亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        新定義型壓軸題命制初探

        2024-11-02 00:00:00任念兵汪健

        摘 要:2024年高考數(shù)學新課標I卷的新定義型壓軸題,從某種意義上說,是對自主命題省市多年來命題探索的一種肯定和借鑒。新定義型壓軸題的核心是新定義。提煉新定義的方式主要有:“改造”中學數(shù)學知識結構中的相關概念(或方法);將數(shù)學發(fā)展史或高等數(shù)學分支中的經(jīng)典結論初等化。引入新定義的主要方式有生成、約束和關聯(lián)。新定義型壓軸題設問的基本原則是層層遞進、逐步深入。因此,通常設置3個小題,分別“解釋定義”“挖掘性質”“探究未知”。

        關鍵詞:數(shù)學高考;試題命制;新定義;壓軸題;數(shù)列

        一、引言:新定義型壓軸題的內涵和意義

        2024年高考數(shù)學新課標I卷在壓軸題(第19題)中引入新定義,引導學生“多想少算”。此題引發(fā)廣泛熱議。所謂“新定義型”題,指在命題中定義新概念(對象)、新運算(規(guī)則)、新變換(關系)、新性質(方法)等,要求學生閱讀理解新定義,分析解決新問題的一類題目。新定義型壓軸題通常通過創(chuàng)設新穎的試題情境、條件內容和設問方式進行命題創(chuàng)新,強調思維的深刻性、靈活性和創(chuàng)造性。

        這類試題具有很好的檢測功能,具體地表現(xiàn)在四個方面:通過新定義,創(chuàng)設數(shù)學語境和話語體系;通過新情境,搭建試題框架,創(chuàng)設解題條件;通過新設問,設置思維梯度,逐步深入,準確區(qū)分不同層次的學生;通過解題過程,展現(xiàn)探究(思維)過程,實現(xiàn)對分析、推理、判斷、論述等關鍵能力的考查。[1比如上述壓軸題,就以等差數(shù)列為背景,以(i,j)-可分數(shù)列的新定義為中介,通過層層遞進的設問考查學生的思維能力:

        設m為正整數(shù),數(shù)列a1,a2,…,a4m+2是公差不為0的等差數(shù)列,若從中刪去兩項ai和aj(i<j)后剩余的4m項可被平均分成m組,每組的4個數(shù)都能構成等差數(shù)列,則稱數(shù)列a1,a2,…,a4m+2是(i,j)-可分數(shù)列。

        (1)寫出所有的(i,j),1≤i<j≤6,使得數(shù)列a1,a2,…,a6是(i,j)-可分數(shù)列;

        (2)當m≥3時,證明:數(shù)列a1,a2,…,a4m+2是(2,13)-可分數(shù)列;

        (3)從1,2,…,4m+2中一次任取兩個數(shù)i和j(i<j),記數(shù)列a1,a2,…,a4m+2是(i,j)-可分數(shù)列的概率為Pm,證明:Pm>18。

        新定義型題,一方面,鼓勵學生從不同的角度認識問題,深入考查思維能力,具有良好的人才選拔功能;另一方面,創(chuàng)新情境、形式,著力于“反套路、反刷題”,能引導中學教學重視培養(yǎng)學生的思維能力。[2正因為此,除了全國范圍的新課標卷之外,自主命題的北京卷和上海卷都不約而同地在壓軸題中引入新定義。比如,2024年北京卷壓軸題的新定義也跟數(shù)列有關:

        設集合M={(i,j,s,t)|i∈{1,2},j∈{3,4},s∈{5,6},t∈{7,8},i+j+s+t為偶數(shù)}。對于給定的有窮數(shù)列A:a1,a2,…,a8和序列Ω:ω1,ω2,…,ωm,其中ωk=(ik,jk,sk,tk)∈M,k=1,2,…,m,定義變換T:將數(shù)列A的第i1,j1,s1,t1項均加1,其余項均不變,得到數(shù)列T1(A);將數(shù)列T1(A)的第i2,j2,s2,t2項均加1,其余項均不變,得到數(shù)列T2T1(A)……重復上述操作,得到數(shù)列TmTm-1…T2T1(A),記為Ω(A)。

        其實,新定義型壓軸題并非新生事物,自主命題的北京卷從2006年開始就在壓軸題中引入新定義,自主命題的上海卷和曾經(jīng)自主命題的江蘇卷也都有類似的命題風格。不同于北京卷壓軸題和江蘇卷壓軸題基本上都是數(shù)列問題,上海卷壓軸題則是數(shù)列和函數(shù)交替出場。2024年新課標I卷的新定義型壓軸題,從某種意義上說,是對自主命題省市多年來命題探索的一種肯定和借鑒。

        新定義型壓軸題的核心是新定義,如何提煉和引入新定義?提煉和引入新定義后,如何通過層層遞進的設問為學生搭建思維的平臺?本文試圖通過分析北京卷和上海卷中的數(shù)列新定義型壓軸題,歸納新定義提煉和引入的方式;再以一道原創(chuàng)的數(shù)列新定義型壓軸題為例,初探新定義型壓軸題的設問方式。

        二、新定義提煉和引入的方式

        結合《普通高中數(shù)學課程標準(2017年版2020年修訂)》附錄中的案例23(“距離問題”)和2024年高考數(shù)學新課標I卷第19題(以下簡稱“可分數(shù)列”問題)不難看出,新定義的提煉和引入具有鮮明的特征:

        第一,基于數(shù)學課程的核心內容提煉新定義。例如,“可分數(shù)列”問題立足于高中數(shù)學核心知識(數(shù)列),在傳統(tǒng)知識(等差數(shù)列)的基礎上創(chuàng)新(新定義、新設問)。此外,考慮到數(shù)列內容在高中數(shù)學課程內容中的占比(以課時數(shù)計,約為6%)不足以支撐起這道壓軸題在整個試卷中的占比(以分值計,約為11%),在命題設計中結合概率內容來考查:通過新情境搭建試題框架,實現(xiàn)等差數(shù)列和隨機事件概率的有機結合。

        第二,基于數(shù)學問題表述的準確性和簡潔性需求引入新定義。新定義型壓軸題重在考查學生的思維水平,過于繁雜的問題陳述會大大增加閱讀的時間,相應地壓縮思維的時間,不利于考查目標的實現(xiàn)。因此,使表達嚴謹明確、簡潔明了,避免重復相同(或類似)的信息,是引入新定義的主要目的。顯然,“可分數(shù)列”這個新定義的引入就符合準確、簡潔的特征。需要指出的是,倘若題目表述并不由于信息重復而增加篇幅,那就沒有必要引入新定義。對比2018年高考數(shù)學江蘇卷和上海卷的壓軸題在表述上的異同(直接敘述和引入新定義都可以表達條件“|bn-an|≤1”),可以體會何時需要引入新定義:

        (2018年高考數(shù)學江蘇卷第20題)設{an}是首項為a1、公差為d的等差數(shù)列,{bn}是首項為b1、公比為q的等比數(shù)列。

        (1)設a1=0,b1=1,q=2,若|an-bn|≤b1對n=1,2,3,4均成立,求d的取值范圍;

        (2)若a1=b1>0,m∈N*,q∈(1,m2],證明“存在d∈R,使得|an-bn|≤b1對n=2,3,…,m+1均成立”,并求d的取值范圍(用b1,m,q表示);

        (2018年高考數(shù)學上海卷第21題)給定無窮數(shù)列{an},若無窮數(shù)列{bn}滿足:對任意n∈N*,都有|bn-an|≤1,則稱{bn}與{an}“接近”。

        (1)設{an}是首項為1、公比為12的等比數(shù)列,bn=an+1+1,n∈N*,判斷數(shù)列{bn}是否與{an}接近,并說明理由;

        (2)設數(shù)列{an}的前四項a1=1,a2=2,a3=4,a4=8,{bn}是一個與{an}接近的數(shù)列,記集合M={x|x=bi,i=1,2,3,4},求M中元素的個數(shù)m;

        (3)已知{an}是公差為d的等差數(shù)列,若存在數(shù)列{bn}滿足:{bn}與{an}接近,且在b2-b1,b3-b2,…,b201-b200中至少有100個為正數(shù),求d的取值范圍。

        我們系統(tǒng)梳理了近年高考數(shù)學北京卷和上海卷(含春考)的數(shù)列新定義型壓軸題,包括北京卷2006—2019年理科第20題、2020—2024年第21題,上海卷2016年理科第23題、2017—2023年第21題(下文舉例時不再標明題號),希望從中發(fā)現(xiàn)新定義提煉和引入的相關規(guī)律。需要說明的是,有些題目沒有引入新概念或新符號,而是以文字介紹的形式引入新數(shù)列,它們正是上述“沒有必要引入新定義”的新定義型壓軸題,仍在我們的研究范圍內。

        (一)新定義提煉的方式

        分析相關高考題,可以發(fā)現(xiàn),常見的問題設計是,將等差(比)數(shù)列的遞推關系、通項表示、求和方法等類比到新數(shù)列中;在看似“無序”的新數(shù)列中尋找某種“有序”的特征(如單調性、不變量、一一對應等)。相應地,提煉新定義的方式主要有兩類:

        一是“改造”中學數(shù)列知識結構中的相關概念(或方法)。根據(jù)等差(比)數(shù)列的概念,修改關系、運算等信息,可以“改造”出各種新數(shù)列。

        比如,對等差數(shù)列,將定義中的關系“差相等”改為“差不等”,可以定義“增差數(shù)列”:

        若對任意n∈N*,都有an+1-an<an+2-an+1,則稱數(shù)列{an}是增差數(shù)列。

        將定義中的運算“差”改為“差的絕對值”,可以定義“E數(shù)列”:

        (2011年北京卷)若數(shù)列An:a1,a2,…,an(n≥2)滿足|ak+1-ak|=1(k=1,2,…,n-1),則稱An為E數(shù)列。

        對“等差中項”概念加以“改造”,還可以引入下面的新數(shù)列:

        (2021年上海春考卷)已知數(shù)列{an}滿足an≥0(n∈N*),對任意n≥2,項an和an+1中存在一項為另一項與an-1的等差中項。

        (2022年上海卷)在無窮數(shù)列{an}中,a1=1,a2=3,對任意正整數(shù)n(n≥2),都存在正整數(shù)i(1≤i≤n-1),使得an+1=2an-ai。

        二是將數(shù)學發(fā)展史或高等數(shù)學分支中的經(jīng)典結論初等化。為了避免給教學帶來不良引導,這些經(jīng)典結論要么是眾所周知而無須專門學習的數(shù)學史知識,要么是無法在中學階段提前習得的高等數(shù)學細分領域知識。

        下面的“絕對差數(shù)列”源于數(shù)學史上求兩個正整數(shù)最大公約數(shù)的“更相減損術”(類似于“輾轉相除法”),而數(shù)列的“G時刻”源于動力系統(tǒng)雙曲性研究中的常用工具Pliss定理。

        (2006年北京卷)在數(shù)列{an}中,若a1、a2是正整數(shù),且an=|an-1-an-2|,n=3,4,5,…,則稱{an}為“絕對差數(shù)列”。

        (2016年北京卷)設數(shù)列A:a1,a2,…,aN(N≥2)。如果對小于n(2≤n≤N)的每個正整數(shù)k都有ak<an,則稱n是數(shù)列A的一個“G時刻”。記G(A)是數(shù)列A的所有“G時刻”組成的集合。

        以下高考題中的新數(shù)列則是通過類似于求函數(shù)零點近似值的牛頓切線法構造而來的(考生是否了解牛頓切線法這一背景對理解題意并無實質影響):

        (2023年上海卷)設f(x)=ln x,函數(shù)y=f(x)的圖像為Γ。進行以下操作:在Γ上取點A1(a1,f(a1)),以A1為切點作Γ的切線,交y軸于點(0,a2)。若a2>0,則在Γ上取點A2(a2,f(a2)),以A2為切點作Γ的切線,交y軸于點(0,a3)。若a3>0,則再進行同樣的操作……一旦an≤0(n≥2),則終止這一操作,由此得到數(shù)列{an}。

        值得一提的是,大部分具有深刻背景的新定義型壓軸題,經(jīng)過命題人的改造或初等化,成題表述緊緊圍繞中學數(shù)學核心知識和思想方法,其他人很難窺探其來源了,對考生而言真正做到了背景公平。

        (二)新定義引入的方式

        分析相關高考題,也不難發(fā)現(xiàn),引入數(shù)列新定義的主要方式有生成、約束和關聯(lián)等三種。

        所謂“生成”新數(shù)列,是指由一個具體的數(shù)列產(chǎn)生新數(shù)列,可以產(chǎn)生子數(shù)列,也可以通過變換的方式產(chǎn)生新數(shù)列。除了前述2024年北京卷壓軸題,再如:

        (2019年北京卷)已知數(shù)列{an},從中選取第i1項、第i2項……第im項(i1<i2<…<im),若ai1<ai2<…<aim,則稱新數(shù)列ai1,ai2,…,aim為{an}的長度為m的遞增子列。

        (2008年北京卷)對于每項均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1。對于每項均是非負整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B);又定義S(B)=2(b1+2b2+…+mbm)+b21+b22+…+b2m。設A0是每項均為正整數(shù)的有窮數(shù)列,令Ak+1=T2(T1(Ak))(k=0,1,2,…)。

        所謂“約束”新數(shù)列,是針對單個數(shù)列,約定其具有某種特殊性質。除了前述2024年新課標Ⅰ卷壓軸題,再如:

        (2021年北京卷)設p為實數(shù),若無窮數(shù)列{an}同時滿足如下三個性質,則稱{an}為Rp數(shù)列:① a1+p≥0且a2+p=0;② a4n-1<a4n(n∈N*);③ am+n∈{am+an+p,am+an+p+1}(m、n∈N*)。

        (2022年北京卷)已知Q:a1,a2,…,ak為有窮整數(shù)數(shù)列。給定正整數(shù)m,若對任意的n∈{1,2,…,m},Q中存在ai,ai+1,ai+2,…,ai+j(j≥0),使得ai+ai+1+ai+2+…+ai+j=n,則稱Q為m-連續(xù)可表數(shù)列。

        從上述幾道北京卷壓軸題不難發(fā)現(xiàn),為了命題能夠推陳出新,新定義的數(shù)列所具有的性質越來越復雜,對思維水平的要求自然水漲船高了。

        通過約束性質給出新數(shù)列時,為了行文方便,可以統(tǒng)稱該數(shù)列具有“性質P”。例如:

        (2016年上海卷)若無窮數(shù)列{an}滿足:只要ap=aq(p、q∈N*),必有ap+1=aq+1,則稱{an}具有性質P。

        (2019年上海卷)數(shù)列{an}有100項,a1=a,對任意n∈{2,3,…,n},存在i∈{1,2,…,n-1},使得an=ai+d。若ak與前k-1項中某一項相等(k∈{2,3,…,100}),則稱ak具有性質P。

        (2020年上海卷)已知m∈N*,若數(shù)列{an}滿足|a2-a1|≤|a3-a1|≤|a4-a1|≤…≤|am-a1|,則稱{an}具有性質P。

        當研究的新數(shù)列是某個確定數(shù)列時,約束其性質甚至不需要給出新定義或冠名“性質P”,只需要平鋪直敘。例如:

        (2020年北京卷)已知{an}是無窮數(shù)列。給出兩個性質:① 對于{an}中任意兩項ai、aj(i>j),{an}中都存在一項am,使得a2iaj=am;② 對于{an}中任意一項an(n≥3),{an}中都存在兩項ak、al(k>l),使得an=a2kal。

        所謂“關聯(lián)”新數(shù)列,是指對兩個數(shù)列,定義它們之間具有某種特殊關聯(lián),常常是用一個數(shù)列約束另一個數(shù)列。例如,前述2018年上海卷壓軸題利用特殊的等差(比)數(shù)列來“接近”一般的某個數(shù)列。類似地,還可以將一般的數(shù)列“嵌入”特殊的等差(比)數(shù)列中,例如:

        (2018年上海春考卷)若{cn}是遞增數(shù)列,數(shù)列{an}滿足:對任意n∈N*,存在m∈N*,使得am-cnam-cn+1≤0,則稱{an}是{cn}的“分隔數(shù)列”。

        提煉和引入數(shù)列新定義的方式很多,概而言之,都是通過新定義引入新數(shù)列,然后設置問題從不同角度、不同深度展開對新數(shù)列有關性質的研究。為了信息集中,新定義中往往只涉及一或兩個數(shù)列。作為數(shù)列內容的核心知識,等差數(shù)列和等比數(shù)列自然是數(shù)列新定義型壓軸題的基本內容載體,新數(shù)列的有關性質大多通過轉化為等差(比)數(shù)列的相關知識和方法來研究。當然,有些新定義型壓軸題對思維能力的要求很高,所考查的方法和技巧包括組合計數(shù)、構造對應、尋找單調變化的量等,不限于數(shù)列知識一隅。

        三、新定義型壓軸題的設問方式

        新定義型壓軸題設問的基本原則是層層遞進、逐步深入。新定義型壓軸題可以理解為微型的研究課題。解決這類問題時,通常會經(jīng)歷理解問題、分析問題、解決問題三個階段。但是,各個階段之間的起承轉合往往是有難度的,因而,需要在設問時進行一定的鋪墊。常用的鋪墊手法包括但不限于:判斷簡單的數(shù)學對象是否符合新定義,來幫助理解新定義的含義;研究與新定義相關的熟悉的數(shù)學對象的性質,來掌握新定義的使用方法;類比新定義對象中簡單對象的研究方法,來探索復雜對象的性質。

        因此,新定義型壓軸題通常設置3個小題:第一小題解釋定義,第二小題挖掘性質,第三小題探究未知。這一模式可以引導有能力的學生在考場上有限的時間內完成簡單的數(shù)學探究過程。筆者命制的上海市浦東新區(qū)2022屆高三一模第21題就是按照這樣的方式設問的:

        已知數(shù)列{an},若存在A∈R,使得數(shù)列{|an-A|}是遞減數(shù)列,則稱數(shù)列{an}是“A型數(shù)列”。

        (1)判斷數(shù)列π,-3,-1,12是否為“0型數(shù)列”;

        (2)若等比數(shù)列{an}的通項公式為an=qn(n∈N*),q>0,其前n項和為Sn,且{Sn}是“A型數(shù)列”,用q表示A并求q的取值范圍;

        (3)已知k>0,數(shù)列{an}滿足a1=0,an+1=k|an|-1(n∈N*),若存在A∈R,使得{an}是“A型數(shù)列”,求k的取值范圍,并求出所有滿足條件的A(用k表示)。

        本題的新定義脫胎于數(shù)列極限的概念,但是與一般的數(shù)列極限定義不同,新定義中的參數(shù)A可能不是數(shù)列{an}的極限,而數(shù)列{an}的極限(若存在)也未必能作為新定義中的參數(shù)A。這一微妙的差異要求學生在探究問題時,類比教材中對數(shù)列極限的研究方法,但又不能直接套用公式或結論。

        第一小題給出一個特別簡單(各項明確,無須推算,不含參數(shù))的數(shù)列讓學生判斷,幫助學生理解新定義。第二小題給出學生熟悉的等比數(shù)列(含參數(shù),即公比q),限定其前n項和數(shù)列為新定義數(shù)列,要求有關參數(shù)的關系及范圍,幫助學生熟悉新定義的使用。第三個小題則給出一個稍微復雜的遞推數(shù)列,讓學生類比第二小題等比數(shù)列的研究方法,來探索該數(shù)列的性質。

        第三小題求解參數(shù)A(用k表示)的過程對學生結合數(shù)學運算進行邏輯推理的數(shù)學語言表達能力提出了較高的要求,與大學數(shù)學分析的論證要求對標,有較好的區(qū)分度。其解答過程如下:

        當k≥1時,a1=0,a2=-1,a3=k-1。此時若存在A∈R,使得{an}是A型數(shù)列,則|A|>|A+1|>|k-1-A|,從而A<-12且k<1,矛盾。

        當0<k<1時,先證明an≤0(n∈N*)。由題意,a1=0,a2=-1,a3=k-1。因此,若存在n∈N*,使得an>0,則n≥4。假設n=m是使得an>0的最小正整數(shù),則am>0≥am-1,故am=-kam-1-1>0am-1<-1k,而am-1=-kam-2-1<-1kam-2>1-kk2>0,與m的最小性矛盾。故an≤0(n∈N*),從而an+1=-kan-1對一切n∈N*成立。由此得an=(-k)n-1-1k+1。記α=-1k+1,則|an-α|=kn-1k+1,{|an-α|}為遞減數(shù)列,即存在A=α,使得{an}為A型數(shù)列。

        再證明α是唯一解。假設存在A≠α,使得{an}是A型數(shù)列。若A>α,則由a2m-1=α+k2m-2k+1知,當m>logk2[(A-α)(k+1)]+1時,a2m-1<A。故|a2m-1-A|=A-α-k2m-2k+1<A-α-k2mk+1=|a2m+1-A|,{|an-A|}不是遞減數(shù)列,從而{an}不是A型數(shù)列。同理可證,A<α時,{an}也不是A型數(shù)列。

        綜上,k∈(0,1),相應的A=-1k+1。

        近年的高考(和模擬)試題中已經(jīng)積累了不少新定義型壓軸題的案例,但是如何更好地發(fā)揮這類試題在評價方面的功能還有很多值得探索的細節(jié)。希望本文對深入認識新定義型壓軸題能起到拋磚引玉的作用。

        參考文獻:

        [1] 任子朝.新高考十年數(shù)學科考試內容改革:成就、挑戰(zhàn)與轉向[J].中國考試,2024(7):11-18.

        [2] 教育部教育考試院.優(yōu)化試卷結構設計 突出思維能力考查——2024年高考數(shù)學全國卷試題評析[J].中國考試,2024(7):79-85.

        天天射综合网天天插天天干| 国产午夜无码精品免费看动漫| 青青草视频在线视频播放| 亚洲精品在线一区二区| 大地资源在线影视播放| 精品久久久久久777米琪桃花| 久久久久久一级毛片免费无遮挡| 羞涩色进入亚洲一区二区av| 少妇性俱乐部纵欲狂欢少妇| 乱人伦中文无码视频在线观看| 激情五月天伊人久久| 国产精品一级黄色大片| 免费在线观看视频播放| 国产二级一片内射视频插放| 亚洲成av人片无码不卡播放器| 亚洲图文一区二区三区四区| 日韩无码专区| 水蜜桃无码视频在线观看| 91超碰在线观看免费 | 中文字幕亚洲精品专区| 亚洲香蕉成人av网站在线观看| 1000部精品久久久久久久久| 午夜一区二区三区在线视频| 人妖一区二区三区视频| 性裸交a片一区二区三区| 色丁香在线观看| 国产一区二区三区日韩精品| 99久久国产精品网站| 国产人妻精品一区二区三区| 亚洲福利天堂网福利在线观看| 日本大片一区二区三区| 国产av国片精品jk制服| 四虎成人精品无码永久在线| 亚洲av影片一区二区三区 | 日本一区二区三区资源视频| 亚洲高清中文字幕视频| 欧美精品一区二区蜜臀亚洲| 成人在线免费视频亚洲| av网站国产主播在线| 激情内射日本一区二区三区| 中文人妻无码一区二区三区信息 |