亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        顳下頜關(guān)節(jié)退行性改變與顱面形態(tài)及顳下頜關(guān)節(jié)形態(tài)結(jié)構(gòu)的關(guān)聯(lián)

        2024-11-06 00:00:00張?zhí)依?/span>龔衍吉劉方張秦蘭蕙劉洋

        [摘要] 顳下頜關(guān)節(jié)退行性關(guān)節(jié)病在影像學(xué)上多表現(xiàn)為髁突骨質(zhì)破壞、增生、硬化、囊樣變或者髁突形態(tài)上的短小畸形,其病因復(fù)雜。相關(guān)臨床研究發(fā)現(xiàn),骨性Ⅱ類或高角骨面型的個(gè)體多見顳下頜關(guān)節(jié)退行性變,偏頜人群中的患病率也較高;同樣有較多的研究提示,髁突骨質(zhì)退行性改變與不可復(fù)性關(guān)節(jié)盤移位等顳下頜關(guān)節(jié)形態(tài)結(jié)構(gòu)存在關(guān)聯(lián),其中的因果關(guān)系目前尚不完全明確。本文主要從解剖學(xué)特征方面綜述顳下頜關(guān)節(jié)退行性改變與顱面形態(tài)的相關(guān)性及與關(guān)節(jié)內(nèi)部形態(tài)結(jié)構(gòu)的相關(guān)性,最后從生物力學(xué)的角度來探討顳下頜關(guān)節(jié)退行性改變的可能原因,以期為臨床工作者了解該疾病及制訂臨床決策提供參考。

        [關(guān)鍵詞] 下頜髁突; 退行性關(guān)節(jié)疾病; 顳下頜關(guān)節(jié); 骨面型; 偏頜; 錯(cuò)畸形

        [中圖分類號(hào)] R782.6 [文獻(xiàn)標(biāo)志碼] A [doi] 10.7518/gjkq.2024062

        顳下頜關(guān)節(jié)退行性關(guān)節(jié)?。╠egenerative temporomandibularjoint disease,DJD) 是一種累及顳下頜關(guān)節(jié)軟硬組織的退行性疾病,影像學(xué)上主要表現(xiàn)為顳下頜關(guān)節(jié)骨組織的吸收、硬化、骨贅形成或囊樣改變,常見于下頜髁突,可伴或不伴臨床癥狀和體征[1-2];臨床上其治療成功率隨患病時(shí)間延長(zhǎng)而下降[3],研究[4]發(fā)現(xiàn)青少年患者的早期髁突骨質(zhì)退行性改變是可以恢復(fù)的,因此早期篩查和診治至關(guān)重要。

        DJD病因復(fù)雜,目前被普遍認(rèn)可的致病因素包括心理應(yīng)激、激素刺激以及關(guān)節(jié)區(qū)應(yīng)力超載,其中應(yīng)力超載被認(rèn)為是導(dǎo)致顳下頜關(guān)節(jié)退行性改變的關(guān)鍵因素[5]。偏頜的個(gè)體多伴有顳下頜關(guān)節(jié)紊亂癥狀[6],顱頜面特征表現(xiàn)為骨性Ⅱ類錯(cuò)畸形、高角骨面型或長(zhǎng)面型的群體中顳下頜關(guān)節(jié)退行性改變的患病率較高[7-9],其病因機(jī)制需進(jìn)一步探究,因此本文首先從顳下頜關(guān)節(jié)退行性改變與不同顱頜面形態(tài)的相關(guān)性、與關(guān)節(jié)內(nèi)部結(jié)構(gòu)的相關(guān)性兩方面進(jìn)行闡述,并進(jìn)一步從顳下頜關(guān)節(jié)內(nèi)部生物力學(xué)的角度探討顳下頜關(guān)節(jié)退行性改變的可能原因,旨在為臨床工作者了解該疾病及制訂臨床決策提供參考。

        1 顳下頜關(guān)節(jié)退行性改變與不同顱頜面形態(tài)的相關(guān)性

        顱頜面形態(tài)的分類多涉及頜骨-顱面的位置關(guān)系,目前關(guān)于DJD與顱頜面形態(tài)的研究中,學(xué)者們多集中于對(duì)垂直骨面型、矢狀骨面型以及偏頜的探討。1) 在垂直向位置關(guān)系上,研究者們對(duì)垂直骨面型有不同的分類標(biāo)準(zhǔn),一種分類是根據(jù)頭顱側(cè)位片上測(cè)量的下頜平面角大小將垂直骨面型分為高角骨面型、均角骨面型和低角骨面型;另一種分類,根據(jù)Ricketts[10]的VERT指數(shù)或根據(jù)下頜平面角聯(lián)合面高指數(shù)(facial height index,F(xiàn)HI)[11]將垂直骨面型分為長(zhǎng)面型、均面型和短面型。2)在矢狀向位置關(guān)系上,根據(jù)ANB角(上牙槽座點(diǎn)A、鼻根點(diǎn)N、下牙槽座點(diǎn)B構(gòu)成的角) 的大小將矢狀骨面型分為骨性Ⅰ類、骨性Ⅱ類和骨性Ⅲ類。3) 偏頜與否可根據(jù)頦點(diǎn)偏離正中矢狀面的距離[12]劃分。

        以下主要從顳下頜關(guān)節(jié)退行性改變與垂直、矢狀骨面型及與偏頜的相關(guān)性進(jìn)行闡述。

        1.1 與垂直、矢狀骨面型的相關(guān)性

        在矢狀骨面型中,骨性Ⅱ類患者往往存在顳下頜關(guān)節(jié)退行性變。Krisjane等[13]對(duì)納入的117例錯(cuò)畸形受試者按矢狀骨面型進(jìn)行分類,并根據(jù)顳下頜關(guān)節(jié)紊亂病研究診斷標(biāo)準(zhǔn)(research diagnosticcriteria for temporomandibular disorder, RDC/TMD) 對(duì)受試者的顳下頜關(guān)節(jié)進(jìn)行錐形束計(jì)算機(jī)斷層掃描(cone-beam computed tomography,CBCT)評(píng)估,結(jié)果發(fā)現(xiàn):骨性Ⅱ類患者組中近一半患者的關(guān)節(jié)內(nèi)可觀察到與骨關(guān)節(jié)炎診斷相對(duì)應(yīng)的硬組織改變,與對(duì)照組骨性Ⅰ類組(3%) 和骨性Ⅲ類組(20%) 相比其發(fā)生率在統(tǒng)計(jì)學(xué)數(shù)據(jù)上最高;Chen等[7]同樣根據(jù)RDC/TMD的診斷標(biāo)準(zhǔn)將83例骨性Ⅱ類女性正畸患者分為3組(正常組、不確定骨關(guān)節(jié)病組和骨關(guān)節(jié)病組),結(jié)果發(fā)現(xiàn):整個(gè)研究組中超過一半患者的顳下頜關(guān)節(jié)硬組織發(fā)生了骨關(guān)節(jié)炎樣改變,其中有1/3的患者被診斷為雙側(cè)顳下頜關(guān)節(jié)骨關(guān)節(jié)?。╰emporomandibular joint osteoarthrosis,TMJOA)。也有學(xué)者發(fā)現(xiàn)在不同矢狀骨面型的人群中DJD的發(fā)生率差異不明顯,Walewski等[14]納入213例無顳下頜關(guān)節(jié)癥狀的不同矢狀骨面型受試者,并對(duì)整個(gè)研究樣本的顳下頜關(guān)節(jié)進(jìn)行CBCT評(píng)估后發(fā)現(xiàn):52.3%的患者出現(xiàn)了顳下頜關(guān)節(jié)退行性骨改變,其中顳下頜關(guān)節(jié)退行性改變?cè)冖耦惢颊咧锌捎^察到占12.9%, Ⅱ類患者中占19%,Ⅲ類患者中占15.6%。以上各學(xué)者之間的實(shí)驗(yàn)設(shè)計(jì)存在很大異質(zhì)性,研究結(jié)果之間有差異不可避免,但各組研究結(jié)果均顯示顳下頜關(guān)節(jié)退行性變?cè)冖蝾惞敲嫘突颊咧邪l(fā)病率最高。在垂直骨面型中,高角骨面型及長(zhǎng)面型患者中也多存在顳下頜關(guān)節(jié)退行性改變[8-9]。

        顳下頜關(guān)節(jié)退行性改變與垂直、矢狀骨面型的相關(guān)性,可通過具體的頭影測(cè)量變量進(jìn)行描述,以下從上下頜骨的形態(tài)、位置和平面斜度三方面進(jìn)行闡述。

        1.1.1 上下頜骨的形態(tài)、位置 學(xué)者們?cè)趯?duì)比評(píng)估患有和無TMJOA受試者的頭顱側(cè)位片時(shí)發(fā)現(xiàn):骨關(guān)節(jié)炎患者組中代表顱頜面形態(tài)的頭影測(cè)量變量表現(xiàn)出顯著差異且差異具有統(tǒng)計(jì)學(xué)意義。其中描述顱底長(zhǎng)度的變量: 后顱底長(zhǎng)度(S-Ba) 較長(zhǎng)[15],描述上頜形態(tài)的線性變量:有效上頜長(zhǎng)度(Co-A) 較短[15],提示TMJOA患者上頜形態(tài)短??;描述下頜形態(tài)的線性變量:髁頂點(diǎn)與下頜角點(diǎn)之間的長(zhǎng)度(CO-GO)[15-16]和髁頂點(diǎn)與頦前點(diǎn)之間的長(zhǎng)度(CO-POG)[15]均較小,角前切跡及升支切跡的深度較大[15],提示TMJOA患者的下頜形態(tài)普遍短小;描述上下頜相對(duì)位置的變量:ANB角增大[7,16],表示下頜相對(duì)上頜后縮;描述下頜位置的變量: 頜凸角(NA-PA)[15]、面角(FH-NP)[15]、SNB角[7,16]均較小,前顱底平面與下頜平面的交角(SN-MP)[7]、眼耳平面與下頜平面的交角(FHMP)[15-16]、Y軸角[15-16]、FH至下頜支平面(RP) 的角度[16]均相對(duì)較大,提示TMJOA患者下頜后旋、后縮;描述上下牙齒關(guān)系的變量:上下中切牙長(zhǎng)軸的夾角及覆蓋更小[15],下中切牙長(zhǎng)軸與NB的夾角和下中切牙切緣至NB的距離較大[15],提示下中切牙唇傾度大;研究[7]顯示:TMJOA患者的后面部高度(S-GO) 和面部高度比(S-Go/N-Me) 也較小。相關(guān)有限元分析[17]也發(fā)現(xiàn):髁突后斜面應(yīng)力集中面積隨SN-MP夾角的增大而增大,髁突骨破壞與SN-MP角有顯著的相關(guān)性。以上這些頭影測(cè)量變量均提示TMJOA與上下頜骨的形態(tài)位置有關(guān),特別是下頜骨的形態(tài)和位置。

        1.1.2 平面斜度 目前沒有足夠的證據(jù)證明顳下頜關(guān)節(jié)骨關(guān)節(jié)病與平面斜度有關(guān),個(gè)別研究者[18]也僅發(fā)現(xiàn)特發(fā)性髁突骨吸收患者的功能平面更陡。因平面并非一個(gè)平面而是一個(gè)曲面,有學(xué)者[19]曾將其細(xì)分為前牙平面(OP-A)、后牙 平面(OP-P) 和傳統(tǒng) 平面(OP-C)。有研究[20]發(fā)現(xiàn):后牙平面斜度可能與下頜矢狀向位置有關(guān),即下頜越前伸,后牙平面越平;反之,下頜越后縮,后牙平面越陡。與雙側(cè)關(guān)節(jié)骨質(zhì)正常組和疑似骨關(guān)節(jié)炎組相比,TMJOA患者組的前牙平面和后牙平面均較陡,下頜骨后旋、后縮[21],而Ⅱ類高角骨面型患者的前牙和后牙平面一般較均角及低角患者陡[22];臨床上,對(duì)于此類患者應(yīng)仔細(xì)檢查,制訂合理的治療計(jì)劃,防范TMJOA的發(fā)生或發(fā)展。

        1.2 與偏頜的相關(guān)性

        偏頜的主要臨床特點(diǎn)為頦點(diǎn)偏離正中矢狀面2 mm以上[12],雙側(cè)下頜升支高度或下頜體長(zhǎng)不對(duì)稱[23]、髁突的形態(tài)大小不對(duì)稱[24]甚至關(guān)節(jié)盤移位[25]等都可直觀反映為偏頜。研究[26]顯示:相比骨性Ⅰ類錯(cuò)和骨性Ⅱ類錯(cuò),骨性Ⅲ類錯(cuò)患者中偏頜較為普遍,且多為下頜在垂直方向上的不對(duì)稱;有學(xué)者[6]發(fā)現(xiàn):下頜升支高度不對(duì)稱患者中顳下頜關(guān)節(jié)紊亂?。╰emporomandibular joint disorder,TMD)的患病率較高。單側(cè)TMJOA可表現(xiàn)為面部不對(duì)稱,下頜中線多偏向患側(cè)或破壞程度較重的一側(cè),該類患者也可同時(shí)伴有咀嚼肌失衡[27]。曾有動(dòng)物實(shí)驗(yàn)[28]發(fā)現(xiàn):人為干預(yù)使兔下頜偏移后出現(xiàn)同側(cè)和對(duì)側(cè)髁突吸收變小,且對(duì)側(cè)骨吸收量小于實(shí)驗(yàn)側(cè);目前,對(duì)人體而言尚且沒有足夠的縱向研究證據(jù)證明偏頜與髁突骨改變之間的因果關(guān)系;長(zhǎng)期單側(cè)后牙鎖,患者的髁突形態(tài)可發(fā)生改變[29],臨床診療中如發(fā)現(xiàn)青少年牙性偏頜或功能性偏頜需合理干預(yù),防止病變進(jìn)展,另外青少年偏頜中需警惕存有特發(fā)性骨關(guān)節(jié)炎患者[30]。

        2 顳下頜關(guān)節(jié)退行性改變與關(guān)節(jié)內(nèi)部結(jié)構(gòu)的相關(guān)性

        2.1 關(guān)節(jié)盤

        2.1.1 盤移位與顱頜面形態(tài)之間的關(guān)系 關(guān)節(jié)盤移位與顳下頜關(guān)節(jié)的解剖如髁突的形態(tài)大小[31-32]、關(guān)節(jié)盤的形態(tài)[33]以及關(guān)節(jié)結(jié)節(jié)后斜面的形狀[34]等存在關(guān)聯(lián),咬合異常、翼外肌功能亢進(jìn)、髁突的過度活動(dòng)等也可成為促進(jìn)因素,而異常生物力可能發(fā)揮了主要作用[35]。

        研究[36]發(fā)現(xiàn):關(guān)節(jié)盤移位與顱面形態(tài)有一定的相關(guān)性,骨性Ⅱ類和/或高角骨面型(該文獻(xiàn)中垂直骨面型以面部高度比的大小分為:高角骨面型、均角骨面型、低角骨面型) 患者發(fā)生嚴(yán)重關(guān)節(jié)盤移位的風(fēng)險(xiǎn)較高;在骨性Ⅲ類偏頜患者中盤移位也較多見,且多發(fā)生在偏斜側(cè)[37];不可復(fù)性關(guān)節(jié)盤前移位患者顱面形態(tài)常表現(xiàn)為顯著的短下頜升支和下頜后縮、后旋[38-39];還有學(xué)者[40]指出,關(guān)節(jié)盤移位與前牙開有關(guān),當(dāng)前牙開伴隨后面部高度降低、下頜升支高度降低、下頜骨位置后旋及后縮這些特征時(shí),盤移位程度會(huì)更加嚴(yán)重。

        關(guān)節(jié)盤移位是否可導(dǎo)致顱頜面形態(tài)發(fā)生改變?Legrell等[41]的動(dòng)物模型實(shí)驗(yàn)發(fā)現(xiàn):?jiǎn)蝹?cè)不可復(fù)性關(guān)節(jié)盤前移位可致生長(zhǎng)期兔下頜不對(duì)稱生長(zhǎng);相關(guān)人體的縱向研究發(fā)現(xiàn):青少年的關(guān)節(jié)盤移位可能會(huì)導(dǎo)致面型發(fā)生改變。Xie等[42]通過縱向研究對(duì)44例單側(cè)關(guān)節(jié)盤前移位的青少年患者進(jìn)行平均長(zhǎng)達(dá)1年的隨訪,結(jié)果發(fā)現(xiàn):隨著單側(cè)盤移位自然進(jìn)展,盤移位程度加重,雙側(cè)髁突生長(zhǎng)不對(duì)稱,髁突高度差增大,特別是盤移位側(cè)髁突高度明顯較短,同時(shí)顏面不對(duì)稱的程度加重。但類似的回顧性隊(duì)列研究較少,并不能說明盤移位與顱頜面形態(tài)之間的因果關(guān)系。

        2.1.2 髁突骨質(zhì)退行性變與關(guān)節(jié)盤移位之間的關(guān)系 自2011年,Bryndahl等[43]的動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn):外科手術(shù)誘導(dǎo)致兔雙側(cè)不可復(fù)性關(guān)節(jié)盤前移位后,髁突軟骨出現(xiàn)骨關(guān)節(jié)炎樣組織學(xué)改變。隨著研究的深入,學(xué)者們[44-46]發(fā)現(xiàn):骨關(guān)節(jié)病的發(fā)生與關(guān)節(jié)盤移位特別是不可復(fù)性關(guān)節(jié)盤移位(disc displacementwithout reduction,DDw/oR) 顯著相關(guān)。Lei等[47]在對(duì)發(fā)生DDw/oR早期的青少年及年輕人進(jìn)行顳下頜關(guān)節(jié)CBCT評(píng)估后發(fā)現(xiàn):有約60%的DDw/oR關(guān)節(jié)存在髁突骨質(zhì)退行性改變,而DDw/oR發(fā)病1個(gè)月后出現(xiàn)早期骨關(guān)節(jié)炎的風(fēng)險(xiǎn)增加5倍之多,所以DDw/oR的早發(fā)現(xiàn)、早干預(yù)至關(guān)重要。關(guān)節(jié)盤側(cè)方移位和完全前移位也可能與TMJOA發(fā)生相關(guān),Takaoka等[48]在對(duì)1 356例患者的2 712側(cè)顳下頜關(guān)節(jié)進(jìn)行磁共振成像(magnetic resonance imaging,MRI) 檢查后發(fā)現(xiàn):在關(guān)節(jié)盤完全前移位組中近一半的患者髁突有骨關(guān)節(jié)炎樣改變,與盤髁關(guān)系正常組相比,關(guān)節(jié)盤側(cè)方移位組及完全前移位組發(fā)生骨關(guān)節(jié)炎的比值比分別為5.62和10.88,提示MRI的冠狀面及水平面都應(yīng)被評(píng)估以確保診斷的準(zhǔn)確性。也有研究[31]發(fā)現(xiàn):發(fā)生不可復(fù)性關(guān)節(jié)盤移位組的髁突尺寸明顯小于盤髁關(guān)系正常組和可復(fù)性關(guān)節(jié)盤移位組,髁突尺寸可能與顳下頜關(guān)節(jié)盤移位顯著相關(guān),但小髁突是否為關(guān)節(jié)盤移位后發(fā)生骨重塑的結(jié)果并不可知。

        綜上所述,關(guān)節(jié)盤移位、髁突骨改變兩者可同時(shí)存在,且與骨性Ⅱ類高角骨面型表現(xiàn)出顯著的相關(guān)性,但因果關(guān)系不明;當(dāng)關(guān)節(jié)盤移位特別是不可復(fù)性關(guān)節(jié)盤移位發(fā)生后,髁突軟骨失去關(guān)節(jié)盤的應(yīng)力緩沖作用,如持續(xù)的病理負(fù)荷(如緊咬、磨牙癥等) 作用于顳下頜關(guān)節(jié),阻礙其營(yíng)養(yǎng)供應(yīng),可致顳下頜關(guān)節(jié)退行性變[49-50]。

        2.2 髁突

        2.2.1 髁突的空間位置 健康、穩(wěn)定且功能良好的口頜系統(tǒng)有賴于合適的髁突位置[51],相關(guān)研究表明髁突的空間位置與骨面型有關(guān)。在垂直骨面型上,大多數(shù)學(xué)者[52-54]認(rèn)為高角骨面型者髁突位置多處于前位,低角骨面型者后位髁突多見,而均角面型的個(gè)體髁突位置多居中;另外,有學(xué)者[55]發(fā)現(xiàn):低角骨面型的青少年髁突位置比高角骨面型青少年低,但差異并無統(tǒng)計(jì)學(xué)意義(該文獻(xiàn)中垂直骨面型以面部高度比的大小分為:高角骨面型、均角骨面型、低角骨面型)。在矢狀骨面型上,各學(xué)者對(duì)此觀點(diǎn)不一。有學(xué)者[56]認(rèn)為,與Ⅰ類患者相比,Ⅲ類錯(cuò)患者髁突位置更前、上移位,第Ⅱ類2分類錯(cuò)患者髁突位置主要為居中和后位;但也有學(xué)者[54]發(fā)現(xiàn):髁突位置在Class Ⅰ、Class Ⅱ、Class Ⅲ組中差異無統(tǒng)計(jì)學(xué)意義,可能垂直骨面型與髁突位置的關(guān)聯(lián)程度比矢狀骨面型更強(qiáng)。

        關(guān)節(jié)間隙的大小會(huì)影響關(guān)節(jié)盤和髁突的位置[57],但單純的關(guān)節(jié)間隙改變尚不能作為診斷關(guān)節(jié)盤移位的準(zhǔn)確依據(jù)[58],當(dāng)髁突在冠狀位上位于中心位且在矢狀位上稍前位時(shí)很少出現(xiàn)關(guān)節(jié)盤移位[59]。TMJOA患者的髁突多居于后位[60-61],可能后位髁突比其他位置承受更多的機(jī)械負(fù)荷[62]。

        2.2.2 髁突的形態(tài)及大小 正常的髁突形態(tài)根據(jù)冠狀切面可分為凸形、角形、扁平形和圓形,其中凸形最常見[63],而骨關(guān)節(jié)病患者的髁突形態(tài)不一。髁突的大小形態(tài)與垂直骨面型和矢狀骨面型相關(guān)。按矢狀骨面型分類,Ⅰ類正畸患者髁突的高度和直徑一般較Ⅱ類及Ⅲ類患者大[56],而骨性Ⅱ類正畸患者的髁突高度和寬度則多小于骨性Ⅲ類正畸患者[54]。在垂直骨面型上,有學(xué)者[64]發(fā)現(xiàn):髁突體積和表面積與Ar-Go (關(guān)節(jié)點(diǎn)Ar與下頜角點(diǎn)GO的長(zhǎng)度)、S-Go、S-Go/N-Me呈正相關(guān),即高角患者的髁突體積和表面積相對(duì)低角和均角小,一些研究者[54,65]同樣認(rèn)同此觀點(diǎn);另外,也有學(xué)者[66]發(fā)現(xiàn):高角骨面型患者的髁突長(zhǎng)軸角度及髁突傾角較大,髁突高度和長(zhǎng)軸直徑較小。以上研究提示,小髁突多見于高角骨面型者或骨性Ⅱ類個(gè)體。

        髁突尺寸與關(guān)節(jié)窩大小不匹配,顳下頜關(guān)節(jié)結(jié)構(gòu)不穩(wěn)定,易出現(xiàn)顳下頜關(guān)節(jié)紊亂,關(guān)節(jié)盤移位患者的髁突尺寸常小于盤髁關(guān)系正常者。Liu等[67]發(fā)現(xiàn):不可復(fù)性關(guān)節(jié)盤移位患者的髁突頭深度、高度及長(zhǎng)度明顯小于正常個(gè)體的髁突。Derwich等[68]發(fā)現(xiàn):顳下頜關(guān)節(jié)中出現(xiàn)骨關(guān)節(jié)炎改變的類型越多,髁突的前后尺寸也越小。

        近年來,髁突水平角大小與骨關(guān)節(jié)病的相關(guān)性也一直存有爭(zhēng)議。Lee等[69]認(rèn)為,骨關(guān)節(jié)病的臨床進(jìn)展先于髁突水平角的增加,該角度不能用來評(píng)估骨關(guān)節(jié)病的發(fā)生發(fā)展;也有學(xué)者[70]發(fā)現(xiàn):雖然顳下頜關(guān)節(jié)骨關(guān)節(jié)病患者的髁突水平角偏大,但差異沒有統(tǒng)計(jì)學(xué)意義。Pamukcu等[71]的研究顯示:雙側(cè)顳下頜關(guān)節(jié)骨關(guān)節(jié)病患者的髁突水平角較大且有統(tǒng)計(jì)學(xué)意義。目前,髁突水平角大小與骨關(guān)節(jié)病的聯(lián)系尚需進(jìn)一步的探究。

        2.3 關(guān)節(jié)結(jié)節(jié)及關(guān)節(jié)窩復(fù)合體

        關(guān)節(jié)結(jié)節(jié)后斜面斜度(articular eminence inclination,AEI) 與骨面型之間的相關(guān)關(guān)系并不完全明確,且AEI受年齡、性別等諸多因素影響,在一生中不斷變化。多數(shù)學(xué)者[65-66]認(rèn)為,低角和骨性Ⅱ類個(gè)體的AEI較大,高角和骨性Ⅲ類患者相反;Lobo等[72]的研究結(jié)果也發(fā)現(xiàn):骨性Ⅲ類個(gè)體的AEI較小,且關(guān)節(jié)結(jié)節(jié)高度(articular eminence height,AEH) 也明顯較低;但Moscagiuri等[73]認(rèn)為,AEI在矢狀骨面型之間差異不明顯。

        有學(xué)者[74]認(rèn)為,相對(duì)平緩的AEI可能是TMD的危險(xiǎn)因素,也有學(xué)者[75-76]持相反觀點(diǎn),他們認(rèn)為AEI與關(guān)節(jié)盤移位無明顯相關(guān)性,也與髁突前脫位相關(guān)性不大。骨關(guān)節(jié)病患者的AEI和AEH一般較低[77],幼年特發(fā)性骨關(guān)節(jié)炎患者的AEI和AEH同樣較小[78],另有學(xué)者[79-80]發(fā)現(xiàn):關(guān)節(jié)結(jié)節(jié)后斜面變平可能與咬合支持的喪失有關(guān),扁平化的關(guān)節(jié)結(jié)節(jié)后斜面可以為髁突運(yùn)動(dòng)提供更大的負(fù)載表面積,從而減少顳下頜關(guān)節(jié)單位面積上所受的力。

        關(guān)節(jié)窩形態(tài)可能與骨面型有關(guān),有研究[81]發(fā)現(xiàn):骨性Ⅰ類及骨性Ⅱ類矢狀骨面型的均角患者其關(guān)節(jié)窩寬度、關(guān)節(jié)窩寬度和深度之比差異有統(tǒng)計(jì)學(xué)意義;無顳下頜關(guān)節(jié)紊亂癥狀的低角和骨性Ⅱ類正畸患者關(guān)節(jié)窩深而窄,而高角和骨性Ⅲ類正畸患者關(guān)節(jié)窩淺而寬[65-66],Noh等[54]的研究結(jié)果也與上述一致。對(duì)于骨關(guān)節(jié)病患者而言,包括幼年特發(fā)性髁突骨吸收患者在內(nèi),該類患者的關(guān)節(jié)窩一般較淺[77,82],因關(guān)節(jié)窩形態(tài)的影響因素較多,目前尚無確鑿證據(jù)證明關(guān)節(jié)窩形態(tài)與顳下頜關(guān)節(jié)骨關(guān)節(jié)病有關(guān)。

        3 從生物力學(xué)角度探究顳下頜關(guān)節(jié)退行性改變的原因

        3.1 不同顱頜面形態(tài)的顳下頜關(guān)節(jié)內(nèi)部生物力學(xué)研究

        顳下頜關(guān)節(jié)退行性改變與垂直和矢狀骨面型相關(guān),與偏頜也有一定的相關(guān)性[83]。近年來,有學(xué)者[84]從生物力學(xué)的角度對(duì)顳下頜關(guān)節(jié)髁突受力進(jìn)行研究,一項(xiàng)關(guān)于長(zhǎng)面型和短面型[長(zhǎng)面型和短面型的分類以下頜平面角(frankfort horizontalmandibular plane angle,F(xiàn)HMPA) 的大小為依據(jù):長(zhǎng)面型(FHMPA) ≥30° , 短面型(FHMPA) ≤22°]的顱面力學(xué)研究認(rèn)為,長(zhǎng)面型患者的顳下頜關(guān)節(jié)受到的負(fù)荷更大;有學(xué)者[85]試圖通過三維有限元分析來探索偏頜患者雙側(cè)關(guān)節(jié)內(nèi)所受的應(yīng)力差異,結(jié)果發(fā)現(xiàn):在模擬患者正中咬合和前伸咬合過程中,偏頜患者的非偏側(cè)與偏側(cè)所受應(yīng)力有顯著差異,且病例組的雙側(cè)顳下頜關(guān)節(jié)應(yīng)力明顯高于正常對(duì)照組。也有學(xué)者[86]對(duì)不同骨骼類型的髁突受力方向進(jìn)行研究,結(jié)果顯示:顳下頜關(guān)節(jié)的應(yīng)力分布及受力方向與骨面型有關(guān),與Ⅰ類、Ⅲ類患者相比,Ⅱ類患者的髁突受力方向更為前傾,此類的模型研究?jī)H描述了矢狀骨面型與顳下頜關(guān)節(jié)結(jié)構(gòu)之間的理論關(guān)系,實(shí)際中還需要加入考慮不同個(gè)體的咬合力等情況。有研究[87-88]發(fā)現(xiàn):高發(fā)病風(fēng)險(xiǎn)的Ⅱ類高角骨面型患者的咬合力并非很大,咬合力的大小受咀嚼肌的影響,而肌肉功能障礙與髁突重塑之間存在穩(wěn)定的關(guān)系,實(shí)際情況往往更為復(fù)雜,臨床中常見的Ⅱ類高角骨面型的個(gè)體髁突形態(tài)較小也可能是髁突與咀嚼肌相互適應(yīng)的結(jié)果。

        3.2 髁突骨質(zhì)退行性改變的位置

        目前,對(duì)CBCT中髁突表面各區(qū)域并沒有具體的劃分標(biāo)準(zhǔn)來描述髁突骨質(zhì)退行性變的范圍、位置及嚴(yán)重程度,也沒有足夠的文獻(xiàn)對(duì)不同骨面型患者的髁突骨質(zhì)退行性變的位置進(jìn)行詳細(xì)報(bào)道。有學(xué)者[89]發(fā)現(xiàn):無論何種骨面型,髁突前部骨改變出現(xiàn)的頻率相對(duì)較高,主要可能原因是作為功能面的髁突前斜面,在下頜功能運(yùn)動(dòng)過程中,受到相對(duì)其他表面更頻繁的壓應(yīng)力和盤髁之間的摩檫力。三維模型研究[90]發(fā)現(xiàn):被診斷為早期TMJOA的患者隨著時(shí)間進(jìn)展,髁突上關(guān)節(jié)面特別是外極前側(cè)和上部骨吸收最多;有研究[17]指出,隨SN-MP夾角的增大,髁突后斜面應(yīng)力集中面積增大,髁突骨質(zhì)退行性變的位置主要與關(guān)節(jié)負(fù)載的位置有關(guān)。有限元分析[91-92]發(fā)現(xiàn):髁突表面存在不同類型的機(jī)械應(yīng)力,在研究模型中,髁突前部、外側(cè)和中部可觀察到壓應(yīng)力,而髁突后部和內(nèi)側(cè)觀察到的是拉應(yīng)力,眾所周知,正畸牙移動(dòng)過程中,牙槽骨在壓應(yīng)力和拉伸應(yīng)力下會(huì)做出不同的反應(yīng),在壓應(yīng)力下破骨細(xì)胞生成增多,牙槽骨吸收;在拉伸應(yīng)力下成骨細(xì)胞生成增多,牙槽骨新生;同比,髁突骨質(zhì)吸收或增生是否與壓應(yīng)力和拉伸應(yīng)力有關(guān)系,髁突骨質(zhì)退行性改變的類型是否與不同的機(jī)械應(yīng)力有關(guān),目前缺少對(duì)此類問題的報(bào)道。

        3.3 相關(guān)臨床病例報(bào)道

        當(dāng)咬合與頜位之間的關(guān)系不協(xié)調(diào)或兩者之間的平衡狀態(tài)被破壞,口頜系統(tǒng)可能會(huì)出現(xiàn)一系列的臨床癥狀[93]。有病例報(bào)道[94-95]對(duì)伴顳下頜關(guān)節(jié)骨關(guān)節(jié)炎的前牙開患者,臨床醫(yī)生通過正畸治療壓低磨牙、逆時(shí)針旋轉(zhuǎn)下頜骨、調(diào)整髁突位置后,取得了矯治錯(cuò)畸形、改善骨面型的效果,維持了關(guān)節(jié)的長(zhǎng)期穩(wěn)定性。1例骨性Ⅱ類錯(cuò)畸形伴有下頜骨后縮傾向的TMD患者,在戴用咬合板后出現(xiàn)了前牙開,且隨咬合板戴用時(shí)間延長(zhǎng)前牙開漸進(jìn)性加重,出現(xiàn)這種臨床表現(xiàn)的其中一部分原因可能是咬合板的戴入使原本有下頜后縮傾向的下頜骨更加后旋、后縮,關(guān)節(jié)內(nèi)部髁突所受的機(jī)械應(yīng)力失衡,進(jìn)一步加重了髁突骨吸收,而該病例后續(xù)的正畸治療通過逆時(shí)針旋轉(zhuǎn)下頜骨、減小下頜平面角及平面斜度,調(diào)整頜位,使髁突移位至前下位,改善關(guān)節(jié)負(fù)荷,從而實(shí)現(xiàn)了顳下頜關(guān)節(jié)內(nèi)的生物力學(xué)平衡,達(dá)到了良好的治療效果[96]。

        4 結(jié)語(yǔ)

        骨性Ⅱ類高角骨面型的個(gè)體多存在顳下頜關(guān)節(jié)退行性變,偏頜人群特別是骨性Ⅲ類偏頜患者中的TMJOA患病率也很高,但有時(shí)病情隱匿并不表現(xiàn)臨床癥狀,臨床診療需謹(jǐn)慎,對(duì)于此類患者應(yīng)有詳細(xì)的病史問診、風(fēng)險(xiǎn)因素評(píng)估、完善的體格檢查以及必要時(shí)的影像檢查,及時(shí)做好醫(yī)患溝通和健康宣教工作。青少年時(shí)期處于顱頜面發(fā)育高峰期,也是建的主要時(shí)期,常出現(xiàn)咬合干擾,此時(shí)髁突骨皮質(zhì)尚未發(fā)育完全[97],易受影響,臨床中如發(fā)現(xiàn)青少年偏頜,需及時(shí)查明病因,合理干預(yù),以防止顱頜面畸形的發(fā)生。

        不可復(fù)性關(guān)節(jié)盤移位和髁突骨質(zhì)退行性改變顯著相關(guān),兩者可同時(shí)存在,且皆與骨面型顯示出相關(guān)性,但其中的因果關(guān)系不明;髁突的位置、關(guān)節(jié)結(jié)節(jié)及關(guān)節(jié)窩復(fù)合體的形態(tài)在垂直和矢狀骨面型中可能有一定的規(guī)律,但目前尚無統(tǒng)一定論,而小髁突在骨性Ⅱ類或高角骨面型個(gè)體中多見;TMJOA患者中多見后位髁突、髁突短小畸形,或可見AEI和AEH相對(duì)較低以及相對(duì)淺而寬的關(guān)節(jié)窩,臨床診療時(shí)需加以全面評(píng)估,以制訂合理的臨床決策。

        雙側(cè)顳下頜關(guān)節(jié)、、頜骨以及神經(jīng)肌肉之間協(xié)調(diào)統(tǒng)一且相互影響,其中一方面出現(xiàn)問題,整個(gè)口頜系統(tǒng)都可能失衡,繼而出現(xiàn)一系列的臨床癥狀;顳下頜關(guān)節(jié)退行性變與關(guān)節(jié)負(fù)載有關(guān),臨床中觀察到不同的骨改變位置可能是骨關(guān)節(jié)病進(jìn)展過程中應(yīng)力分布發(fā)生變化的結(jié)果。為更好的指導(dǎo)臨床,未來對(duì)相關(guān)TMJOA發(fā)病機(jī)制的繼續(xù)探索意義重大。

        關(guān)節(jié)盤是顳下頜關(guān)節(jié)最重要的組成部分,盤移位特別是不可復(fù)性關(guān)節(jié)盤移位與髁突骨關(guān)節(jié)炎具有相關(guān)性,本文對(duì)兩者的相關(guān)性分析主要從患病率方面進(jìn)行探討,但其內(nèi)部的致病機(jī)制更為復(fù)雜,相關(guān)研究多涉及髁突軟骨、滑膜的組織學(xué)表現(xiàn)以及應(yīng)力分析方面,后期還需詳細(xì)闡明。

        本文針對(duì)“顳下頜關(guān)節(jié)退行性改變與顱頜面形態(tài)的相關(guān)性”分析中,分別對(duì)垂直骨面型、矢狀骨面型以及偏頜進(jìn)行探討,但其中國(guó)內(nèi)外文獻(xiàn)中對(duì)垂直骨面型的分類標(biāo)準(zhǔn)、分組依據(jù)不統(tǒng)一,文中提到的文獻(xiàn)以下頜平面角的大小分組,皆歸以高角骨面型、均角骨面型以及低角骨面型進(jìn)行論述,對(duì)其余文獻(xiàn)中特殊的分組依據(jù)文中給予了標(biāo)記。

        利益沖突聲明:作者聲明本文無利益沖突。

        5 參考文獻(xiàn)

        [1] Schiffman E, Ohrbach R, Truelove E, et al. Diagnostic

        criteria for temporomandibular disorders (DC/

        TMD) for clinical and research applications: recommendations

        of the international RDC/TMD consortium

        network and orofacial pain special interest

        group[J]. J Oral Facial Pain Headache, 2014, 28(1):

        6-27.

        [2] 傅開元, 胡敏, 余強(qiáng), 等. 顳下頜關(guān)節(jié)紊亂病錐形束

        CT 檢查規(guī)范及診斷標(biāo)準(zhǔn)的專家共識(shí)[J]. 中華口腔

        醫(yī)學(xué)雜志, 2020, 55(9): 613-616.

        Fu KY, Hu M, Yu Q, et al. Experts consensus on

        cone-beam CT examination specification and diagnostic

        criteria of temporomandibular disorders[J].

        Chin J Stomatol, 2020, 55(9): 613-616.

        [3] Ma ZG, Xie QY, Yang C, et al. Can anterior repositioning

        splint effectively treat temporomandibular

        joint disc displacement[J]. Sci Rep, 2019, 9(1): 534.

        [4] Lei J, Yap AU, Liu MQ, et al. Condylar repair and

        regeneration in adolescents/young adults with earlystage

        degenerative temporomandibular joint disease:

        a randomised controlled study[J]. J Oral Rehabil,

        2019, 46(8): 704-714.

        [5] Fang LL, Ye YS, Tan X, et al. Overloading stressinduced

        progressive degeneration and self-repair in

        condylar cartilage[J]. Ann N Y Acad Sci, 2021, 1503

        (1): 72-87.

        [6] Toh AQJ, Chan JLH, Leung YY. Mandibular asymmetry

        as a possible etiopathologic factor in temporomandibular

        disorder: a prospective cohort of 134 patients[

        J]. Clin Oral Investig, 2021, 25(7): 4445-4450.

        [7] Chen S, Lei J, Fu KY, et al. Cephalometric analysis

        of the facial skeletal morphology of female patients

        exhibiting skeletal Class Ⅱ deformity with and without

        temporomandibular joint osteoarthrosis[J]. PLoS

        One, 2015, 10(10): e0139743.

        [8] Kang JH, Yang IH, Hyun HK, et al. Dental and skeletal

        maturation in female adolescents with temporomandibular

        joint osteoarthritis[J]. J Oral Rehabil,

        2017, 44(11): 879-888.

        [9] Dadgar-Yeganeh A, Hatcher DC, Oberoi S. Association

        between degenerative temporomandibular joint

        disorders, vertical facial growth, and airway dimension[

        J]. J World Fed Orthod, 2021, 10(1): 20-28.

        [10] Ricketts RM. A foundation for cephalometric communication[

        J]. Am J Orthod, 1960, 46(5): 330-357.

        [11] Horn AJ. Facial height index[J]. Am J Orthod Dentofacial

        Orthop, 1992, 102(2): 180-186.

        [12] Gate?o J, Jones TL, Shen SGF, et al. Fluctuating

        asymmetry of the normal facial skeleton[J]. Int J

        Oral Maxillofac Surg, 2018, 47(4): 534-540.

        [13] Krisjane Z, Urtane I, Krumina G, et al. The prevalence

        of TMJ osteoarthritis in asymptomatic patients

        with dentofacial deformities: a cone-beam CT

        study[J]. Int J Oral Maxillofac Surg, 2012, 41(6): 690-

        695.

        [14] Walewski L?, Tolentino ES, Yamashita FC, et al.

        Cone beam computed tomography study of osteoarthritic

        alterations in the osseous components of temporomandibular

        joints in asymptomatic patients according

        to skeletal pattern, gender, and age[J]. Oral

        Surg Oral Med Oral Pathol Oral Radiol, 2019, 128

        (1): 70-77.

        [15] Sun ZP, Zou BS, Zhao YP, et al. Craniofacial morphology

        of Chinese patients with bilateral temporomandibular

        joint osteoarthrosis[J]. Chin J Dent Res,

        2011, 14(1): 21-27.

        [16] Ioi H, Matsumoto R, Nishioka M, et al. Relationship

        of TMJ osteoarthritis/osteoarthrosis to head posture

        and dentofacial morphology[J]. Orthod Craniofac

        Res, 2008, 11(1): 8-16.

        [17] Liu W, Liu SY, Xiong X, et al. Condyle bone destruction:

        the association between temporomandibular

        joint vibration and finite element analysis[J].

        Oral Radiol, 2022, 38(4): 565-574.

        [18] Kajii TS, Fujita T, Sakaguchi Y, et al. Osseous changes

        of the mandibular condyle affect backward-rotation

        of the mandibular ramus in Angle Class Ⅱ

        orthodontic patients with idiopathic condylar resorption

        of the temporomandibular joint[J]. Cranio, 2019,

        37(4): 264-271.

        [19] Tanaka EM, Sato S. Longitudinal alteration of the

        occlusal plane and development of different dentoskeletal

        frames during growth[J]. Am J Orthod Dentofacial

        Orthop, 2008, 134(5): 602.e1-602.e11.

        [20] 葉瑞, 王晟, 裴姣, 等. 平面與下頜矢狀向位置關(guān)

        系的X 線頭影測(cè)量研究[J]. 華西口腔醫(yī)學(xué)雜志,

        2012, 30(6): 610-614.

        Ye R, Wang S, Pei J, et al. Cephalometric analysis

        of the relationship between occlusal plane and sagittal

        position of the mandible[J]. West China J Stomatol,

        2012, 30(6): 610-614.

        [21] 鐘嘉偉, 范佩迪, 胡首杉, 等. 前后平面與顳下頜

        骨關(guān)節(jié)病關(guān)系的影像研究[J]. 華西口腔醫(yī)學(xué)雜志,

        2023, 9(3): 297-304.

        Zhong JW, Fan PD, Hu SS, et al. Imaging study on

        the relationship between anterior and posterior occlusal

        planes and temporomandibular osteoarthrosis

        [J]. West China J Stomatol, 2023, 9(3): 297-304.

        [22] 張?zhí)於G, 鄭新宇, 張偉, 等. 山東地區(qū)不同垂直骨面

        型成人Ⅱ類患者平面傾斜度的錐形束CT轉(zhuǎn)化分

        析[J]. 解剖學(xué)報(bào), 2022, 53(2): 210-216.

        Zhang TZ, Zheng XY, Zhang W, et al. Cone-beam

        CT analysis of occlusal planes between different

        vertical skeletal types of adult Class Ⅱ malocclusions

        in Shandong province[J]. Acta Anat Sin, 2022,

        53(2): 210-216.

        [23] Thiesen G, Gribel BF, Freitas MPM, et al. Craniofacial

        features affecting mandibular asymmetries in

        skeletal Class Ⅱ patients[J]. J Orofac Orthop, 2017,

        78(5): 437-445.

        [24] Tran Duy TD, Jinnavanich S, Chen MC, et al. Are

        signs of degenerative joint disease associated with

        chin deviation[J]. J Oral Maxillofac Surg, 2020, 78

        (8): 1403-1414.

        [25] Xie QY, Yang C, He DM, et al. Is mandibular asymmetry

        more frequent and severe with unilateral disc

        displacement[J]. J Craniomaxillofac Surg, 2015, 43

        (1): 81-86.

        [26] Evangelista K, Teodoro AB, Bianchi J, et al. Prevalence

        of mandibular asymmetry in different skeletal

        sagittal patterns[J]. Angle Orthod, 2022, 92(1): 118-

        126.

        [27] Matsumoto R, Ioi H, Goto TK, et al. Relationship

        between the unilateral TMJ osteoarthritis/osteoarthrosis,

        mandibular asymmetry and the EMG activity

        of the masticatory muscles: a retrospective study[J].

        J Oral Rehabil, 2010, 37(2): 85-92.

        [28] Zhao C, Kurita H, Kurashina K, et al. Temporomandibular

        joint response to mandibular deviation in

        rabbits detected by 3D micro-CT imaging[J]. Arch

        Oral Biol, 2010, 55(12): 929-937.

        [29] Li CX, Xie X, Li MJ, et al. A pilot investigation of

        condylar position and asymmetry in patients with

        unilateral posterior scissors-bite malocclusion based

        on three-dimensional reconstructive imaging technique[

        J]. BMC Musculoskelet Disord, 2023, 24(1):

        253.

        [30] Abramowicz S, Levy JM, Prahalad S, et al. Temporomandibular

        joint involvement in children with

        juvenile idiopathic arthritis: a preliminary report[J].

        Oral Surg Oral Med Oral Pathol Oral Radiol, 2019,

        127(1): 19-23.

        [31] Seo BY, An JS, Chang MS, et al. Changes in condylar

        dimensions in temporomandibular joints with disk

        displacement[J]. Oral Surg Oral Med Oral Pathol

        Oral Radiol, 2020, 129(1): 72-79.

        [32] ?aml?da? ?, Say?t AT, Elmal? M. Is condyle morphology

        a factor for anterior temporomandibular disc

        displacement[J]. Turk J Med Sci, 2022, 52(5): 1609-

        1615.

        [33] de Farias JF, Melo SL, Bento PM, et al. Correlation

        between temporomandibular joint morphology and

        disc displacement by MRI[J]. Dentomaxillofac Radiol,

        2015, 44(7): 20150023.

        [34] Hirata FH, Guimar?es AS, Oliveira JX, et al. Evaluation

        of TMJ articular eminence morphology and

        disc patterns in patients with disc displacement in

        MRI[J]. Braz Oral Res, 2007, 21(3): 265-271.

        [35] Marpaung C, van Selms MKA, Lobbezoo F. Temporomandibular

        joint anterior disc displacement with

        reduction in a young population: prevalence and

        risk indicators[J]. Int J Paediatr Dent, 2019, 29(1):

        66-73.

        [36] Jung WS, Kim H, Jeon DM, et al. Magnetic resonance

        imaging-verified temporomandibular joint disk

        displacement in relation to sagittal and vertical jaw

        deformities[J]. Int J Oral Maxillofac Surg, 2013, 42

        (9): 1108-1115.

        [37] Ooi K, Inoue N, Matsushita K, et al. Incidence of

        anterior disc displacement without reduction of the

        temporomandibular joint in patients with dentofacial

        deformity[J]. Int J Oral Maxillofac Surg, 2018,

        47(4): 505-510.

        [38] Yang IH, Moon BS, Lee SP, et al. Skeletal differences

        in patients with temporomandibular joint disc

        displacement according to sagittal jaw relationship

        [J]. J Oral Maxillofac Surg, 2012, 70(5): e349-e360.

        [39] Park SH, Han WJ, Chung DH, et al. Relationship

        between rotational disc displacement of the temporomandibular

        joint and the dentoskeletal morphology[

        J]. Korean J Orthod, 2021, 51(2): 105-114.

        [40] Byun ES, Ahn SJ, Kim TW. Relationship between

        internal derangement of the temporomandibular joint

        and dentofacial morphology in women with anterior

        open bite[J]. Am J Orthod Dentofacial Orthop, 2005,

        128(1): 87-95.

        [41] Legrell PE, Isberg A. Mandibular height asymmetry

        following experimentally induced temporomandibular

        joint disk displacement in rabbits[J]. Oral Surg

        Oral Med Oral Pathol Oral Radiol Endod, 1998, 86

        (3): 280-285.

        [42] Xie QY, Yang C, He DM, et al. Will unilateral temporomandibular

        joint anterior disc displacement in

        teenagers lead to asymmetry of condyle and mandible?

        A longitudinal study[J]. J Craniomaxillofac Surg,

        2016, 44(5): 590-596.

        [43] Bryndahl F, Warfvinge G, Eriksson L, et al. Cartilage

        changes link retrognathic mandibular growth to

        TMJ disc displacement in a rabbit model[J]. Int J

        Oral Maxillofac Surg, 2011, 40(6): 621-627.

        [44] Toshima H, Ogura I. Characteristics of patients with

        temporomandibular joint osteoarthrosis on magnetic

        resonance imaging[J]. J Med Imaging Radiat Oncol,

        2020, 64(5): 615-619.

        [45] Seo BY, Huh KH, An JS, et al. Relationship of computed

        tomography-verified degenerative condylar

        morphology with temporomandibular joint disk displacement

        and sex[J]. Oral Surg Oral Med Oral Pathol

        Oral Radiol, 2021, 132(1): 93-103.

        [46] Gil C, Santos KC, Dutra ME, et al. MRI analysis of

        the relationship between bone changes in the temporomandibular

        joint and articular disc position in

        symptomatic patients[J]. Dentomaxillofac Radiol,

        2012, 41(5): 367-372.

        [47] Lei J, Han JH, Liu MQ, et al. Degenerative temporomandibular

        joint changes associated with recent-onset

        disc displacement without reduction in adolescents

        and young adults[J]. J Craniomaxillofac Surg,

        2017, 45(3): 408-413.

        [48] Takaoka R, Yatani H, Senzaki Y, et al. Relative risk

        of positional and dynamic temporomandibular disc

        abnormality for osteoarthritis-magnetic resonance

        imaging study[J]. J Oral Rehabil, 2021, 48(4): 375-

        383.

        [49] Wu Y, Cisewski SE, Coombs MC, et al. Effect of

        sustained joint loading on TMJ disc nutrient environment[

        J]. J Dent Res, 2019, 98(8): 888-895.

        [50] Abe S, Kawano F, Kohge K, et al. Stress analysis in

        human temporomandibular joint affected by anterior

        disc displacement during prolonged clenching[J]. J

        Oral Rehabil, 2013, 40(4): 239-246.

        [51] 劉洋. 正中關(guān)系的可重復(fù)性考察及對(duì)其歷史和發(fā)

        展的考量[J]. 國(guó)際口腔醫(yī)學(xué)雜志, 2019, 46(1): 1-4.

        Liu Y. Repeatability of centric relation registration

        methods and their effect on concept development[J].

        Int J Stomatol, 2019, 46(1): 1-4.

        [52] Al-Hadad SA, ALyafrusee ES, Abdulqader AA, et

        al. Comprehensive three-dimensional positional and

        morphological assessment of the temporomandibular

        joint in skeletal Class Ⅱ patients with mandibular

        retrognathism in different vertical skeletal patterns

        [J]. BMC Oral Health, 2022, 22(1): 149.

        [53] Lin M, Xu YF, Wu H, et al. Comparative cone-beam

        computed tomography evaluation of temporomandibular

        joint position and morphology in female patients

        with skeletal Class Ⅱ malocclusion[J]. J Int

        Med Res, 2020, 48(2): 300060519892388.

        [54] Noh KJ, Baik HS, Han SS, et al. Differences in mandibular

        condyle and glenoid fossa morphology in relation

        to vertical and sagittal skeletal patterns: a

        cone-beam computed tomography study[J]. Korean

        J Orthod, 2021, 51(2): 126-134.

        [55] Chae JM, Park JH, Tai K, et al. Evaluation of condyle-

        fossa relationships in adolescents with various

        skeletal patterns using cone-beam computed tomography[

        J]. Angle Orthod, 2020, 90(2): 224-232.

        [56] Song J, Cheng MJ, Qian YF, et al. Cone-beam CT

        evaluation of temporomandibular joint in permanent

        dentition according to Angle’s classification[J]. Oral

        Radiol, 2020, 36(3): 261-266.

        [57] de Pontes MLC, Melo SLS, Bento PM, et al. Correlation

        between temporomandibular joint morphometric

        measurements and gender, disk position, and

        condylar position[J]. Oral Surg Oral Med Oral Pathol

        Oral Radiol, 2019, 128(5): 538-542.

        [58] 陶珂金, 劉光俊, 馮劍穎. 顳下頜關(guān)節(jié)間隙改變與

        關(guān)節(jié)盤移位及程度的關(guān)系[J]. 口腔頜面修復(fù)學(xué)雜

        志, 2022, 23(3): 196-200.

        Tao KJ, Liu GJ, Feng JY. Relationship of temporomandibular

        joint space to disc displacement and degree[

        J]. Chin J Prosthodont, 2022, 23(3): 196-200.

        [59] Rabelo KA, Sousa Melo SL, Torres MGG, et al. Assessment

        of condyle position, fossa morphology,

        and disk displacement in symptomatic patients[J].

        Oral Surg Oral Med Oral Pathol Oral Radiol, 2017,

        124(2): 199-207.

        [60] 張寧, 高思文, 郭雋, 等. 青少年顳下頜關(guān)節(jié)骨關(guān)節(jié)

        病患者髁突在關(guān)節(jié)窩內(nèi)間隙變化與骨質(zhì)破壞位置

        的相關(guān)性[J]. 中國(guó)組織工程研究, 2022, 26(29):

        4593-4597.

        Zhang N, Gao SW, Guo J, et al. Correlation between

        articular fossa space and bone destruction location

        of the condyle in adolescents with temporomandibular

        joint osteoarthrosis[J]. Chin J Tissue Eng

        Res, 2022, 26(29): 4593-4597.

        [61] 劉華蔚, 畢文婷, 李永鋒, 等. 顳下頜關(guān)節(jié)骨關(guān)節(jié)病

        的螺旋CT 和錐形束CT 影像學(xué)比較觀察[J]. 中華

        口腔醫(yī)學(xué)雜志, 2021, 56(8): 747-752.

        Liu HW, Bi WT, Li YF, et al. A comparative study

        on the radiographs of spiral CT and cone-beam CT

        in temporomandibular joint osteoarthrosis[J]. Chin J

        Stomatol, 2021, 56(8): 747-752.

        [62] Yang HJ, Kim DS, Yi WJ, et al. Reduced joint distance

        during TMJ movement in the posterior condylar

        position[J]. J Craniomaxillofac Surg, 2013, 41(7):

        e159-e164.

        [63] Yalcin ED, Ararat E. Cone-beam computed tomography

        study of mandibular condylar morphology[J]. J

        Craniofac Surg, 2019, 30(8): 2621-2624.

        [64] Liu XY, Xu QP, Guo J. The relationship between the

        size of temporomandibular joint condyle and the sagittal

        disc-condyle position in adults[J]. Cranio,

        2021: 1-8.

        [65] 韓婧文, 任詩(shī)琦, 劉星宇, 等. 成人不同垂直及矢狀

        骨面型髁突特征的研究[J]. 國(guó)際口腔醫(yī)學(xué)雜志,

        2022, 49(2): 153-162.

        Han JW, Ren SQ, Liu XY, et al. Features of condyles

        of adult patients with different vertical and

        sagittal skeletal facial types[J]. Int J Stomatol, 2022,

        49(2): 153-162.

        [66] 梁曉偉, 周丹, 岳莉, 等. 安氏Ⅲ類錯(cuò)不同垂直骨

        面型患者顳下頜關(guān)節(jié)間隙的CBCT 比較分析[J].

        實(shí)用口腔醫(yī)學(xué)雜志, 2021, 37(6): 829-832.

        Liang XW, Zhou D, Yue L, et al. CBCT comparative

        analysis of TMJ space of different vertical facial

        types in the subjects with angle Class Ⅲ malocclusion[

        J]. J Pract Stomatol, 2021, 37(6): 829-832.

        [67] Liu YS, Yap AU, Lei J, et al. Association between

        hypoplastic condyles and temporomandibular joint

        disc displacements: a cone beam computed tomography

        and magnetic resonance imaging metrical analysis[

        J]. Int J Oral Maxillofac Surg, 2020, 49(7): 932-

        939.

        [68] Derwich M, Mitus-Kenig M, Pawlowska E. Morphology

        of the temporomandibular joints regarding

        the presence of osteoarthritic changes[J]. Int J Environ

        Res Public Health, 2020, 17(8): 2923.

        [69] Lee PP, Stanton AR, Schumacher AE, et al. Osteoarthritis

        of the temporomandibular joint and increase

        of the horizontal condylar angle: a longitudinal study

        [J]. Oral Surg Oral Med Oral Pathol Oral Radiol,

        2019, 127(4): 339-350.

        [70] Alfaleh W. Relationship between horizontal condylar

        angle and radiographically detectable morphological

        changes of the condyle in asymptomatic and

        symptomatic patients with TMD[J]. Saudi Dent J,

        2021, 33(8): 1154-1159.

        [71] Pamukcu U, Tetik H, Peker I, et al. Does the horizontal

        condylar angle have a relationship to temporomandibular

        joint osteoarthritis and condylar position?

        A cone-beam computed tomography study

        [J]. Folia Morphol (Warsz), 2022, 81(3): 723-731.

        [72] Lobo F, Tolentino ES, Iwaki LCV, et al. Imaginology

        tridimensional study of temporomandibular joint

        osseous components according to sagittal skeletal relationship,

        sex, and age[J]. J Craniofac Surg, 2019,

        30(5): 1462-1465.

        [73] Moscagiuri F, Caroccia F, Lopes C, et al. Evaluation

        of articular eminence inclination in normo-divergent

        subjects with different skeletal classes through CBCT

        [J]. Int J Environ Res Public Health, 2021, 18(11):

        5992.

        [74] Yasa Y, Akgül HM. Comparative cone-beam computed

        tomography evaluation of the osseous morphology

        of the temporomandibular joint in temporomandibular

        dysfunction patients and asymptomatic

        individuals[J]. Oral Radiol, 2018, 34(1): 31-39.

        [75] Serindere G, Aktuna Belgin C. MRI investigation of

        TMJ disc and articular eminence morphology in patients

        with disc displacement[J]. J Stomatol Oral Maxillofac

        Surg, 2021, 122(1): 3-6.

        [76] Cohen A, Sela MC, Shooraki N, et al. The influence

        of articular eminence morphology on temporomandibular

        joint anterior dislocations[J]. Oral Surg Oral

        Med Oral Pathol Oral Radiol, 2021, 131(1): 9-15.

        [77] 王蘭如, 李洪發(fā), 李嬋. 成人骨性Ⅱ類高角顳下頜關(guān)

        節(jié)骨關(guān)節(jié)病關(guān)節(jié)結(jié)構(gòu)的CBCT 分析[J]. 天津醫(yī)科

        大學(xué)學(xué)報(bào), 2018, 24(2): 170-174.

        Wang LR, Li HF, Li C. CBCT study on temporomandibular

        joint structure of temporomandibular

        joint osteoarthritis in adult high-angle Class Ⅱ malocclusion[

        J]. J Tianjin Med Univ, 2018, 24(2): 170-

        174.

        [78] Calle AJM, Ogawa CM, Martins JS, et al. Temporomandibular

        joint in juvenile idiopathic arthritis:

        magnetic resonance imaging measurements and their

        correlation with imaging findings[J]. Oral Radiol,

        2022, 38(4): 459-467.

        [79] Oruba Z, Malisz P, Sendek J, et al. Flattening of the

        articular eminence is associated with the loss of occlusal

        support: radiological study[J]. Aust Dent J,

        2020, 65(1): 53-57.

        [80] Iwasaki LR, Crosby MJ, Marx DB, et al. Human

        temporomandibular joint eminence shape and load

        minimization[J]. J Dent Res, 2010, 89(7): 722-727.

        [81] Fan XC, Ma LS, Chen L, et al. Temporomandibular

        joint osseous morphology of Class Ⅰ and class Ⅱ

        malocclusions in the normal skeletal pattern: a conebeam

        computed tomography study[J]. Diagnostics

        (Basel), 2021, 11(3): 541.

        [82] Celebi AA, Cron R, Stoll M, et al. Comparison of

        the condyle-fossa relationship and resorption between

        patients with and without Juvenile Idiopathic

        Arthritis (JIA) [J]. J Oral Maxillofac Surg, 2022, 80

        (3): 422-430.

        [83] Sfondrini MF, Bolognesi L, Bosco M, et al. Skeletal

        divergence and condylar asymmetry in patients with

        temporomandibular disorders (TMD): a retrospective

        study[J]. Biomed Res Int, 2021, 2021: 8042910.

        [84] Iwasaki LR, Liu Y, Liu H, et al. Jaw mechanics in

        dolichofacial and brachyfacial phenotypes: a longitudinal

        cephalometric-based study[J]. Orthod Craniofac

        Res, 2017, 20(Suppl 1): 145-150.

        [85] Shu JH, Xiong X, Chong DY, et al. The relations between

        the stress in temporomandibular joints and

        the deviated distances for mandibular asymmetric

        patients[J]. Proc Inst Mech Eng H, 2021, 235(1):

        109-116.

        [86] Ueki K, Nakagawa K, Takatsuka S, et al. Comparison

        of the stress direction on the TMJ in patients

        with Class Ⅰ, Ⅱ, and Ⅲ skeletal relationships[J]. Orthod

        Craniofac Res, 2008, 11(1): 43-50.

        [87] Kurusu A, Horiuchi M, Soma K. Relationship between

        occlusal force and mandibular condyle morphology.

        Evaluated by limited cone-beam computed

        tomography[J]. Angle Orthod, 2009, 79(6): 1063-

        1069.

        [88] Shi Z, Lv J, Xiaoyu L, et al. Condylar degradation

        from decreased occlusal loading following masticatory

        muscle atrophy[J]. Biomed Res Int, 2018, 2018:

        6947612.

        [89] Lim MJ, Lee JY. Computed tomographic study of

        the patterns of oesteoarthritic change which occur on

        the mandibular condyle[J]. J Craniomaxillofac Surg,

        2014, 42(8): 1897-1902.

        [90] Cevidanes LH, Gomes LR, Jung BT, et al. 3D superimposition

        and understanding temporomandibular

        joint arthritis[J]. Orthod Craniofac Res, 2015, 18(1):

        18-28.

        [91] Tanaka E, Tanaka M, Watanabe M, et al. Influences

        of occlusal and skeletal discrepancies on biomechanical

        environment in the TMJ during maximum clenching:

        an analytic approach with the finite element

        method[J]. J Oral Rehabil, 2001, 28(9): 888-894.

        [92] Schr?der A, K?ppler P, Nazet U, et al. Effects of

        compressive and tensile strain on macrophages during

        simulated orthodontic tooth movement[J]. Mediators

        Inflamm, 2020, 2020: 2814015.

        [93] 劉洋, 尹德強(qiáng). 關(guān)于頜位調(diào)整方法的思考和改進(jìn)

        [J]. 國(guó)際口腔醫(yī)學(xué)雜志, 2023, 50(5): 499-505.

        Liu Y, Yin DQ. Introducing a novel digital articulation

        workflow with high precision[J]. Int J Stomatol,

        2023, 50(5): 499-505.

        [94] Kato C, Ono T. Anterior open bite due to temporomandibular

        joint osteoarthrosis with muscle dysfunction

        treated with temporary anchorage devices

        [J]. Am J Orthod Dentofacial Orthop, 2018, 154(6):

        848-859.

        [95] Arai C, Choi JW, Nakaoka K, et al. Management of

        open bite that developed during treatment for internal

        derangement and osteoarthritis of the temporomandibular

        joint[J]. Korean J Orthod, 2015, 45(3):

        136-145.

        [96] Kurt H, Ozta? E, Gen?el B, et al. An adult case of

        temporomandibular joint osteoarthritis treated with

        splint therapy and the subsequent orthodontic occlusal

        reconstruction[J]. Contemp Clin Dent, 2011, 2(4):

        364-367.

        [97] Lei J, Liu MQ, Yap AUJ, et al. Condylar subchondral

        formation of cortical bone in adolescents and

        young adults[J]. Br J Oral Maxillofac Surg, 2013, 51

        (1): 63-68.

        ( 本文編輯 王姝 )

        中文字幕日本av网站| 国产成人久久精品区一区二区| 国产日韩久久久久69影院| 极品精品视频在线观看| 中文无码av一区二区三区| 亚洲人成人网站在线观看| 国产农村妇女毛片精品久久久| 成在线人免费视频播放| 久久夜色国产精品噜噜亚洲av| 久久www免费人成精品| 国产又黄又猛又粗又爽的a片动漫| 无码高清视频在线播放十区| 国产伦理一区二区久久精品| 欧美性高清另类videosex| 又白又嫩毛又多15p| 高清偷自拍亚洲精品三区| 无码一区二区波多野结衣播放搜索| 99久久久精品免费| 日本久久一级二级三级| 亚洲永久国产中文字幕| 少妇高潮喷水久久久影院| 久久综合给日咪咪精品欧一区二区三| 亚洲av粉嫩性色av| 中文乱码字字幕在线国语| 人人爽人人澡人人人妻| 人妻少妇av无码一区二区| 国产精品伦人视频免费看| 精品国产乱子伦一区二区三| 国产午夜福利精品一区二区三区| 欧美高大丰满freesex| 蜜桃伦理一区二区三区| 国产自拍精品视频免费| 欧美黑吊大战白妞| 国产综合久久久久影院| 国产二区中文字幕在线观看| 97色偷偷色噜噜狠狠爱网站| 在教室伦流澡到高潮hnp视频| 初尝人妻少妇中文字幕在线| 激情综合五月婷婷久久| 久久精品99久久香蕉国产色戒| 天天中文字幕av天天爽|