摘 要:針對風(fēng)電系統(tǒng)運(yùn)行過程中受未知擾動影響而出現(xiàn)的直流母線電壓波動問題,提出一種校正函數(shù)修正的自抗擾控制策略(LADRC-CF)。該方法在線性擴(kuò)張狀態(tài)觀測器(LESO)的擾動觀測通道中引入串聯(lián)校正的思想,通過校正函數(shù)修正LESO對總和擾動的觀測偏差,以實(shí)現(xiàn)更好的擾動補(bǔ)償,進(jìn)而達(dá)成對直流母線電壓的良好控制。此外,還從理論上分析LADRC-CF的穩(wěn)定性和擾動跟蹤能力,在證明穩(wěn)定性的同時給出部分參數(shù)的整定方法。最后,在半實(shí)物仿真平臺上對LADRC-CF策略的控制性能進(jìn)行測試,驗(yàn)證所提策略的有效性和優(yōu)越性。
關(guān)鍵詞:風(fēng)力發(fā)電;控制系統(tǒng);干擾抑制;自抗擾控制;校正函數(shù)
中圖分類號:TK89;TP27 文獻(xiàn)標(biāo)志碼:A
0 引 言
近年來,能源和環(huán)境問題促使新能源技術(shù)飛速發(fā)展[1]。風(fēng)力發(fā)電因其在可再生能源領(lǐng)域的有效應(yīng)用而成為關(guān)注焦點(diǎn)[2]。并網(wǎng)運(yùn)行時,通常需永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)(windpower system with permanent magnet synchronous generator,WPS-PMSG)的直流母線電壓在外部干擾下盡量減少波動并保持穩(wěn)定運(yùn)行[3]。目前,對直流側(cè)電壓波動的抑制主要通過風(fēng)電變流器的控制環(huán)節(jié)來實(shí)現(xiàn)。對于非線性和不連續(xù)的WPS-PMSG 系統(tǒng),傳統(tǒng)PI 控制難以實(shí)現(xiàn)理想的動態(tài)性能[4]。為此,許多學(xué)者融合先進(jìn)的算法(如粒子群、神經(jīng)網(wǎng)絡(luò)算法等),改進(jìn)控制性能[5-7]。然而,這些算法對數(shù)學(xué)模型要求嚴(yán)格,推廣困難。自抗擾控制(active disturbance rejectioncontrol,ADRC)是在傳統(tǒng)PID 基礎(chǔ)上發(fā)展的一種非線性控制,對于未知擾動具有較強(qiáng)的抑制能力[8]。為了簡化調(diào)參和推廣,文獻(xiàn)[9]提出線性自抗擾控制(linear active disturbancerejection control,LADRC)。在風(fēng)電領(lǐng)域,現(xiàn)有的研究大多是將LADRC 直接用于一個控制環(huán)節(jié)[10-12]或是與自適應(yīng)算法結(jié)合進(jìn)一步縮短調(diào)節(jié)過程[13-15],較少從擾動觀測的角度優(yōu)化LADRC。這難以突破現(xiàn)有框架,實(shí)現(xiàn)更強(qiáng)的魯棒性。因此,探索一種觀測偏差優(yōu)化的LADRC,是改善直流母線電壓的良好選擇。
本文結(jié)合線性自抗擾控制策略的優(yōu)點(diǎn),采用串聯(lián)校正的思想來修正擾動觀測偏差,即在擾動觀測輸出通道增設(shè)校正函數(shù),將觀測偏差修正為與校正函數(shù)的系數(shù)相關(guān)。然后,對LADRC-CF 的穩(wěn)定性和擾動觀測能力進(jìn)行分析。通過量化研究穩(wěn)態(tài)偏差與控制參數(shù)的關(guān)系,提出參數(shù)配置方法。最后,在半實(shí)物仿真平臺上驗(yàn)證了其的動態(tài)性能。
1 風(fēng)力發(fā)電系統(tǒng)的數(shù)學(xué)模型
基于永磁同步發(fā)電機(jī)(permanent magnet synchronousgenerator,PMSG)的風(fēng)電系統(tǒng)結(jié)構(gòu)如圖1 所示[16]。其中,Rg、Lg、Cg 分別為網(wǎng)側(cè)濾波器的內(nèi)阻、濾波電感、電容,udc 為直流電壓。機(jī)側(cè)的逆變器主要控制電機(jī)轉(zhuǎn)速、轉(zhuǎn)矩,以實(shí)現(xiàn)風(fēng)能的最大功率點(diǎn)跟蹤[17]。網(wǎng)側(cè)變流器主要用于保持直流母線電壓穩(wěn)定。
根據(jù)圖1 所示結(jié)構(gòu),可得KVL 三相電壓方程:
顯然,ELESO 通過校正函數(shù)修正了斜坡擾動的觀測偏差,使ELESO 達(dá)到了更高水平的擾動觀測精度和速度,從而達(dá)到增強(qiáng)魯棒性的目的。
4 實(shí)驗(yàn)測試
為驗(yàn)證LADRC-FA 策略在不同工況下的動態(tài)特性,特在基于永磁直驅(qū)風(fēng)電系統(tǒng)的硬件在如圖8 所示的環(huán)測平臺上進(jìn)行測試。實(shí)驗(yàn)平臺由RT-LAB 模擬器和物理控制器組成。RT-LAB 模擬器實(shí)時模擬由永磁同步發(fā)電機(jī)、電網(wǎng)和AC-DCAC變流器組成的風(fēng)電系統(tǒng)的運(yùn)行動態(tài),系統(tǒng)參數(shù)如表1所示。
4.1 擾動觀測偏差
為驗(yàn)證本文所提方法與常規(guī)方案對總和擾動跟蹤性能的差異,在并網(wǎng)點(diǎn)電壓波動的情況下進(jìn)行對比測試,如圖9、圖10 所示。圖9 描述了并網(wǎng)點(diǎn)電壓出現(xiàn)25% 的幅值跌落并恢復(fù)正常過程中總和擾動估計偏差的變化過程。在電壓跌落出現(xiàn)時,LADRC-CF 中的ELESO 可更準(zhǔn)確地估計總擾動,最大估計誤差縮小到CLADRC 的約67%,調(diào)節(jié)時間約縮減到常規(guī)方案的57%。在并網(wǎng)點(diǎn)電壓回復(fù)到正常的過程中,二者也體現(xiàn)出相似響應(yīng)差異。圖10 為風(fēng)電系統(tǒng)并網(wǎng)點(diǎn)電壓出現(xiàn)不平衡波動時的對總和擾動的跟蹤性能對比波形??梢姡虿黄胶獠▌颖旧淼奶匦?,在干擾持續(xù)期間,LADRCCF和CLADRC 的觀測偏差均出現(xiàn)振蕩的現(xiàn)象。但與CLADRC 相比,使用LADRC-CF 時的波動幅值下降到原來的61%,并在并網(wǎng)點(diǎn)電壓恢復(fù)到正常時,采用LADRC-CF 的觀測偏差較CLADRC 而言能相對快速,平緩收斂至零。
可見,校正函數(shù)的引入可有效提高擾動估計的精度,測試結(jié)果充分驗(yàn)證了3.2 節(jié)的理論分析。
4.2 干擾影響下的動態(tài)響應(yīng)
本節(jié)分別展示采用常規(guī)PI 控制、CLADRC 和LADRC-CF作為電壓外環(huán)控制器時的響應(yīng)曲線,以驗(yàn)所提策略的魯棒性,如圖11、圖12 所示。具體性能以最大超調(diào)量、調(diào)節(jié)時間為評定指標(biāo)。
從圖11b 可看出,當(dāng)風(fēng)電并網(wǎng)側(cè)的電壓發(fā)生平衡跌落(25%)時,CLADRC 有效縮減了輸出電壓的波動范圍和恢復(fù)時間,與PI 策略相比,超調(diào)量減小了22%,恢復(fù)時間縮短到原來的60%。在相同操作條件下,由于校正函數(shù)的引入,LADRC-CF 將超調(diào)量降低了24%,恢復(fù)時間縮短到原來的28%。另外,在網(wǎng)側(cè)電壓恢復(fù)的過程中,采用LADRC-CF 策略的直流側(cè)電壓響應(yīng)較其他兩種(CLADRC、PI)控制方法而言表現(xiàn)出最小的波動幅值和調(diào)節(jié)時間,如圖11c 所示,這得益于校正環(huán)節(jié)對干擾的準(zhǔn)確估計。由圖12 可看出,當(dāng)風(fēng)電并網(wǎng)側(cè)的電壓發(fā)生不平衡波動時,3 種控制策略下的直流側(cè)電壓都存在振蕩現(xiàn)象。采用PI 策略的輸出電壓波動幅度約為56 V。在相同的運(yùn)行條件下,直流側(cè)的電壓波動遠(yuǎn)遠(yuǎn)大于采用CLADRC 或LADRC-CF 策略的系統(tǒng)。而在并網(wǎng)點(diǎn)電壓波動結(jié)束時,采用LADRC-CF 方法的系統(tǒng)恢復(fù)時間最短??梢姡贚ADRC-CF 的系統(tǒng)對并網(wǎng)側(cè)電壓不平衡波動表現(xiàn)出較高水平的魯棒性。
顯然,相比于PI 和CLADRC,基于LADRC-CF 策略的風(fēng)電系統(tǒng)對并網(wǎng)點(diǎn)電壓平衡波動和不平衡波動都表現(xiàn)出較強(qiáng)的魯棒性。
5 結(jié) 論
風(fēng)力發(fā)電系統(tǒng)在運(yùn)行時易受外部未知干擾的影響而出現(xiàn)波動,給系統(tǒng)穩(wěn)定帶來了不小的挑戰(zhàn)。為此,本文提出一種應(yīng)用于風(fēng)電系統(tǒng)并網(wǎng)逆變器的LADRC-CF 策略。該方法采用校正函數(shù)對常規(guī)LADRC 中LESO 的擾動觀測動態(tài)進(jìn)行了優(yōu)化,有效修正了擾動觀測偏差,成功實(shí)現(xiàn)了較為準(zhǔn)確的狀態(tài)重構(gòu)。此外,基于擾動觀測特性分析,量化了校正函數(shù)中系數(shù)與LESO 帶寬的比例關(guān)系,為參數(shù)整定提供了思路。然后,基于Lyapunov 定理,證明了本文所提控制方法的穩(wěn)定性。從理論分析和測試結(jié)果可看出,由于擾動觀測偏差的修正,基于LADRC-CF 的風(fēng)電系統(tǒng)在各種運(yùn)行條件下都表現(xiàn)出比傳統(tǒng)方法更強(qiáng)的抗擾能力。
[參考文獻(xiàn)]
[1] 張梓欽, 朱東海, 馬玉梅, 等. 弱電網(wǎng)故障下新能源并網(wǎng)變換器的奇異攝動模型與暫態(tài)穩(wěn)定性分析[J]. 中國電機(jī)工程學(xué)報, 2023, 43(2): 454-466.
ZHANG Z Q, ZHU D H, MA Y M, et al. Singularperturbation model and transient stability analysis of gridconnectedconverter under weak grid faults[J]. Proceedingsof the CSEE, 2023, 43(2): 454-466.
[2] 祝可可, 阮琳. 永磁直驅(qū)風(fēng)力發(fā)電機(jī)自抗擾技術(shù)及其無位置傳感器控制策略[J]. 太陽能學(xué)報, 2022, 43(10):266-274.
ZHU K K, RUAN L. Active disturbance rejectiontechnology for permanent magnet direct drive windgenerator and its position sensorless control strategy[J].Acta energiae solaris sinica, 2022, 43(10): 266-274.
[3] 秦垚, 王晗, 楊志千, 等. 全功率變換風(fēng)電機(jī)組的電壓源控制(二):電網(wǎng)故障穿越控制與保護(hù)[J]. 中國電機(jī)工程學(xué)報, 2023, 43(2): 530-543.
QIN Y, WANG H, YANG Z Q, et al. Voltage sourcecontrol of wind turbine generators with full-scale converters(part II): control and protection of grid fault ride-through[J]. Proceedings of the CSEE, 2023, 43(2): 530-543.
[4] CHANG X Y, LI Y L, ZHANG W Y, et al. Activedisturbance rejection control for a flywheel energy storagesystem[J]. IEEE transactions on industrial electronics,2015, 62(2): 991-1001.
[5] GOH W Y, LIM C P, PEH K K. Predicting drugdissolution profiles with an ensemble of boosted neuralnetworks: a time series approach[J]. IEEE transactions onneural networks, 2003, 14(2): 459-463.
[6] WAI R J, LIN Y F, LIU Y K. Design of adaptive fuzzyneural-network control for a single-stage boost inverter[J].IEEE transactions on power electronics, 2015, 30(12):7282-7298.
[7] ROUTRAY A, KUMAR SINGH R, MAHANTY R.Harmonic minimization in three-phase hybrid cascadedmultilevel inverter using modified particle swarmoptimization[J]. IEEE transactions on industrial informatics,2019, 15(8): 4407-4417.
[8] HAN J Q. From PID to active disturbance rejection control[J]. IEEE transactions on industrial electronics, 2009, 56(3): 900-906.
[9] GAO Z Q. Scaling and bandwidth-parameterization basedcontroller tuning[C]//Proceedings of the 2003 AmericanControl Conference, Denver, CO, USA, 2003: 4989-4996.
[10] 陶瓏, 王萍, 王議鋒, 等. 微電網(wǎng)負(fù)載端接口變換器的自抗擾穩(wěn)壓控制[J]. 電工技術(shù)學(xué)報, 2022, 37(8):2076-2085.
TAO L, WANG P, WANG Y F, et al. Voltagestabilization strategy for load-side interface converter ofmicrogrid combined with active disturbance rejectioncontrol[J]. Transactions of China Electrotechnical Society,2022, 37(8): 2076-2085.
[11] 龔春陽, 林嘉偉, 黃冬梅, 等. 儲能系統(tǒng)雙向Buck-Boost變換器控制策略研究[J]. 太陽能學(xué)報, 2023, 44(2):229-238.
GONG C Y, LIN J W, HUANG D M, et al. Research oncontrol strategy of bidirectional buck-boost converter inenergy storage system[J]. Acta energiae solaris sinica,2023, 44(2): 229-238.
[12] 顏湘武, 常文斐, 崔森, 等. 基于線性自抗擾控制的靜止無功補(bǔ)償器抑制弱交流風(fēng)電系統(tǒng)次同步振蕩策略[J]. 電工技術(shù)學(xué)報, 2022, 37(11): 2825-2836.
YAN X W, CHANG W F, CUI S, et al. Sub-synchronousoscillation suppression strategy of weak AC wind powersystem with static var compensator based on linear activedisturbance rejection control[J]. Transactions of ChinaElectrotechnical Society, 2022, 37(11): 2825-2836.
[13] 高崇禧, 顏景斌, 李學(xué)東, 等. 脈沖負(fù)載下PWM整流器自適應(yīng)線性自抗擾控制[J]. 電機(jī)與控制學(xué)報, 2023, 27(1): 55-64.
GAO C X, YAN J B, LI X D, et al. Adaptive linear activedisturbance rejection control method of PWM rectifierunder pulse load[J]. Electric machines and control, 2023, 27(1): 55-64.
[14] 陶瓏, 王萍, 王議鋒, 等. 微電網(wǎng)低壓接口變換器的參數(shù)尋優(yōu)自抗擾控制[J]. 電工技術(shù)學(xué)報, 2022, 37(16):4202-4211.
TAO L, WANG P, WANG Y F, et al. Active disturbancerejection control with automatic optimization for lowvoltageinterface converter in microgrid[J]. Transactions ofChina Electrotechnical Society, 2022, 37(16): 4202-4211.
[15] LIU C Q, LUO G Z, DUAN X L, et al. Adaptive LADRCbaseddisturbance rejection method for electromechanicalservo system[J]. IEEE transactions on industry applications,2020, 56(1): 876-889.
[16] MA Y J, TAO L, ZHOU X S, et al. Analysis and controlof wind power grid integration based on a permanentmagnet synchronous generator using a fuzzy logic systemwith linear extended state observer[J]. Energies, 2019, 12(15): 2862.
[17] TAN Y H, ZHANG H X, ZHOU Y. A simple-toimplementfault diagnosis method for open switch fault inwind system PMSG drives without threshold setting[J].Energies, 2018, 11(10): 2571.
[18] ZHENG Q, GAOL L Q, GAO Z Q. On stability analysis ofactive disturbance rejection control for nonlinear timevaryingplants with unknown dynamics[C]//2007 46thIEEE Conference on Decision and Control, New Orleans,LA, USA, 2007: 3501-3506.
基金項(xiàng)目:國家自然科學(xué)基金(51977146)