導(dǎo)板技術(shù)在牙髓治療領(lǐng)域的工作流程、在非手術(shù)牙髓治療和根尖手術(shù)中的應(yīng)用現(xiàn)狀作一綜述。
1 數(shù)字化導(dǎo)板技術(shù)的工作流程
術(shù)前,患者需要拍攝CBCT,獲取患牙牙體及周圍組織的三維影像,數(shù)據(jù)以DICOM格式存儲(chǔ)。隨后,對(duì)患者進(jìn)行口內(nèi)表面掃描,為導(dǎo)板設(shè)計(jì)表面固位形貌提供數(shù)據(jù)基礎(chǔ),數(shù)據(jù)以STL格式存儲(chǔ)。將上述2個(gè)數(shù)據(jù)文件導(dǎo)入導(dǎo)板設(shè)計(jì)軟件中,使用牙冠標(biāo)記點(diǎn)重疊法進(jìn)行2個(gè)數(shù)據(jù)的擬合匹配,三維對(duì)比分析技術(shù)顯示2個(gè)數(shù)據(jù)基本重疊后,即可在軟件輔助下進(jìn)行虛擬手術(shù)規(guī)劃,設(shè)計(jì)鉆針的進(jìn)入位置、方向和深度等,據(jù)此進(jìn)行數(shù)字化導(dǎo)板的設(shè)計(jì)。將最終設(shè)計(jì)的導(dǎo)板數(shù)據(jù)以STL格式交付3D打印機(jī)打印實(shí)體化導(dǎo)板,于患者口中試戴,確定就位穩(wěn)定后即可臨床使用[3] (圖1)。
2 數(shù)字化導(dǎo)板技術(shù)在非手術(shù)牙髓治療中的應(yīng)用
2.1 數(shù)字化導(dǎo)板引導(dǎo)下根管通路的建立
根管治療是通過徹底的根管預(yù)備、有效的根管消毒和嚴(yán)密的根管充填實(shí)現(xiàn)對(duì)感染的有效控制,從而防止根尖周病變的發(fā)生、促進(jìn)根尖周病變愈合[4]。而獲得準(zhǔn)確的根管通路是根管預(yù)備和根管充填的基礎(chǔ),自然也是獲得根管治療成功的關(guān)鍵。因牙外傷、磨損、正畸治療等引起的牙髓鈣化,以及牙齒發(fā)育畸形引起的牙根形態(tài)異常必然會(huì)使根管通路的建立變得困難[5]。臨床中,為了獲得復(fù)雜解剖患牙的根管通路,通常需要磨除大量的健康牙體組織,勢(shì)必會(huì)增加根管治療術(shù)中并發(fā)癥(穿孔、臺(tái)階、器械分離等) 的發(fā)生率,也會(huì)大大增加術(shù)后根折的風(fēng)險(xiǎn)[6]。雖然顯微根管治療術(shù)使上述問題得到了一定程度的解決,但是硬組織損失量過大依舊是這類患牙無法在治療后長期存留的主要原因[7]。數(shù)字化導(dǎo)板技術(shù)可實(shí)現(xiàn)根管通路的精準(zhǔn)定位,因此更微創(chuàng),有望提高復(fù)雜解剖的患牙的根管治療成功率并改善遠(yuǎn)期預(yù)后,因此逐漸得到了臨床醫(yī)生的認(rèn)可。
2015年,數(shù)字化導(dǎo)板被用于1顆嚴(yán)重發(fā)育畸形的上頜中切牙的根管治療,在此病例報(bào)告[1]中,作者使用3D打印機(jī)打印了含有內(nèi)部結(jié)構(gòu)的患牙模型, 并設(shè)計(jì)打印了放置在單顆牙齒上的夾具“jig”, 在此jig的引導(dǎo)下完成了患牙根管入路的制備,這便是引導(dǎo)根管通路的數(shù)字化導(dǎo)板的雛形。此后,有學(xué)者[8-9]開始使用當(dāng)時(shí)已被廣泛應(yīng)用的牙科種植導(dǎo)板的設(shè)計(jì)軟件,匹配數(shù)字化印模和CBCT圖像,設(shè)計(jì)并打印開髓導(dǎo)板,并在導(dǎo)板中插入金屬套筒以引導(dǎo)開髓車針精準(zhǔn)地去除根管內(nèi)鈣化組織。自此,這種含引導(dǎo)套筒的3D打印數(shù)字化開髓導(dǎo)板開始進(jìn)入更多牙髓科醫(yī)生的視線,被成功用于多例鈣化根管的通路建立[8,10-18] (圖2)。其中多個(gè)病例進(jìn)行了6~15個(gè)月的追蹤隨訪,均無臨床癥狀與體征,部分原始根尖周炎病例的隨訪X線結(jié)果顯示根尖周病變愈合[8,11,17-18]。Buchgreitz等[19]使用體外模型,將術(shù)后實(shí)際路徑疊加到術(shù)前計(jì)劃路徑上,評(píng)估導(dǎo)板在引導(dǎo)根管通路中的精確性,發(fā)現(xiàn)實(shí)際路徑與計(jì)劃路徑的距離偏差小于0.7 mm。Zehnder等[2]使用類似的研究方法,得出了更好的導(dǎo)板精確性結(jié)論(距離偏差0.16~0.21 mm,角度偏差1.81°)。除了證實(shí)開髓導(dǎo)板在精確性上的可行性以外,還有學(xué)者[20-22]評(píng)價(jià)了其在微創(chuàng)、技術(shù)敏感性,以及節(jié)省椅旁時(shí)間中的表現(xiàn),發(fā)現(xiàn)與傳統(tǒng)自由手相比,使用開髓導(dǎo)板時(shí)硬組織損失量更少,操作時(shí)間更短,且該技術(shù)在臨床中不受操作者經(jīng)驗(yàn)的影響。在一個(gè)對(duì)50例髓腔阻塞的單根牙進(jìn)行的臨床研究[23]中,數(shù)字化導(dǎo)板成功地輔助完成了所有病例患牙的根管導(dǎo)航,其術(shù)后1年隨訪結(jié)果證明其臨床療效良好,此研究還證實(shí)了導(dǎo)板的精確度不受患者年齡、性別、閉塞段長度及既往治療史的影響。針對(duì)數(shù)字化導(dǎo)板被質(zhì)疑的冷卻水難以到達(dá)術(shù)區(qū)從而引起牙周膜和牙槽骨損傷的問題,有研究[24]對(duì)比了導(dǎo)板輔助導(dǎo)航、ET20,及ProTaperF3對(duì)牙根表面溫度的改變,發(fā)現(xiàn)導(dǎo)板導(dǎo)航引起的牙根表面升溫程度最小。當(dāng)然,導(dǎo)板引導(dǎo)下建立根管通路也有失敗病例被報(bào)道。Fonseca Tavares等[25]報(bào)道了1例根管鈣化達(dá)根尖1/3的上前牙病例,在使用導(dǎo)板引導(dǎo)建立根管通路的過程中,發(fā)生了根管偏移及根管壁穿孔,作者指出,對(duì)于嚴(yán)重牙髓鈣化的患牙,如CBCT影像也無法準(zhǔn)確判斷根管通路,那么虛擬路徑的精確性則受到巨大挑戰(zhàn),此種情況建議另覓治療方案。盡管如此,數(shù)字化導(dǎo)板用于引導(dǎo)復(fù)雜根管的通路建立仍不失為一種有效且較為安全的手段。
很多學(xué)者借鑒了數(shù)字化導(dǎo)板在鈣化根管治療中的成功應(yīng)用經(jīng)驗(yàn),不斷嘗試將這項(xiàng)技術(shù)應(yīng)用于各種復(fù)雜解剖的牙齒治療,如牙內(nèi)陷和融合牙的治療。有研究[26-29]采用數(shù)字化導(dǎo)板對(duì)Oehler’s Ⅱ型牙內(nèi)陷患牙的內(nèi)陷區(qū)及主根管通過精準(zhǔn)導(dǎo)航進(jìn)行微創(chuàng)清理和預(yù)備,保留了更多的健康牙體組織,有效地避免了術(shù)中并發(fā)癥如根管偏移及穿孔的發(fā)生,并且術(shù)后1年回訪根尖周病變完全消失。Sato等[30]使用數(shù)字化導(dǎo)板技術(shù)進(jìn)行了1例復(fù)雜融合牙的治療,利用CBCT提供的解剖信息規(guī)劃融合牙切割部位,在導(dǎo)板引導(dǎo)下進(jìn)行口內(nèi)半切術(shù),實(shí)現(xiàn)了口內(nèi)安全分離融合牙。
目前,開髓導(dǎo)板用于根管通路的建立仍具有一定的局限。比如,使用開髓導(dǎo)板導(dǎo)航只適用于直根管或者彎曲根管的直線段;在牙缺失過多的情況下,導(dǎo)板的穩(wěn)定性會(huì)降低;此外,目前的開髓導(dǎo)板大多應(yīng)用于前牙,在后牙區(qū)由于垂直距離的限制應(yīng)用較少[31-32]。為解決垂直距離對(duì)于開髓導(dǎo)板的使用限制,有學(xué)者[31]在1例病例報(bào)告中將占用垂直距離的套筒從導(dǎo)板上移除,發(fā)明了樹脂基的冠內(nèi)導(dǎo)板,成功完成了1例老年患者上頜磨牙的鈣化根管的治療,術(shù)后2年回訪患者無癥狀,且X線片見牙周膜連續(xù)。Torres等[32]率先嘗試將傳統(tǒng)導(dǎo)板中位于牙冠上的套筒轉(zhuǎn)移至牙齒的頰舌兩側(cè),形成2個(gè)帶有安全止動(dòng)裝置的空心圓柱形導(dǎo)軌,這種無套筒導(dǎo)板不僅節(jié)省了垂直距離,冷卻水也更易到達(dá)術(shù)區(qū),在有多顆牙缺失的情況下其設(shè)計(jì)也更靈活。目前常用的開髓鉆針直徑過大,導(dǎo)致疏通過程中會(huì)過度去除牙體組織,為解決此問題,有學(xué)者嘗試定制更細(xì)的專用車針(直徑0.85 mm) 配合導(dǎo)板疏通下頜切牙,發(fā)現(xiàn)減少了角度偏差[33-34]。國內(nèi)1例右上中切牙和左下中切牙根管治療的病例報(bào)告[15]也報(bào)道了定制車針的應(yīng)用(直徑0.8 mm)??梢?,數(shù)字化導(dǎo)板及配套工具的不斷改良定會(huì)拓寬該技術(shù)的應(yīng)用范圍。
2.2 數(shù)字化導(dǎo)板引導(dǎo)下纖維樁的拆除
隨著人群患牙保存意識(shí)的提高,拆除原有修復(fù)體后重新根管治療并修復(fù)的需求不斷增加。由于纖維樁在過去幾十年中的廣泛應(yīng)用,對(duì)于原來樁核冠修復(fù)的患牙,拆除根管纖維樁成為了根管再治療前的一大難題。而纖維樁經(jīng)過粘接后與牙本質(zhì)結(jié)合牢固,無法整體去除,往往需要磨除全部樁體,在此過程中很容易造成過量的牙本質(zhì)損失,有磨除路徑偏斜甚至根管壁側(cè)穿的風(fēng)險(xiǎn)。受到數(shù)字化導(dǎo)板在根管通路建立中應(yīng)用的啟發(fā),很多學(xué)者[35-37]提出并證實(shí)了數(shù)字化導(dǎo)板在纖維樁拆除中的應(yīng)用可行性。與引導(dǎo)牙髓治療類似,使用導(dǎo)板引導(dǎo)纖維樁的拆除需要先在數(shù)字化模型上規(guī)劃磨除路徑,設(shè)計(jì)導(dǎo)板的位置,并確定拆除鉆針的尺寸。將打印出的導(dǎo)板就位于患牙,確定穩(wěn)固后,使用匹配的鉆針對(duì)纖維樁進(jìn)行精準(zhǔn)拆除。
在數(shù)字化模型上精準(zhǔn)規(guī)劃后,可以在保留冠修復(fù)體的同時(shí),精準(zhǔn)且保守地去除原有纖維樁,縮短椅旁時(shí)間,減少患者經(jīng)濟(jì)成本及時(shí)間成本[36]。Maia等[37]在保留原有烤瓷全冠的基礎(chǔ)上,導(dǎo)板引導(dǎo)下去除根管纖維樁,并完成根管再治療和開髓窩洞的樹脂修復(fù),18個(gè)月后回訪X線片見根尖周病損愈合。另外在1例右上尖牙的病例報(bào)告[38]中,在術(shù)前規(guī)劃路徑的同時(shí)設(shè)計(jì)好新的樁核冠,同時(shí)設(shè)計(jì)引導(dǎo)拆除纖維樁的導(dǎo)板以及引導(dǎo)樁核就位的導(dǎo)板,在一次就診中完成了纖維樁的拆除和樁核冠修復(fù)。與引導(dǎo)根管通路建立的導(dǎo)板相似,在后牙應(yīng)用導(dǎo)板拆除纖維樁同樣面臨垂直距離的限制,解決方案也同樣是將套筒轉(zhuǎn)移至冠內(nèi)或牙齒頰舌側(cè)[39-41]。截至目前,應(yīng)用導(dǎo)板引導(dǎo)纖維樁拆除的病例報(bào)告較少,需要更多的研究來驗(yàn)證數(shù)字化導(dǎo)板引導(dǎo)下去除纖維樁的準(zhǔn)確性和可重復(fù)性。
3 數(shù)字化導(dǎo)板技術(shù)在根尖手術(shù)中的應(yīng)用
對(duì)于根管治療失敗,尤其是非手術(shù)根管再治療失敗的遷延不愈根尖周炎,臨床上首選根尖手術(shù)。微創(chuàng)的去骨和徹底的清創(chuàng)是獲得較短的愈合時(shí)間、較少的術(shù)后疼痛,以及較好的遠(yuǎn)期預(yù)后的關(guān)鍵因素。近幾十年來,牙髓顯微外科(endodonticmicrosurgery,EMS) 在臨床實(shí)踐中被廣泛應(yīng)用,相較于傳統(tǒng)的根尖手術(shù),EMS手術(shù)的去骨范圍可縮小至直徑3~4 mm[42]。然而,即便如此,術(shù)前根據(jù)解剖標(biāo)記點(diǎn)以及術(shù)前影像學(xué)測(cè)量確定去骨和根尖切除的位置依然是手術(shù)成功的先決條件。利用術(shù)前三維數(shù)據(jù),在軟件中定位根尖并虛擬規(guī)劃手術(shù)入路,設(shè)計(jì)并打印帶有引導(dǎo)孔的手術(shù)導(dǎo)板,可達(dá)到精準(zhǔn)定位根尖從而微創(chuàng)去骨的目的[43]。在引導(dǎo)孔或者鉆針上設(shè)計(jì)止動(dòng)裝置,可在定位的同時(shí)定深[44-45]。近年來,有國內(nèi)學(xué)者[46-47]通過對(duì)引導(dǎo)孔三維形狀的設(shè)計(jì),制作出根尖切除導(dǎo)板,在很大程度上實(shí)現(xiàn)了對(duì)根尖切除位置、長度以及角度的控制(圖3)。
2007年,Pinsky等[48]率先設(shè)計(jì)制作了一種根尖定位導(dǎo)板,并在體外模型上證實(shí)了,在該導(dǎo)板引導(dǎo)下的根尖定位較傳統(tǒng)自由手的誤差小、效率高,因此提出在顯微根尖手術(shù)中應(yīng)用引導(dǎo)技術(shù)有望獲得更佳的手術(shù)效果,這一想法在10年后被付諸臨床實(shí)踐。Strbac等[49]利用3D打印的支架式導(dǎo)板限定了去骨區(qū)域、根切水平及角度,成功完成了1例上頜第一磨牙的顯微根尖手術(shù),避免了上頜竇穿孔,進(jìn)一步證實(shí)了引導(dǎo)牙髓顯微外科在微創(chuàng)去骨和精準(zhǔn)根切中的應(yīng)用前景。2018年,Giacomino等[50]使用數(shù)字化導(dǎo)板引導(dǎo)骨環(huán)鉆,單步法同時(shí)完成去骨、根尖切除和活檢取樣,使得3例復(fù)雜病例中的患牙通過精準(zhǔn)微創(chuàng)的顯微根尖手術(shù)得以保留。此后,學(xué)者們[50-51]將這種根尖手術(shù)導(dǎo)板與骨環(huán)鉆結(jié)合使用、嚴(yán)格控制去骨深度及截根直徑和角度的手術(shù)方法稱為靶向牙髓顯微外科(targeted endodonticmicrosurgery,TEMS)。體外研究[52]表明,與EMS相比,TEMS的去骨體積顯著減少,頰舌向根切角度顯著減?。恍市苑矫?,TEMS顯著縮短操作時(shí)間達(dá)650 s。此外,根尖手術(shù)導(dǎo)板擴(kuò)大了顯微根尖手術(shù)的適應(yīng)證,即使術(shù)區(qū)骨板較厚,或臨近重要解剖結(jié)構(gòu)(如上頜竇、下頜神經(jīng)管、頦神經(jīng)、腭大動(dòng)脈等),這種方法也能準(zhǔn)確定位病變位置并建立合適的入路,以最佳的角度進(jìn)行根尖切除[53-57]。有學(xué)者[58]還嘗試在TEMS中利用骨環(huán)鉆保留完整的皮質(zhì)骨,移植回術(shù)區(qū)以加快創(chuàng)口愈合,2個(gè)病例均在超過半年的回訪CBCT影像中觀察到骨愈合。Buniag等[59]針對(duì)2017—2019年接受TEMS治療的23位患者(24顆牙) 進(jìn)行了為期至少1年的術(shù)后隨訪調(diào)查,其中有22例達(dá)到愈合標(biāo)準(zhǔn),手術(shù)成功率達(dá)91.7%,另2例雖然在影像學(xué)上表現(xiàn)為完全愈合,但由于出現(xiàn)叩診或觸診疼痛而被判斷為失敗。從上述研究結(jié)果不難看出,數(shù)字化導(dǎo)板引導(dǎo)的顯微根尖手術(shù)更高效、更精準(zhǔn),也因此減少了并發(fā)癥的發(fā)生率。近年來,多學(xué)科聯(lián)合治療在口腔疾病診療中越來越受到廣大臨床醫(yī)生的重視,而數(shù)字化導(dǎo)板技術(shù)也在其中得到關(guān)注。最近,針對(duì)種植術(shù)區(qū)骨量不足同時(shí)合并鄰牙根尖周病變的臨床現(xiàn)象,國內(nèi)學(xué)者[60-61]率先聯(lián)合手術(shù)導(dǎo)板,實(shí)施種植手術(shù)同期完成鄰牙顯微根尖手術(shù),同時(shí)術(shù)中保留的自體骨用于種植骨增量手術(shù),大大提高了手術(shù)效率,也避免了骨增量手術(shù)中開辟第二術(shù)區(qū),進(jìn)一步減少了患者創(chuàng)傷。
根尖手術(shù)導(dǎo)板的設(shè)計(jì)制作過程,包括數(shù)據(jù)采集、數(shù)據(jù)匹配、模型重建、路徑規(guī)劃和3D打印多個(gè)步驟,其中每一個(gè)環(huán)節(jié)都可能成為影響導(dǎo)板精確度的誤差來源[43]。若將具有較大誤差的導(dǎo)板用于臨床病例,可導(dǎo)致去骨及根尖切除位置偏離規(guī)劃,無法達(dá)到微創(chuàng)的目的,或者術(shù)中增加的調(diào)整步驟延長手術(shù)時(shí)間,甚至損傷血管、神經(jīng)、上頜竇等重要解剖結(jié)構(gòu)[56,62]。在導(dǎo)板設(shè)計(jì)階段,術(shù)者對(duì)CBCT的詳細(xì)判讀至關(guān)重要,術(shù)者須對(duì)術(shù)區(qū)解剖十分熟悉才能在導(dǎo)板設(shè)計(jì)中最大限度地規(guī)避術(shù)中誤差帶來的風(fēng)險(xiǎn)。此外,術(shù)者在試戴導(dǎo)板或者整個(gè)手術(shù)過程中也須時(shí)刻保持警惕,必要時(shí)停下來使用手術(shù)顯微鏡進(jìn)行檢查,若發(fā)現(xiàn)明顯誤差或潛在風(fēng)險(xiǎn),則需做出必要的調(diào)整或重新設(shè)計(jì)打印導(dǎo)板[56]。另外,為獲得導(dǎo)板的穩(wěn)定,需要捕捉更多更準(zhǔn)確的解剖標(biāo)記點(diǎn),因此,設(shè)計(jì)手術(shù)導(dǎo)板通常需要拍攝全牙弓高分辨率CBCT, 它相較于常規(guī)根尖手術(shù)常用的小視窗CBCT,對(duì)患者會(huì)產(chǎn)生更大的輻射暴露[63],同時(shí)也在一定程度上犧牲了局部術(shù)區(qū)結(jié)構(gòu)成像的清晰度。此外,由于手術(shù)導(dǎo)板的遮擋,術(shù)區(qū)視野不佳,且冷卻水無法進(jìn)入術(shù)區(qū)而容易導(dǎo)致骨過熱,這也在一定程度上限制了導(dǎo)板在顯微根尖手術(shù)中的應(yīng)用[44]。
4 小結(jié)與展望
數(shù)字化導(dǎo)板在牙髓病學(xué)的應(yīng)用相較于其他口腔醫(yī)學(xué)領(lǐng)域起步較晚,現(xiàn)有的文獻(xiàn)大多是病例報(bào)告和臨床前研究,然而,從已有證據(jù)不難看出,該技術(shù)在解決上述牙髓治療難題中已展現(xiàn)出不凡的優(yōu)勢(shì)。
近年來,另一種數(shù)字化技術(shù)——?jiǎng)討B(tài)導(dǎo)航技術(shù)蓬勃發(fā)展,已有一定數(shù)量的病例報(bào)道和體外研究將動(dòng)態(tài)導(dǎo)航應(yīng)用于牙髓治療[64-66]。使用動(dòng)態(tài)導(dǎo)航技術(shù)時(shí),術(shù)者可以直視術(shù)野,并實(shí)時(shí)做出相應(yīng)調(diào)整,此外,對(duì)于垂直距離較小的病例,動(dòng)態(tài)導(dǎo)航較導(dǎo)板更具有優(yōu)勢(shì)。但是靜態(tài)的數(shù)字化導(dǎo)板也有其固有的應(yīng)用優(yōu)勢(shì),在保證精確性的前提下,導(dǎo)板因利用套筒或?qū)к壱龑?dǎo)鉆針而更微創(chuàng)[43],同時(shí),導(dǎo)板也有更小的技術(shù)敏感性,且無需昂貴、體積龐大的導(dǎo)航設(shè)備[67]??傊m然動(dòng)態(tài)導(dǎo)航技術(shù)在包括牙髓治療在內(nèi)的口腔治療領(lǐng)域是未來的發(fā)展趨勢(shì),但筆者相信,隨著牙髓治療專用導(dǎo)板設(shè)計(jì)軟件的開發(fā)、專用微創(chuàng)工具的研發(fā)與制作,以及更多循證醫(yī)學(xué)證據(jù)的出現(xiàn),數(shù)字化導(dǎo)板技術(shù)依舊會(huì)擁有不斷被拓寬的應(yīng)用領(lǐng)地。
利益沖突聲明:作者聲明本文無利益沖突。
5 參考文獻(xiàn)
[1] Byun C, Kim C, Cho S, et al. Endodontic treatment
of an anomalous anterior tooth with the aid of a 3-dimensional
printed physical tooth model[J]. J Endod,
2015, 41(6): 961-965.
[2] Zehnder MS, Connert T, Weiger R, et al. Guided
endodontics: accuracy of a novel method for guided
access cavity preparation and root canal location[J].
Int Endod J, 2016, 49(10): 966-972.
[3] Leontiev W, Connert T, Weiger R, et al. Guided endodontics:
three-dimensional planning and templateaided
preparation of endodontic access cavities[J]. J
Vis Exp, 2022(183). doi: 10.3791/63781.
[4] 高學(xué)軍, 岳林. 牙體牙髓病學(xué)[M]. 2 版. 北京: 北京
大學(xué)醫(yī)學(xué)出版社, 2013: 356.
Gao XJ, Yue L. Endodontics[M]. 2nd ed. Beijing:
Peking University Medical Press, 2013: 356.
[5] Tomson PL, Simon SR. Contemporary cleaning and
shaping of the root canal system[J]. Prim Dent J,
2016, 5(2): 46-53.
[6] McCabe PS, Dummer PM. Pulp canal obliteration:
an endodontic diagnosis and treatment challenge[J].
Int Endod J, 2012, 45(2): 177-197.
[7] Ballester B, Giraud T, Ahmed HMA, et al. Current
strategies for conservative endodontic access cavity
preparation techniques-systematic review, meta-analysis,
and decision-making protocol[J]. Clin Oral Investig,
2021, 25(11): 6027-6044.
[8] Krastl G, Zehnder MS, Connert T, et al. Guided endodontics:
a novel treatment approach for teeth with
pulp canal calcification and apical pathology[J].
Dent Traumatol, 2016, 32(3): 240-246.
[9] van der Meer WJ, Vissink A, Ng YL, et al. 3D computer
aided treatment planning in endodontics[J]. J
Dent, 2016, 45: 67-72.
[10] Fonseca Tavares WL, Diniz Viana AC, de Carvalho
Machado V, et al. Guided endodontic access of calcified
anterior teeth[J]. J Endod, 2018, 44(7): 1195-
1199.
[11] Torres A, Shaheen E, Lambrechts P, et al. Microguided
endodontics: a case report of a maxillary lateral
incisor with pulp canal obliteration and apical
periodontitis[J]. Int Endod J, 2019, 52(4): 540-549.
[12] Mena?álvarez J, Rico-Romano C, Lobo-Galindo
AB, et al. Endodontic treatment of dens evaginatus
by performing a splint guided access cavity[J]. J Esthet
Restor Dent, 2017, 29(6): 396-402.
[13] 封瓊, 王一舟, 黃雨婷, 等. 精準(zhǔn)微創(chuàng)根管治療: 3D
導(dǎo)板指引下的鈣化根管疏通術(shù)[J]. 口腔醫(yī)學(xué)研究,
2017, 33(4): 427-431.
Feng Q, Wang YZ, Huang YT, et al. Negotiation of
calcified root canal under guidance of 3D guides:
precise minimally invasive root canal treatment[J]. J
Oral Sci Res, 2017, 33(4): 427-431.
[14] 林捷, 林珍香, 鄭志強(qiáng), 等. 根管導(dǎo)板技術(shù)輔助冠修
復(fù)后磨牙的根管治療[J]. 實(shí)用口腔醫(yī)學(xué)雜志,
2018, 34(5): 648-651.
Lin J, Lin ZX, Zheng ZQ, et al. Endodontic treatment
of the molars following crown restoration by
using endodontic guide technique[J]. J Pract Stomatol,
2018, 34(5): 648-651.
[15] 高羽軒, 汪鎏, 傅裕杰, 等. 數(shù)字化導(dǎo)板引導(dǎo)技術(shù)輔
助微創(chuàng)治療前牙鈣化根管[J]. 華西口腔醫(yī)學(xué)雜志,
2022, 40(1): 111-120.
Gao YX, Wang L, Fu YJ, et al. Minimally invasive
treatment of calcified root canals in anterior teeth
with digital guide technique[J]. West China J Stomatol,
2022, 40(1): 111-120.
[16] 陸志偉, 黃英, 邱小玲, 等. 數(shù)字化根管定位導(dǎo)板應(yīng)
用于完全鈣化根管的臨床報(bào)道1 例[J]. 實(shí)用口腔
醫(yī)學(xué)雜志, 2022, 38(1): 133-135.
Lu ZW, Huang Y, Qiu XL, et al. Treatment of an anterior
teeth with completed calcified root canal by
guided endodontic access: clinical report of a case
[J]. J Pract Stomatol, 2022, 38(1): 133-135.
[17] Krug R, Volland J, Reich S, et al. Guided endodontic
treatment of multiple teeth with dentin dysplasia:
a case report[J]. Head Face Med, 2020, 16(1): 27.
[18] Maia LM, de Carvalho Machado V, da Silva NRFA,
et al. Case reports in maxillary posterior teeth by
guided endodontic access[J]. J Endod, 2019, 45(2):
214-218.
[19] Buchgreitz J, Buchgreitz M, Mortensen D, et al.
Guided access cavity preparation using cone-beam
computed tomography and optical surface scans-an
ex vivo study[J]. Int Endod J, 2016, 49(8): 790-795.
[20] Connert T, Krug R, Eggmann F, et al. Guided endodontics
versus conventional access cavity preparation:
a comparative study on substance loss using 3-
dimensional-printed teeth[J]. J Endod, 2019, 45(3):
327-331.
[21] Loureiro MAZ, Elias MRA, Capeletti LR, et al.
Guided endodontics: volume of dental tissue removed
by guided access cavity preparation-an ex vivo
study[J]. J Endod, 2020, 46(12): 1907-1912.
[22] Kostunov J, Rammelsberg P, Klotz AL, et al. Minimization
of tooth substance removal in normally calcified
teeth using guided endodontics: an in vitro pilot
study[J]. J Endod, 2021, 47(2): 286-290.
[23] Buchgreitz J, Buchgreitz M, Bj?rndal L. Guided
root canal preparation using cone beam computed tomography
and optical surface scans-an observational
study of pulp space obliteration and drill path depth
in 50 patients[J]. Int Endod J, 2019, 52(5): 559-568.
[24] Zhang CF, Zhao X, Chen C, et al. The accuracy of
using guided endodontics in access cavity preparation
and the temperature changes of root surface: an
in vitro study[J]. BMC Oral Health, 2022, 22(1): 504.
[25] Fonseca Tavares WL, de Oliveira Murta Pedrosa N,
Moreira RA, et al. Limitations and management of
static-guided endodontics failure[J]. J Endod, 2022,
48(2): 273-279.
[26] Ali A, Arslan H, Jethani B. Conservative management
of type Ⅱ dens invaginatus with guided endodontic
approach: a case series[J]. J Conserv Dent,
2019, 22(5): 503-508.
[27] 王紅, 張倩倩, 李旭光, 等. 3D 打印根管定位數(shù)字
化導(dǎo)板治療OehlersⅡ型牙內(nèi)陷1 例[J]. 實(shí)用口腔
醫(yī)學(xué)雜志, 2021, 37(3): 428-431.
Wang H, Zhang QQ, Li XG, et al. Endodontic treatment
of type Ⅱ dens invaginatus by using 3D splint
guides for cavity access: a case report[J]. J Pract
Stomatol, 2021, 37(3): 428-431.
[28] Zubizarreta Macho á, Ferreiroa A, Rico-Romano C,
et al. Diagnosis and endodontic treatment of type Ⅱ
dens invaginatus by using cone-beam computed tomography
and splint guides for cavity access: a case
report[J]. J Am Dent Assoc, 2015, 146(4): 266-270.
[29] Ali A, Arslan H. Guided endodontics: a case report
of maxillary lateral incisors with multiple dens invaginatus[
J]. Restor Dent Endod, 2019, 44(4): e38.
[30] Sato M, Garcia-Sanchez A, Sanchez S, et al. Use of
3-dimensional-printed guide in hemisection and autotransplantation
of a fusion tooth: a case report[J].
J Endod, 2021, 47(3): 526-531.
[31] Buchgreitz J, Buchgreitz M, Bj?rndal L. Guided
endodontics modified for treating molars by using
an intracoronal guide technique[J]. J Endod, 2019,
45(6): 818-823.
[32] Torres A, Lerut K, Lambrechts P, et al. Guided endodontics:
use of a sleeveless guide system on an
upper premolar with pulp canal obliteration and apical
periodontitis[J]. J Endod, 2021, 47(1): 133-139.
[33] Connert T, Zehnder MS, Amato M, et al. Microguided
endodontics: a method to achieve minimally invasive
access cavity preparation and root canal location
in mandibular incisors using a novel computerguided
technique[J]. Int Endod J, 2018, 51(2): 247-
255.
[34] Connert T, Zehnder MS, Weiger R, et al. Microguided
endodontics: accuracy of a miniaturized technique
for apically extended access cavity preparation in
anterior teeth[J]. J Endod, 2017, 43(5): 787-790.
[35] Schwindling FS, Tasaka A, Hilgenfeld T, et al. Threedimensional-
guided removal and preparation of dental
root posts-concept and feasibility[J]. J Prosthodont
Res, 2020, 64(1): 104-108.
[36] Maia LM, Moreira Júnior G, Albuquerque RC, et al.
Three-dimensional endodontic guide for adhesive fiber
post removal: a dental technique[J]. J Prosthet
Dent, 2019, 121(3): 387-390.
[37] Maia LM, Bambirra Júnior W, Toubes KM, et al.
Endodontic guide for the conservative removal of a
fiber-reinforced composite resin post[J]. J Prosthet
Dent, 2022, 128(1): 4-7.
[38] Liu RL, Xie CY, Sun ML, et al. Guided removal of
a fractured fiber post and immediate restoration with
a digitally prefabricated titanium post-and-core and
zirconia crown: a clinical report[J]. J Prosthet Dent,
2023, 129(5): 684-689.
[39] Perez C, Finelle G, Couvrechel C. Optimisation of a
guided endodontics protocol for removal of fibrereinforced
posts[J]. Aust Endod J, 2020, 46(1): 107-114.
[40] Xue Y, Zhang L, Cao Y, et al. A three-dimensional
printed assembled sleeveless guide system for fiberpost
removal[J]. J Prosthodont, 2023, 32(2): 178-184.
[41] Mo S, Xu Y, Zhang L, et al. Accuracy of a 3D printed
sleeveless guide system used for fiber post removal:
an in vitro study[J]. J Dent, 2023, 128: 104367.
[42] Setzer FC, Kratchman SI. Present status and future
directions: surgical endodontics[J]. Int Endod J, 2022,
55(Suppl 4): 1020-1058.
[43] Geo TD, Saxena P, Gupta S. Static vs. dynamic navigation
for endodontic microsurgery-A comparative
review[J]. J Oral Biol Craniofac Res, 2022, 12
(4): 410-412.
[44] Ray JJ, Giacomino CM, Wealleans JA, et al. Targeted
endodontic microsurgery: digital workflow options[
J]. J Endod, 2020, 46(6): 863-871.
[45] Nagy E, Braunitzer G, Gryschka DG, et al. Accuracy
of digitally planned, guided apicoectomy with a
conventional trephine and a custom-made endodontic
trephine: an in vitro comparative study[J]. J Stomatol
Oral Maxillofac Surg, 2022, 123(4): 388-394.
[46] 王安琪, 吳麗, 趙丹, 等. 3D 打印根尖切除手術(shù)導(dǎo)
板的設(shè)計(jì)及體外模型效果評(píng)價(jià)[J]. 實(shí)用口腔醫(yī)學(xué)
雜志, 2021, 37(6): 739-742.
Wang AQ, Wu L, Zhao D, et al. Evaluation and case
analysis of 3D printing apicoectomy guide plate[J].
J Pract Stomatol, 2021, 37(6): 739-742.
[47] 彭俐, 王祖華, 孫玉春, 等. 根尖切除手術(shù)導(dǎo)板的計(jì)
算機(jī)輔助設(shè)計(jì)及三維打印[J]. 北京大學(xué)學(xué)報(bào)(醫(yī)學(xué)
版), 2018, 50(5): 905-910.
Peng L, Wang ZH, Sun YC, et al. Computer aided
design and three-dimensional printing forapicoectomy
guide template[J]. J Peking Univ Health Sci, 2018,
50(5): 905-910.
[48] Pinsky HM, Champleboux G, Sarment DP. Periapical
surgery using CAD/CAM guidance: preclinical
results[J]. J Endod, 2007, 33(2): 148-151.
[49] Strbac GD, Schnappauf A, Giannis K, et al. Guided
modern endodontic surgery: a novel approach for
guided osteotomy and root resection[J]. J Endod,
2017, 43(3): 496-501.
[50] Giacomino CM, Ray JJ, Wealleans JA. Targeted
endodontic microsurgery: a novel approach to anatomically
challenging scenarios using 3-dimensional-
printed guides and trephine burs-a report of 3 cases[
J]. J Endod, 2018, 44(4): 671-677.
[51] 湯芝偉, 高鶯. 靶向牙髓顯微外科技術(shù)的應(yīng)用與進(jìn)
展[J]. 國際口腔醫(yī)學(xué)雜志, 2022, 49(6): 678-683.
Tang ZW, Gao Y. Application and progress on targeted
endodontic microsurgery techniques[J]. Int J
Stomatol, 2022, 49(6): 678-683.
[52] Hawkins TK, Wealleans JA, Pratt AM, et al. Targeted
endodontic microsurgery and endodontic microsurgery:
a surgical simulation comparison[J]. Int Endod
J, 2020, 53(5): 715-722.
[53] Ahn SY, Kim NH, Kim S, et al. Computer-aided design/
computer-aided manufacturing-guided endodontic
surgery: guided osteotomy and apex localization
in a mandibular molar with a thick buccal bone plate
[J]. J Endod, 2018, 44(4): 665-670.
[54] Smith BG, Pratt AM, Anderson JA, et al. Targeted
endodontic microsurgery: implications of the greater
palatine artery[J]. J Endod, 2021, 47(1): 19-27.
[55] George R, Cameron A, Meer M. Streamlining and
simplification of surgical stent fabrication for microendodontic
surgery[J]. Aust Endod J, 2020, 46(3):
445-451.
[56] Benjamin G, Ather A, Bueno MR, et al. Preserving
the neurovascular bundle in targeted endodontic microsurgery:
a case series[J]. J Endod, 2021, 47(3):
509-519.
[57] Antal M, Nagy E, Braunitzer G, et al. Accuracy and
clinical safety of guided root end resection with a
trephine: a case series[J]. Head Face Med, 2019, 15
(1): 30.
[58] Popowicz W, Palatyńska-Ulatowska A, Kohli MR.
Targeted endodontic microsurgery: computed tomography-
based guided stent approach with platelet-
rich fibrin graft: a report of 2 cases[J]. J Endod,
2019, 45(12): 1535-1542.
[59] Buniag AG, Pratt AM, Ray JJ. Targeted endodontic
microsurgery: a retrospective outcomes assessment
of 24 cases[J]. J Endod, 2021, 47(5): 762-769.
[60] 滿毅, 黃定明. 美學(xué)區(qū)種植骨增量與鄰牙慢性根尖
周病的聯(lián)合治療策略(上): 應(yīng)用基礎(chǔ)及適應(yīng)證[J].
國際口腔醫(yī)學(xué)雜志, 2022, 49(5): 497-505.
Man Y, Huang DM. Combined treatment strategy of
oral implantology and endodontic microsurgery for
bone augmentation and endodontic diseases in aesthetic
area (part 1): application basis and indications
[J]. Int J Stomatol, 2022, 49(5): 497-505.
[61] 滿毅, 黃定明. 美學(xué)區(qū)種植骨增量與鄰牙慢性根尖
周病的聯(lián)合治療策略(下): 臨床診治流程及實(shí)踐病
例[J]. 國際口腔醫(yī)學(xué)雜, 2022, 49(6): 621-632.
Man Y, Huang DM. Combined treatment strategy of
oral implantology and endodontics microsurgery:
clinical protocol and practical cases (part 2)[J]. Int J
Stomatol, 2022, 49(6): 621-632.
[62] Mainkar A, Zhu Q, Safavi K. Incidence of altered
sensation after mandibular premolar and molar periapical
surgery[J]. J Endod, 2020, 46(1): 29-33.
[63] Wang J, Luo YL, Tan XL, et al. Horizontal bone
augmentation of the edentulous area with simultaneous
endodontic microsurgery of the adjacent tooth:
a digitally-driven multidisciplinary case report with
a 1-year follow-up[J]. Int J Oral Implantol, 2021, 14
(4): 435-451.
[64] Gambarini G, Galli M, Morese A, et al. Precision of
dynamic navigation to perform endodontic ultraconservative
access cavities: a preliminary in vitro analysis[
J]. J Endod, 2020, 46(9): 1286-1290.
[65] Dianat O, Gupta S, Price JB, et al. Guided endodontic
access in a maxillary molar using a dynamic navigation
system[J]. J Endod, 2021, 47(4): 658-662.
[66] Gambarini G, Galli M, Stefanelli LV, et al. Endodontic
microsurgery using dynamic navigation system: a
case report[J]. J Endod, 2019, 45(11): 1397-1402.e6.
[67] Ribeiro D, Reis E, Marques JA, et al. Guided endodontics:
static vs. dynamic computer-aided techniques-
a literature review[J]. J Pers Med, 2022, 12
(9): 1516.
( 本文編輯 張玉楠 )