摘要: 為探尋寧夏中部干旱帶枸杞最優(yōu)水肥組合,設(shè)置灌水和施肥二因素三水平共9個(gè)處理,分析不同水肥交互對(duì)枸杞生長(zhǎng)、產(chǎn)量、果實(shí)品質(zhì)多個(gè)指標(biāo)的影響.引入層次分析法(analytic hie-rarchy process, AHP)和熵權(quán)法對(duì)3類(lèi)因素10個(gè)指標(biāo)進(jìn)行多層賦權(quán),運(yùn)用博弈論的組合賦權(quán)法獲得各單一指標(biāo)最終權(quán)重,基于TOPSIS法構(gòu)建枸杞生長(zhǎng)評(píng)價(jià)體系,并以高產(chǎn)、優(yōu)質(zhì)、高效為目標(biāo)建立枸杞水肥交互響應(yīng)數(shù)學(xué)模型.結(jié)果表明,高水對(duì)枸杞生長(zhǎng)、產(chǎn)量和品質(zhì)的影響具有統(tǒng)計(jì)學(xué)意義(P<0.05),各生長(zhǎng)指標(biāo)最優(yōu)處理均出現(xiàn)在高水處理,中肥和高肥對(duì)品質(zhì)產(chǎn)量影響較大;綜合協(xié)調(diào)各指標(biāo),賦權(quán)值最高為干重(0.226 7),總糖次之(0.135 2);多指標(biāo)綜合評(píng)價(jià)最優(yōu)水肥處理為高水低肥(W3F1).解析枸杞生長(zhǎng)對(duì)水肥耦合的響應(yīng)模型,得到最適灌水和施肥區(qū)間分別為灌水量75%~110% ET0、施肥量(N-P2O5-K2O)為165.0-60.0-105.0 kg/hm2~223.5-79.5-144.0 kg/hm2,在此區(qū)間利用回歸模型Y=-0.090 4+0.370 6X1+0.000 2X22-0.010 4X1X2(綜合評(píng)分Y、灌水量X1 、施肥量X2)確定有利于實(shí)現(xiàn)枸杞的優(yōu)質(zhì)高效生產(chǎn)的最優(yōu)水肥組合.
關(guān)鍵詞: 枸杞;水肥交互;博弈論組合賦權(quán);TOPSIS;綜合評(píng)價(jià)
中圖分類(lèi)號(hào): S274.1;S567.19 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2024)10-1058-08
DOI:10.3969/j.issn.1674-8530.23.0173
楊震,尹娟,孫富斌,等. 基于博弈論組合賦權(quán)TOPSIS法的寧夏中部干旱帶枸杞水肥綜合評(píng)判[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(10):1058-1065.
YANG Zhen, YIN Juan, SUN Fubin,et al. Comprehensive evaluation of water and fertilizer for Lycium barbarum in central dry zone of Ningxia based on game theory combined weighting TOPSIS method[J]. Journal of drainage and irrigation machinery engineering(JDIME)," 2024, 42(10): 1058-1065. (in Chinese)
Comprehensive evaluation of water and fertilizer for Lycium
barbarum in central dry zone of Ningxia based on game
theory combined weighting TOPSIS method
YANG Zhen1, YIN Juan1, 2, 3*, SUN Fubin1, MA Zhenghu1, YANG Yingpan1, HAN Yulu1
(1. College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; 2. Ministry of Education Engineering Center for Efficient Utilization of Agricultural Water Resources in Arid Regions, Yinchuan, Ningxia 750021, China; 3. Ningxia Engineering Technology Research Center for Water-saving Irrigation and Water Resource Regulation, Yinchuan, Ningxia 750021, China)
Abstract: In order to find the optimal water and fertilizer combination for Lycium barbarum in the central dry zone of Ningxia, a total of nine treatments with two factors and three levels of irrigation and fertilization were used to analyze the effects of different water and fertilizer interactions on the growth, yield and fruit quality of Lycium barbarum. AHP hierarchical analysis and entropy weighting method were introduced to assign weights to 10 indicators of three categories of factors, and the final weights of each single indicator were obtained by using game theory combined weighting method. The results show that high water has a significant effect on the growth, yield, and quality of Lycium barbarum(P<0.05), the optimal treatments for each growth indicator are seen in the high water treatment while medium and high fertilizers have a greater effect on the quality and yield. The highest weight is assigned to the dry weight (0.226 7) and the second highest to the total sugar (0.135 2). The best irrigation and fertilizer application interval is obtained from the model of strawberry integrated growth response to water and fertilizer coupling, and the optimal irrigation and fertilizer application ranges are 75%-110% ET0 for irrigation and 165.0-60.0-105.0 kg/hm2-223.5-79.5-144.0 kg/hm2 for fertilizer (N-P2O5-K2O), which is the most favorable to achieve high yield and high quality of Lycium barbarum. In this region, using the regression model Y=-0.090 4+0.370 6X1+0.000 2X22-0.010 4X1X2 (combined score Y, irrigation volume X1, fertilizer application X2) to determine the optimal water and fertilizer combinations is conducive to the realization of high-quality and efficient production of Lycium barbarum.
Key words: Lycium barbarum;water and fertilizer interaction;game theory combined weighting;TOPSIS;comprehensive evaluation
枸杞為茄科,屬多年生落葉灌木[1],其果實(shí)在滋腎養(yǎng)肝、增強(qiáng)免疫力、清熱潤(rùn)肺等方面功效極其顯著[2-3].寧夏枸杞是唯一被載入2010年版《中國(guó)藥典》的枸杞品種,具有植物適應(yīng)性強(qiáng)、營(yíng)養(yǎng)價(jià)值高、器官藥理作用顯著等特點(diǎn)[4].枸杞種植規(guī)模的擴(kuò)大導(dǎo)致該區(qū)域水-地矛盾加劇,同時(shí)水肥過(guò)量施用造成環(huán)境污染嚴(yán)重[5-6].因此,如何科學(xué)合理地制定適宜該地區(qū)枸杞生長(zhǎng)的水肥調(diào)控方案,是亟待解決的問(wèn)題.
近年來(lái),國(guó)內(nèi)外學(xué)者建立了對(duì)多目標(biāo)綜合評(píng)價(jià)的方法,如主成分分析法[7]、灰色關(guān)聯(lián)度模糊評(píng)價(jià)[8]、層次分析法(AHP)[9]和賦權(quán)TOPSIS法[10]等.然而,單一的方法模型對(duì)指標(biāo)的側(cè)重不同,存在主觀和客觀的影響,限制了評(píng)判結(jié)果的準(zhǔn)確性.文中采用博弈論將熵權(quán)和層次分析法(AHP)進(jìn)行優(yōu)化組合賦權(quán),彌補(bǔ)了賦權(quán)TOPSIS法的單一性[11].
文中運(yùn)用博弈論組合賦權(quán)TOPSIS法對(duì)枸杞生長(zhǎng)、產(chǎn)量和品質(zhì)3個(gè)方面進(jìn)行綜合評(píng)判,同時(shí)分析各項(xiàng)指標(biāo)以建立多目標(biāo)綜合評(píng)價(jià)模型,從而獲得最佳水肥調(diào)控模式,為寧夏枸杞的科學(xué)管理提供理論依據(jù).
1 材料與方法
1.1 試驗(yàn)區(qū)概況
試驗(yàn)于2021年在寧夏某莊園(105°47′58″E,37°5′52″N)開(kāi)展.該地區(qū)氣候干旱,風(fēng)大沙多,多年平均蒸發(fā)量2 387 mm,多年平均降水量270 mm,且多集中在6~9月.晝夜溫差大,年平均氣溫8.6 ℃,多年平均日照數(shù)約3 024 h,無(wú)霜期157 d.土壤為砂壤土,pH為8.16,有機(jī)質(zhì)質(zhì)量比為9.77 g/kg,堿解氮質(zhì)量比為13.80 mg/kg,有效磷質(zhì)量比為5.63 mg/kg,速效鉀質(zhì)量比為160.00 mg/kg.
1.2 試驗(yàn)設(shè)計(jì)
采用大田小區(qū)試驗(yàn),選取3個(gè)灌水量Wi(60%ET0,80%ET0,100%ET0)和3個(gè)施肥水平Fi(N-P2O5-K2O:165.0-60.0-105.0 kg/hm2,210.0-75.0-135.0 kg/hm2,255.0-90.0-165.0 kg/hm2)共9個(gè)處理,每個(gè)處理3次重復(fù),3個(gè)灌水無(wú)肥處理作為對(duì)照(CK),共30個(gè)試驗(yàn)小區(qū),完全隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì)見(jiàn)表1.供試枸杞品種為8年生“寧杞7號(hào)”,株距為0.75 m,行距為3 m.1行5棵枸杞樹(shù)為1個(gè)小區(qū).灌溉方式為籬架式滴灌,每行鋪設(shè)1條內(nèi)鑲貼片式滴灌管,管內(nèi)徑16 mm,壁厚0.6 mm,滴頭流量3.0 L/h.
ET0計(jì)算按照FAO推薦使用的Penman-Monteith公式,即
ET0=0.408Δ(Rn-G)+γ900u2(es-ea)T+273Δ+γ(1+0.34u2),(1)
式中:ET0為參考作物需水量,mm/d;Rn為凈輻射,MJ/(m2·d);G為土壤熱通量,MJ/(m2·d);Δ為溫度關(guān)系曲線(xiàn)與飽和水汽壓的斜率,kPa/℃;γ為濕度計(jì)常數(shù),kPa/℃;T為日平均溫度,℃;u2為在地面以上2 m高處的風(fēng)速,m/s;es為空氣飽和水汽壓,kPa;ea為空氣水汽壓,kPa.
距離試驗(yàn)區(qū)域5 m空曠處安裝Decagon微型氣象監(jiān)測(cè)站,監(jiān)測(cè)研究區(qū)域氣象情況得出ET0 ,監(jiān)測(cè)結(jié)果見(jiàn)表2.生育期內(nèi)逐日ET0累加得到枸杞全生育期作物需水量為347.18 mm.
1.3 測(cè)定指標(biāo)與方法
株高(H)的測(cè)定:在每個(gè)小區(qū)選擇長(zhǎng)勢(shì)基本相同的3棵枸杞樹(shù),用卷尺測(cè)量莖基部到生長(zhǎng)點(diǎn)的自然高度.全生育期每隔15 d測(cè)1次.
地莖(D)的測(cè)定:在每個(gè)小區(qū)選擇長(zhǎng)勢(shì)基本相同的3棵枸杞樹(shù),取莖基部最粗處的縱橫2向直徑的平均值,用游標(biāo)卡尺測(cè)量.全生育期每隔15 d測(cè)量1次.
冠幅(C)的測(cè)定:在每個(gè)小區(qū)選擇長(zhǎng)勢(shì)基本相同的3棵枸杞樹(shù),用卷尺測(cè)量東—西、南—北方向冠幅,全生育期每隔15 d測(cè)量1次.
葉面積(S)的測(cè)定:在每個(gè)小區(qū)選擇長(zhǎng)勢(shì)基本相同的3棵枸杞樹(shù),在每棵樹(shù)中上部位標(biāo)定并測(cè)量無(wú)遮擋的3個(gè)新發(fā)枝條上位置大致相同的葉片.采用葉面積儀測(cè)定,全生育期每隔15 d測(cè)量1次.
產(chǎn)量的測(cè)定:測(cè)定枸杞產(chǎn)量時(shí),按小區(qū)測(cè)定.釆摘每小區(qū)5棵枸杞樹(shù)全部果實(shí),稱(chēng)量鮮果質(zhì)量和百粒質(zhì)量,經(jīng)烘干后,測(cè)定枸杞的干質(zhì)量(md)及百粒質(zhì)量(mh),并計(jì)算出干鮮比.最后分別統(tǒng)計(jì)各處理小區(qū)干果產(chǎn)量.
品質(zhì)的測(cè)定:每個(gè)處理選取0.5 kg枸杞干果樣品送交專(zhuān)業(yè)檢測(cè)機(jī)構(gòu),檢測(cè)指標(biāo)為枸杞總糖(wTs)、甜菜堿(wBe)、β-胡蘿卜素(wβ)及黃酮(wFl)質(zhì)量比.
1.4 基于博弈論組合賦權(quán)TOPSIS綜合評(píng)價(jià)體系
1.4.1 評(píng)判體系構(gòu)建
1) AHP計(jì)算主觀權(quán)重
基于AHP方法構(gòu)建評(píng)價(jià)體系確定主觀權(quán)重.以科學(xué)合理、全面的原則,查閱相關(guān)文獻(xiàn)確定評(píng)價(jià)指標(biāo),構(gòu)建枸杞綜合評(píng)價(jià)模型.
2) 熵權(quán)法計(jì)算客觀權(quán)重
進(jìn)行標(biāo)準(zhǔn)化處理,即
yij=xij-xjminxjmax-xjmin,(2)
式中:yij為量綱一化的第i(i=1,2,…,m)個(gè)評(píng)價(jià)對(duì)象的第j(j=1,2,…,n)個(gè)指標(biāo)值;xij為第i個(gè)評(píng)價(jià)對(duì)象第j個(gè)指標(biāo)數(shù)據(jù);xjmin,xjmax分別為第j個(gè)指標(biāo)的最小值和最大值.
定義標(biāo)準(zhǔn)化矩陣Yij=yij∑mi=1yij;第j個(gè)指標(biāo)的信息熵值ej=-1ln m∑mi=1Yijln Yij,第j個(gè)指標(biāo)的信息效用值dj=1-ej.最后可以得到第j個(gè)指標(biāo)的權(quán)重Wj=dj∑nj=1dj.評(píng)價(jià)指標(biāo)的信息效用值權(quán)重越大,表明指標(biāo)越重要,對(duì)評(píng)價(jià)的重要性就越大.
3) 基于博弈論確定組合權(quán)重
基于博弈論組合賦權(quán)方法確定枸杞第j個(gè)指標(biāo)的綜合權(quán)重WTj.兼顧主觀與客觀賦權(quán)提高賦權(quán)合理性.
歸一化處理指標(biāo)系數(shù)αj得到優(yōu)化組合系數(shù)α*j,最后得到博弈論組合賦權(quán)權(quán)重W*j.
αj=αj∑nj=1αj,(3)
Wj=∑nj=1αjWTj.(4)
1.4.2 博弈論賦權(quán)TOPSIS組合評(píng)價(jià)
設(shè)m個(gè)評(píng)價(jià)對(duì)象,n個(gè)評(píng)價(jià)指標(biāo),xij為第i(i=1,2,…,m)個(gè)評(píng)價(jià)對(duì)象在第j(j=1,2,…,n)個(gè)評(píng)價(jià)指標(biāo)上的對(duì)應(yīng)數(shù)值,構(gòu)建原始矩陣為
x11…x1n
xm1…xmn.
對(duì)原始數(shù)據(jù)歸一化處理,采用公式(6)計(jì)算歸一化值z(mì)ij,得到量綱為一的決策矩陣Z為
Z=(zij)mn,(5)
zij=xij∑mi=1x2ij.(6)
由決策矩陣得到正理想解Z+和負(fù)理想解Z-,由博弈論組合賦權(quán)指標(biāo)權(quán)重W*j計(jì)算第i個(gè)評(píng)價(jià)對(duì)象與正、負(fù)理想解的加權(quán)距離,分別為D+i和D-i,即
D+i=∑nj=1W*j(Z+-zij)2,(7)
D-i=∑nj=1W*j(Z--zij)2,(8)
進(jìn)行歸一化處理,計(jì)算得到貼合度Si,從而得出第i個(gè)評(píng)價(jià)對(duì)象的得分S*i,即
Si=D-iD+i+D-i,S*i=Si∑mi=1Si.(9)
1.5 數(shù)據(jù)處理與分析
采用Excel 2018進(jìn)行數(shù)據(jù)整理分析;利用SPSS軟件進(jìn)行相關(guān)性分析;采用Origin 2021軟件繪圖;采用Yaahp10.1軟件構(gòu)建評(píng)價(jià)體系;采用Matlab 2020b進(jìn)行模型計(jì)算.
2 結(jié)果與分析
2.1 不同水肥處理對(duì)枸杞單一指標(biāo)的影響
2.1.1 對(duì)枸杞生長(zhǎng)的影響
圖1為不同水肥條件對(duì)枸杞生長(zhǎng)的影響.由圖可知,在同一灌溉水平下,枸杞株高隨著施肥量的增加變化各不相同.W1水平下,株高隨著施肥量的增加逐漸增加,各處理差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05);在W1和W3水平,枸杞葉面積隨著施肥量的增加各處理差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),W1F2最低、W3F2最高;枸杞冠幅在W1水平隨著施肥量的增加表現(xiàn)出先增加后減小的趨勢(shì),在W2水平隨著施肥量的增加呈先減小后增加的趨勢(shì),在W3水平各處理差異不具有統(tǒng)計(jì)學(xué)意義(Pgt;0.05);枸杞地徑在W1和W2水平,隨著施肥量的增加呈增加的趨勢(shì),各處理間差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05),在W3水平隨著施肥量的增加呈先減小后增加的變化.
2.1.2 對(duì)枸杞產(chǎn)量的影響
圖2為不同水肥條件對(duì)枸杞產(chǎn)量的影響.由圖可知,W1水平干質(zhì)量隨施肥量的增加呈先減小后增大的趨勢(shì),W2水平干質(zhì)量隨施肥量的增加呈先增大后減小的趨勢(shì),W3水平干質(zhì)量隨施肥量的增加呈逐漸減小的趨勢(shì),W3水平表現(xiàn)較優(yōu),最優(yōu)處理為W3F1,達(dá)2 845.03 kg/hm2.百粒質(zhì)量隨著施肥量的增加呈逐漸增加趨勢(shì),從灌水水平來(lái)看,W3水平整體表現(xiàn)較優(yōu),從施肥水平而言,F(xiàn)3水平表現(xiàn)最佳,處理W3F3百粒質(zhì)量最大,最大值為21.08 g.
2.1.3 對(duì)枸杞品質(zhì)的影響
圖3為不同水肥條件對(duì)枸杞品質(zhì)的影響.由圖可知,從灌水水平來(lái)看,W3水平整體表現(xiàn)較優(yōu).從施肥水平而言,F(xiàn)1水平表現(xiàn)最佳.W1和W3水平下黃酮隨著施肥量的增加呈遞減趨勢(shì),整體而言,W3F1處理表現(xiàn)最優(yōu).
灌水量一定情況下,總糖質(zhì)量比受施肥影響由大到小排列依次為F3,F(xiàn)2和F1.在W1和W2水平,總糖質(zhì)量比隨著施肥量的增加呈現(xiàn)出先增大后減小的趨勢(shì).W3水平總糖質(zhì)量比隨著施肥量的增加而增大.在W1,W2水平,β-胡蘿卜素質(zhì)量比隨著施肥量的增加呈現(xiàn)先增大后減小的趨勢(shì),而在W3水平呈先減小后增大的趨勢(shì).甜菜堿質(zhì)量比各處理變化各不相同,在W1和W3水平,隨著施肥量的增加逐漸減??;W2水平甜菜堿質(zhì)量比隨著施肥量的增加呈先增大后減小趨勢(shì),且W2F2差異具有統(tǒng)計(jì)學(xué)意義(Plt;0.05).
2.2 枸杞綜合生長(zhǎng)評(píng)價(jià)體系構(gòu)建
2.2.1 枸杞各級(jí)指標(biāo)權(quán)重確定
1) 基于AHP法確定權(quán)重
表3為基于AHP的枸杞評(píng)價(jià)指標(biāo)權(quán)重.表中產(chǎn)量指標(biāo)(A1)包含干質(zhì)量(B1)和百粒質(zhì)量(B2);生長(zhǎng)指標(biāo)(A2)包含株高(B3)、葉面積(B4)、冠幅(B5)和地徑(B6);品質(zhì)指標(biāo)(A3)包含總糖(B7)、甜菜堿(B8)、β-胡蘿卜素(B9)和黃酮(B10).層次模型建立后,判斷矩陣進(jìn)行一致性檢驗(yàn),ek和ei分別為一級(jí)指標(biāo)和二級(jí)指標(biāo)的局部權(quán)重,ai為AHP計(jì)算的指標(biāo)權(quán)重,所有指標(biāo)的一致性比率CR的值均小于0.1,則認(rèn)為判斷矩陣都通過(guò)了一致性檢驗(yàn),λmax為判斷矩陣的最大特征值.產(chǎn)量評(píng)價(jià)指標(biāo)中的干質(zhì)量權(quán)重最大,品質(zhì)評(píng)價(jià)指標(biāo)中的總糖次之,而生長(zhǎng)指標(biāo)中的地徑權(quán)重最小.
2) 基于熵權(quán)法確定權(quán)重
熵權(quán)法確定的枸杞各項(xiàng)指標(biāo)權(quán)重從大到小排列依次為干質(zhì)量、總糖、黃酮、甜菜堿、株高、百粒質(zhì)量、胡蘿卜素、地徑、葉面積、冠幅.
3) 基于博弈論的組合賦權(quán)
采用博弈論方法對(duì)基于AHP法和熵權(quán)法的枸杞各項(xiàng)指標(biāo)進(jìn)行組合賦權(quán),通過(guò)程序計(jì)算得出枸杞各指標(biāo)權(quán)重由大到小排列依次為干質(zhì)量、總糖、黃酮、百粒質(zhì)量、甜菜堿、株高、胡蘿卜素、冠幅、葉面積、地徑.
2.2.2 枸杞生長(zhǎng)綜合評(píng)價(jià)
基于博弈論組合賦權(quán)的TOPSIS枸杞生長(zhǎng)綜合評(píng)價(jià)如表4所示,由表可知T7處理歸一化得分最高,T5處理次之,T2處理得分最低.各處理排名由前到后依次為T(mén)7,T5,T8,T6,T3,T1,T9,T4,T2.
2.3 枸杞綜合生長(zhǎng)水肥決策模型
根據(jù)枸杞綜合評(píng)分進(jìn)行回歸模擬,得到以枸杞水肥綜合評(píng)分Y、灌水量編碼X1和施肥量編碼X2的回歸模型為
Y=-0.090 4+0.370 6X1+0.000 2X22-0.010 4X1X2.(10)
枸杞綜合生長(zhǎng)受灌水和施肥交互作用的影響,根據(jù)回歸方程計(jì)算達(dá)到最優(yōu)指標(biāo)時(shí),綜合評(píng)分為0.146 5,灌水量為110%ET0,施肥量(N-P2O5-K2O)為165.0-60.0-105.0 kg/hm2.以綜合評(píng)分0.15劃分閉合區(qū)域得出枸杞最佳灌水施肥區(qū)間分別為灌水量為75%~110%ET0、施肥量(N-P2O5-K2O)為165.0-60.0-105.0 kg/hm2~223.5-79.5-144.0 kg/hm2,在此區(qū)間依據(jù)式(10)回歸模型確定最有利于實(shí)現(xiàn)枸杞高產(chǎn)優(yōu)質(zhì)的最佳灌水施肥組合.
3 討 論
通過(guò)大田試驗(yàn),大量學(xué)者[12-14]研究表明,氣候條件、植株生理生長(zhǎng)、灌水量以及肥料施用量都是影響作物產(chǎn)量和品質(zhì)的重要因素.枸杞是藥食同源植物,其生長(zhǎng)、產(chǎn)量及品質(zhì)除受氣候和地域的影響外,水分和養(yǎng)分對(duì)其也有重要影響[15].枸杞生長(zhǎng)(株高、地徑、葉面積和冠幅)在W3處理下表現(xiàn)最優(yōu),W3處理地徑分別比W1和W2處理高6.89%和3.05%,說(shuō)明高水能夠促進(jìn)枸杞植株生長(zhǎng),這與加孜拉等[16]的研究結(jié)論相似.株高與冠幅隨灌水和施氮的增加并無(wú)明顯變化,這與相關(guān)研究[17]存在差異,這是因?yàn)槲闹性囼?yàn)枸杞樹(shù)齡較大.枸杞是一種適應(yīng)干旱條件下生長(zhǎng)的植物,它具有較強(qiáng)的耐旱性和抗逆能力.在其生長(zhǎng)的早期階段,枸杞主要依靠較深的根系吸收土壤水分,而不太依賴(lài)于灌水量的增加.因此,即使灌水量較少,枸杞也能夠較好地利用有限的水源進(jìn)行生長(zhǎng).另外,在水分不足時(shí),枸杞能夠通過(guò)減少蒸騰作用降低水分損失的速率,從而保持其生長(zhǎng)穩(wěn)定 [18].無(wú)水分脅迫時(shí),過(guò)量施氮?jiǎng)t會(huì)抑制各器官對(duì)水肥的吸收,因?yàn)槭┑窟^(guò)大,在一定程度上降低了作物根際土壤溶質(zhì)勢(shì),造成水勢(shì)降低,阻礙作物水分和養(yǎng)分運(yùn)輸,進(jìn)而影響作物對(duì)養(yǎng)分的吸收,而一定的施氮量會(huì)提高作物的抗旱能力,進(jìn)而促進(jìn)植物對(duì)養(yǎng)分的吸收[19].葉面積隨灌水和施氮的增加而增加,W3F2處理葉面積表現(xiàn)最優(yōu),W1F2處理葉面積表現(xiàn)最差,W3F2處理葉面積比W1F2處理大19.44%.干質(zhì)量最優(yōu)處理為W3F1,達(dá)2 845.03 kg/hm2,W3F3處理百粒質(zhì)量最優(yōu)(21.08 g),說(shuō)明在100%ET0下配施一定肥料有助于促進(jìn)肥料的充分吸收,增加作物產(chǎn)量,這與吳現(xiàn)兵等[20]研究結(jié)果一致.于浩等[21]研究發(fā)現(xiàn)枸杞甜菜堿含量在中水中肥處理時(shí)最高,高水高肥時(shí)枸杞總糖含量最大,文中發(fā)現(xiàn)枸杞品質(zhì)在不同的水肥條件下表現(xiàn)各不相同.β-胡蘿卜素和甜菜堿在中水中肥條件下表現(xiàn)較好,這是因?yàn)樘澣惫喔瓤梢詼p少水分的消耗,降低水分對(duì)果實(shí)的稀釋作用,使枸杞品質(zhì)得到提升.在高水高肥情況下,有利于提升枸杞總糖,因?yàn)楣嗨褪┓适硅坭焦夂献饔眠M(jìn)行得更加充分,導(dǎo)致更多的糖分累積.
TOPSIS法通過(guò)歐氏距離反映數(shù)據(jù)曲線(xiàn)相對(duì)位置關(guān)系,定量描述評(píng)價(jià)對(duì)象優(yōu)劣.博弈論方法通過(guò)將層次分析法和熵權(quán)法進(jìn)行組合優(yōu)化來(lái)確定權(quán)重,既利用了數(shù)據(jù)自身的統(tǒng)計(jì)信息,也體現(xiàn)了指標(biāo)本身的重要性,可以使權(quán)重更加合理準(zhǔn)確.文中采用AHP方法確定主觀權(quán)重,用熵權(quán)法計(jì)算客觀權(quán)重,基于博弈論方法對(duì)枸杞的10個(gè)指標(biāo)進(jìn)行了組合賦權(quán),集中各方法優(yōu)點(diǎn),在定量基礎(chǔ)上考慮各指標(biāo)權(quán)重的準(zhǔn)確性.通過(guò)TOPSIS法對(duì)枸杞的生長(zhǎng)、品質(zhì)、產(chǎn)量進(jìn)行了綜合評(píng)價(jià),更準(zhǔn)確、系統(tǒng)地體現(xiàn)各方案與理想方案之間的接近程度,根據(jù)綜合評(píng)價(jià)得分進(jìn)行回歸模擬得出枸杞的水肥決策模型,更科學(xué)全面地評(píng)價(jià)水肥交互作用對(duì)枸杞的影響,依據(jù)決策模型得出水肥方案更可靠且更加符合實(shí)際.
4 結(jié) 論
1) 通過(guò)生長(zhǎng)、產(chǎn)量和品質(zhì)等相關(guān)指標(biāo)建立枸杞綜合評(píng)價(jià)體系,利用博弈論組合賦權(quán)的方法探明了各指標(biāo)權(quán)重,其中干重權(quán)重最大,總糖次之,地徑最小.
2) 利用基于博弈論組合賦權(quán)的TOPSIS方法對(duì)各處理進(jìn)行綜合評(píng)價(jià),得出W3F1處理水肥方案表現(xiàn)最優(yōu).
3) 根據(jù)枸杞綜合評(píng)分進(jìn)行回歸模擬,確定寧夏中部干旱帶枸杞水肥的最適施用區(qū)間為灌水量75% ~110%ET0、施肥量(N-P2O5-K2O)為165.0-60.0-105.0~223.5-79.5-144.0 kg/hm2,在此區(qū)間利用回歸模型Y=-0.090 4+0.370 6X1+0.000 2X22-0.010 4X1X2確定最優(yōu)水肥組合有利于實(shí)現(xiàn)枸杞的優(yōu)質(zhì)高效生產(chǎn).
參考文獻(xiàn)(References)
[1] 李永華,楊 柳,南雄雄,等.不同葉用枸杞新品種營(yíng)養(yǎng)成分及產(chǎn)量的對(duì)比[J].江蘇農(nóng)業(yè)科學(xué),2021,49(13):113-116.
LI Yonghua, YANG Liu, NAN Xiongxiong, et al. Comparison of nutrient composition and yield of different Lycium barbarum varieties[J].Jiangsu agricultural sciences,2021,49(13):113-116.(in Chinese)
[2] MAO F, XIAO B, JIANG Z. Anticancer effect of Lycium barbarum polysaccharides on coloncancer cells involves G0/G1 phase arrest[J]. Med oncol,2011,28(1):121-126.
[3] AMAGASE H, FAMSWORTH N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit[J]. Food research international, 2011,44(7): 1702-1717.
[4] 謝云,郭芳蕓,陳麗華,等.大氣CO2濃度升高對(duì)寧夏枸杞根區(qū)土壤微生物功能多樣性及碳源利用特征的影響[J].林業(yè)科學(xué),2021,57(4):163-172.
XIE Yun, GUO Fangyun, CHEN Lihua,et al. Effects of elevated CO2 concentration on soil microbial functional diversity and carbon source utilization characteristics in the root zone of Lycium barbarum[J]. Scientia silvae sinicae,2021,57(4):163-172. (in Chinese)
[5] LI T L, XIE Y H, GAO Z Q, et al. Year-round film mulching system with monitored fertilization management improve grain yield and water and nitrogen use efficiencies of winter wheat in the dryland of the Loess Plateau, China[J]. Environmental science and pollution research, 2019,26:9524-9535.
[6] 武慧芳,劉學(xué)軍,陸立國(guó),等.寧夏中部干旱帶枸杞痕量灌溉試驗(yàn)研究[J].寧夏工程技術(shù),2021,20(1):39-44.
WU Huifang, LIU Xuejun, LU Liguo, et al. Experimen-tal study on trace irrigation of wolfberry in the central arid zone of Ningxia[J]. Ningxia engineering techno-logy, 2021,20(1):39-44. (in Chinese)
[7] 劉歡平,鄭彩霞,劉濤,等. 基于產(chǎn)量、品質(zhì)和水氮利用效率的油橄欖水氮耦合方案優(yōu)選[J].江蘇農(nóng)業(yè)學(xué)報(bào),2023,39(9):1843-1853.
LIU Huanping, ZHENG Caixia, LIU Tao, et al. Priority of water-nitrogen coupling scheme for olive based on yield, quality, and water-nitrogen use efficiency[J]. Jiangsu journal of agricultural sciences,2023,39(9):1843-1853.(in Chinese)
[8] 邢立文,崔寧博,董娟,等.基于熵權(quán)-模糊層次分析法的痕灌草莓水肥效應(yīng)評(píng)價(jià)[J].排灌機(jī)械工程學(xué)報(bào),2019,37(9):815-821.
XING Liwen, CUI Ningbo, DONG Juan, et al. Evalua-tion of water and fertilizer coupling effect of trace irrigation strawberry based on entropy weight and fuzzy analytic hierarchy process[J]. Journal of drainage and irrigation machinery engineering, 2019,37(9):815-821.(in Chinese)
[9] 鄧箴,尹娟,吳軍斌,等.基于AHP和熵權(quán)法的枸杞水肥配施綜合評(píng)判[J].排灌機(jī)械工程學(xué)報(bào),2021,39(7):712-719.
DENG Zhen, YIN Juan, WU Junbin, et al. Comprehensive evaluation of water and fertilizer application for Lycium barbarum L.based on AHP and entropy weight method[J]. Journal of drainage and irrigation machinery engineering, 2021,39(7):712-719. (in Chinese)
[10] 田水承,張德桃,楊興波,等.基于博弈論組合賦權(quán)TOPSIS模型對(duì)煤礦安全現(xiàn)狀的綜合評(píng)價(jià)[J].煤礦安全,2018,49(6):242-245.
TIAN Shuicheng, ZHANG Detao, YANG Xingbo, et al. Comprehensive evaluation of coal mine safety status based on TOPSIS model of game theory combination[J]. Safety in coal mines, 2018, 49(6):242-245. (in Chinese)
[11] WANG H D, CHENG M H, ZHANG S H, et al. Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on analytic hierarchy process and fuzzy comprehensive evaluation methods[J]. Agricultural water management, 2021,256:107130
[12] ZOU H Y, FAN J L, ZHANG F C, et al. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in northwest China[J]. Agricultural water management, 2020, 230:105986
[13] GUO X L, LI S S, WANG D L, et al. Effects of water and fertilizer coupling on the physiological characteristics and growth of rabbiteye blueberry[J]. Plos one, 2021, 16(7):e0254013.
[14] 李其勝,楊 凱,蔣偉勤,等.有機(jī)(類(lèi))肥料對(duì)作物產(chǎn)量、土壤養(yǎng)分及土壤微生物多樣性的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2023,39 (8) : 1772-1783.
LI Qisheng,YANG Kai,JIANG Weiqin,et al. Effects of organic-like fertilizers on crop yield,soil nutrients,and soil microbial diversity[J]. Jiangsu journal of agricul-tural sciences, 2023,39 (8) : 1772-1783.(in Chinese)
[15] 張自剛.枸杞生長(zhǎng)水分和養(yǎng)分需求規(guī)律研究進(jìn)展[J].中國(guó)農(nóng)業(yè)信息,2016(24):75-77.
ZHANG Zigang. Research progress on water and nutrient demand law of wolfberry growth[J]. China agricultural information, 2016(24):75-77. (in Chinese)
[16] 加孜拉,蘇里坦,白云崗.不同水分處理對(duì)北疆枸杞植株生長(zhǎng)與產(chǎn)量的影響[J].水土保持通報(bào),2022,42(1):99-105.
JIA Zila,SU Litan, BAI Yungang. Effects of different water treatments on plant growth and yield of Lycium Barbarum in northern Xinjiang[J]. Bulletin of soil and water conservation,2022,42(1):99-105. (in Chinese)
[17] 劉曉麗,馬理輝,李娟娟,等.滴灌水肥一體化對(duì)陜北沙地枸杞產(chǎn)量和品質(zhì)的影響[J].灌溉排水學(xué)報(bào), 2020, 39(S1):13-16.
LIU Xiaoli, MA Lihui,LI Juanjuan, et al. Effect of drip fertigation on Lycium yield and quality in sandy land in northern Shaanxi[J]. Journal of irrigation and drainage, 2020,39(S1):13-16. (in Chinese)
[18] 李歡歡,劉浩,龐婕,等. 水氮互作對(duì)盆栽番茄生長(zhǎng)發(fā)育和養(yǎng)分累積的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(9):272-279.
LI Huanhuan, LIU Hao, PANG Jie, et al. Effects of water and nitrogen interaction on growth and nutrient accumulation of potted tomatoes[J]. Transactions of the CSAM, 2019,50(9):272-279.(in Chinese)
[19] HONG T T, CAI Z L, LI R, et al. Effects of water and nitrogen coupling on watermelon growth, photosynthesis and yield under CO2 enrichment[J]. Agricultural water management, 2022,259:107229.
[20] 吳現(xiàn)兵,白美健,李益農(nóng),等.水肥耦合對(duì)膜下滴灌甘藍(lán)根系生長(zhǎng)和土壤水氮分布的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):110-119.
WU Xianbing, BAI Meijian, LI Yinong, et al. Effect of water and fertilizer coupling on root growth,soil water and nitrogen distribution of cabbage with drip irrigation under mulch[J]. Transactions of the CSAE,2019,35(17):110-119. (in Chinese)
[21] 于浩, 徐利崗, 王懷博. 不同水肥耦合對(duì)寧夏枸杞生長(zhǎng)、產(chǎn)量及品質(zhì)的影響研究[J].水資源與水工程學(xué)報(bào), 2023, 34(2):208-215.
YU Hao, XU Ligang, WANG Huaibo. Effects of diffe-rent water and fertilizer coupling on the growth,yield and quality of Lycium barbarum L. in Ningxia[J]. Journal of water resources and water engineering, 2023,34(2):208-215.(in Chinese)
(責(zé)任編輯 黃鑫鑫)