摘 要:為了探究整合因子復(fù)合物亞基10(integrator complex subunits 10,INTS10 )對(duì)人肝細(xì)胞癌(hepatocellular carcinoma, HCC)細(xì)胞周期、凋亡、生長和遷移能力的影響及其潛在的分子作用機(jī)制,利用慢病毒感染法獲得穩(wěn)定過表達(dá)或敲低INTS10的HCC細(xì)胞系,采用qRT-PCR和Western blotting檢測INTS10 mRNA和蛋白表達(dá)水平,接著采用 CCK-8法、克隆形成和BrdU實(shí)驗(yàn)檢測細(xì)胞生長情況,采用 Transwell小室實(shí)驗(yàn)檢測細(xì)胞遷移能力,采用流式分析術(shù)檢測細(xì)胞的周期和凋亡.結(jié)果顯示:過表達(dá)INTS10可顯著抑制HCC細(xì)胞的凋亡、生長和遷移能力,促進(jìn)G1期細(xì)胞數(shù)量的增加,而敲低INTS10則呈現(xiàn)相反的表型.通過通路富集分析發(fā)現(xiàn),周期相關(guān)通路被顯著富集,過表達(dá)INTS10后,CDC25A和CDK4的mRNA和蛋白質(zhì)水平顯著減少,而CDKN1A的水平顯著增加,敲低INTS10則呈現(xiàn)相反趨勢.綜上,本研究初步揭示了INTS10在HCC細(xì)胞中可能通過影響G1/S期相關(guān)蛋白質(zhì)的表達(dá)而發(fā)揮抑癌基因的功能,為下一步更為深入的功能和機(jī)制研究提供了基礎(chǔ).
關(guān)鍵詞:
肝細(xì)胞癌(HCC);整合因子復(fù)合物亞基10(INTS10);CDC25A;CDKN1A;CDK4
中圖分類號(hào):
Q279"" 文獻(xiàn)標(biāo)志碼:
A"" 文章編號(hào):
1000-1565(2024)03-0290-11
Effect of INTS10" on cell cycle, apoptosis, growth and"" migration capacity of HCC
WANG Xueting1,2, QI Xin3, WEI Xiaojun4, YANG Aiqing2, ZHOU Gangqiao1,2,3
(1. College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; 2. Institute of Radiation Medicine,Academy of Military Medical Sciences, Beijing 100850, China; 3. Medical College, Guizhou University, Guiyang 550025, China; 4. Department of Hepatobiliary Surgery,Space Center Hospital, Beijing 100049,China)
Abstract: The effects of integrator complex subunits 10(INTS10) on cell cycle,apoptosis,growth and migration of hepatocellular carcinoma (HCC) cells and its potential molecular mechanism were explored. The HCC cell lines with stable overexpression or knockdown of INTS10 were obtained by lentivirus infection. The mRNA and protein expression levels of INTS10 were detected by qRT-PCR and Western blotting. The cell growth was detected by CCK-8, clonal formation and BrdU assay. The" cell migration ability was detected by Transwell assay. Flow cytometry was used to detect the number of cell cycles and apoptosis. The results showed that overexpression of INTS10 could significantly inhibit the apoptosis, growth
and migration of HCC, and promote the increase of the number of G1 phase cells, while knockdown of INTS10 showed the opposite effects. Through pathway enrichment analysis, it was found that the cycle-dependent pathway was significantly enriched. Overexpression of INTS10 could significantly reduce the mRNA and protein levels of CDC25A and CDK4, while the level of CDKN1A was significantly increased, and INTS10 knockdown showed the opposite trend. In conclusion, it is preliminarily revealed that INTS10 may play a role as a tumor suppressor gene in HCC by affecting the expression of G1/S phase related proteins, which provides a foundation for further functional and mechanism studies.
Key words: hepatocellular carcinoma(HCC); integrator complex subunits 10(INTS10); CDC25A; CDKN1A; CDK4
肝細(xì)胞癌(hepatocellular carcinoma, HCC)是世界上第六大常見惡性腫瘤,也是全球癌癥相關(guān)死亡的主要原因之一,近年來其發(fā)病率呈不斷上升趨勢[1-2].雖然外科技術(shù)的發(fā)展改善了部分肝細(xì)胞癌患者的預(yù)后,但其總體生存率仍然較低,全世界每年約造成超過70萬人死亡[3].在國內(nèi),其5年生存率也小于12.5%[4].HCC最常見的危險(xiǎn)因素是乙型肝炎病毒(hepatitis B virus)和丙型肝炎病毒(hepatitis C virus)感染[5].此外,肥胖、酒精性肝病(alcoholic liver disease, ALD)和非酒精性脂肪肝(non-alcoholic fatty liver disease, NAFLD)等也是HCC的重要危險(xiǎn)因素,并且這些病因?qū)е碌陌l(fā)病率仍處于上升趨勢[6].臨床上,雖然計(jì)算機(jī)斷層掃描(CT)和磁共振成像(MRI)技術(shù)極大地提高了HCC的診斷能力,但由于價(jià)格昂貴,尚不能用于廣泛篩查[3].另外,HCC具有發(fā)病隱匿、侵襲性和轉(zhuǎn)移能力強(qiáng)等特點(diǎn)[7],導(dǎo)致許多患者失去及時(shí)治療的機(jī)會(huì).發(fā)現(xiàn)HCC相關(guān)基因,解析其在HCC發(fā)生發(fā)展中的功能和分子機(jī)制,尋找有效的生物標(biāo)志物,將有助于HCC患者新的預(yù)防、診治措施的研發(fā).
整合因子復(fù)合體(integrator complex)是一種由多個(gè)亞基組成的蛋白質(zhì)復(fù)合體,目前發(fā)現(xiàn)了至少15個(gè)進(jìn)化上保守的亞基成員(integrator complex subunits,INTS1~I(xiàn)NTS15)[8].整合因子復(fù)合體的主要功能是參與轉(zhuǎn)錄調(diào)控和核酸代謝,然而,其部分亞基也可直接參與或間接影響人類惡性腫瘤的發(fā)生發(fā)展,例如:INTS6可通過Wnt途徑抑制肝細(xì)胞癌的生長[9];INTS7能夠增強(qiáng)肺腺癌細(xì)胞的遷移和侵襲能力,并誘導(dǎo)肺腺癌細(xì)胞的增殖,降低其凋亡能力,因此可能是肺腺癌的潛在治療靶點(diǎn)和預(yù)后標(biāo)志物[10];INTS11的缺失可導(dǎo)致食管腺癌細(xì)胞G2/M期細(xì)胞阻滯和細(xì)胞凋亡,進(jìn)而抑制細(xì)胞的生長[11];與正常癌旁組織相比,INTS3在肝細(xì)胞癌組織中顯著上調(diào)表達(dá)[12];INTS14/VWA9被發(fā)現(xiàn)在永生化細(xì)胞非小細(xì)胞肺癌組織中顯著上調(diào)表達(dá)[13].另外,Simpson等[14]通過微陣列和外顯子組測序分析發(fā)現(xiàn),INTS8可能在胃癌和外周T細(xì)胞淋巴瘤中發(fā)揮作用.INTS10也是整合因子蛋白質(zhì)復(fù)合體家族中的一員,其編碼基因位于染色體8p21.3區(qū)域[8].本課題組的前期研究[15]發(fā)現(xiàn),INTS10通過激活I(lǐng)RF3及IFN-λ抑制HBV的復(fù)制.HBV感染作為HCC發(fā)病的主要原因之一,約占總HCC病例的85%,由此推斷,INTS10在HCC的發(fā)病過程中也可能發(fā)揮一定的功能.然而,INTS10在HCC發(fā)生發(fā)展中的功能尚未見報(bào)道.本文旨在探索INTS10對(duì)HCC細(xì)胞系的生長和遷移能力等的影響,初步揭示其在HCC發(fā)生、發(fā)展中的作用.
1 材料與方法
1.1 細(xì)胞系與質(zhì)粒
本文所用的細(xì)胞系包括人HCC細(xì)胞系HepG2和HCC97H,以及人胚腎細(xì)胞系HEK293T(本實(shí)驗(yàn)室細(xì)胞庫).所用的質(zhì)粒包括用于基因過表達(dá)的pLV-3×Flag-mCherry(2A)Puro-INTS10和對(duì)照質(zhì)粒pLV-3×Flag-mCherry(2A)Puro,以及用于敲低基因的質(zhì)粒pLV-shRNA-EGFP(2A)Puro、pLV-shRNA-EGFP(2A)Puro-INTS10#1、pLV-shRNA-EGFP(2A)Puro-INTS10#2和pLV-shRNA-EGFP(2A)Puro-INTS10#3(英茂盛業(yè)科技有限公司).
1.2 主要試劑與抗體
DMEM(dulbecco’s modified eagle’s medium)細(xì)胞培養(yǎng)基(北京細(xì)工生物科技公司);胎牛血清(fetal bovine serum, FBS)(Gibco公司);SYBR Green 熒光定量試劑(美國Kapa);INTS10抗體(1∶1 000, 15271-1-AP, Proteintech),CDKN1A抗體(1∶1 000, 10355-1-AP, Proteintech),CDC25A抗體(1∶1 000, 55031-1-AP, Proteintech),CDK4抗體(1∶1 000,11026-1-AP, Proteintech)和GAPDH抗體(1∶2 000, 60004-1-Ig, Proteintech)(武漢三鷹生物技術(shù)有限公司)等.
1.3 細(xì)胞培養(yǎng)
實(shí)驗(yàn)所用培養(yǎng)基均為含體積分?jǐn)?shù)10% FBS和1%青鏈霉素雙抗的DMEM,培養(yǎng)條件為37 ℃、體積分?jǐn)?shù)為5%的CO2,并保持一定的濕度.
1.4 構(gòu)建穩(wěn)定過表達(dá)和敲低INTS10的HCC細(xì)胞系
將慢病毒包裝質(zhì)粒pMD2.G、pSPAX2與目的質(zhì)粒(包括用于基因過表達(dá)的質(zhì)粒pLV-3×Flag-mCherry(2A)Puro-INTS10和對(duì)照體pLV-3×Flag-mCherry(2A)Puro,以及用于敲低基因的質(zhì)粒pLV-shRNA-EGFP(2A)Puro、pLV-shRNA-EGFP(2A)Puro-INTS10#1、pLV-shRNA-EGFP(2A)Puro-INTS10#2和pLV-shRNA-EGFP(2A)Puro-INTS10#3)按1∶2∶3的質(zhì)量比共轉(zhuǎn)染HEK293T細(xì)胞系,8 h后更換為正常培養(yǎng)基繼續(xù)培養(yǎng),48 h后收集富含病毒顆粒的細(xì)胞培養(yǎng)上清液,用孔徑0.45 μm濾器除去細(xì)胞碎片并用超速離心法濃縮病毒.取500 μL濃縮后的病毒液加入5 μg/mL的Polybrene感染HCC97H和HepG2細(xì)胞系,48 h后加入2 μg/mL的嘌呤霉素進(jìn)行篩選.
1.5 蛋白質(zhì)提取及Western blotting實(shí)驗(yàn)
收集對(duì)照組和實(shí)驗(yàn)組細(xì)胞,加入含有蛋白酶抑制劑的細(xì)胞裂解液,置于冰上裂解30 min,12 000 r/min離心10 min,轉(zhuǎn)移上清液至新的離心管中,按比例加入蛋白質(zhì)上樣緩沖液,煮沸10 min,得到細(xì)胞總蛋白質(zhì)樣品.在適宜質(zhì)量濃度的SDS-PAGE膠上進(jìn)行點(diǎn)樣,隨后進(jìn)行電泳、電轉(zhuǎn)和封閉,一抗4 ℃孵育過夜,用TBST漂洗3次,每次5 min,二抗室溫孵育1 h,再用TBST洗3次,最后進(jìn)行顯影.
1.6 RNA提取及qRT-PCR實(shí)驗(yàn)
按照說明書(康為世紀(jì)生物科技有限公司)提取細(xì)胞的總RNA.采用分光光度計(jì)測量總RNA的質(zhì)量濃度后,取500 ng RNA采用MonScriptTM RTIll All in One Mix試劑盒(莫納生物科技有限公司)逆轉(zhuǎn)錄為cDNA.然后,以5 μL cDNA為模板,進(jìn)行qRT-PCR擴(kuò)增實(shí)驗(yàn),詳細(xì)的引物信息見表1.所有樣本均設(shè)3個(gè)重復(fù),以ACTB基因?yàn)閷?duì)照,對(duì)mRNA定量結(jié)果進(jìn)行歸一化處理.根據(jù)Ct值和標(biāo)準(zhǔn)曲線的分析對(duì)INTS10模板進(jìn)行定量分析.
1.7 CCK-8實(shí)驗(yàn)檢測細(xì)胞增殖
收集處于生長對(duì)數(shù)期的細(xì)胞,按2 000/孔將細(xì)胞接種于96孔板中,每組3個(gè)重復(fù),在細(xì)胞培養(yǎng)一定時(shí)間后,加入含體積分?jǐn)?shù)10% CCK-8試劑(北京莊盟國際生物基因科技有限公司)的無血清DMEM培養(yǎng)基,采用酶標(biāo)儀在450 nm處檢測吸光度值(A450),根據(jù)記錄的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析并繪制細(xì)胞生長曲線.
1.8 平板細(xì)胞克隆形成實(shí)驗(yàn)檢測細(xì)胞增殖
取對(duì)數(shù)生長期細(xì)胞,按2 000/孔將細(xì)胞接種于6孔板中.培養(yǎng)14 d,其間每隔3 d換液1次.待出現(xiàn)肉眼可見的克隆時(shí),終止培養(yǎng),先用甲醇固定30 min,接著用質(zhì)量分?jǐn)?shù)為0.5%的結(jié)晶紫溶液染色30 min,最后洗凈并晾干平板,對(duì)克隆進(jìn)行拍照、計(jì)數(shù)和統(tǒng)計(jì)分析.
1.9 BrdU法檢測細(xì)胞增殖
取對(duì)數(shù)生長期的細(xì)胞重懸后,加入濃度為10 μmol/L的BrdU,在37 ℃細(xì)胞培養(yǎng)箱培養(yǎng)30~120 min,質(zhì)量分?jǐn)?shù)為1%的BSA/PBS清洗后,滴加至預(yù)冷的無水乙醇中,-20 ℃下固定1 h后進(jìn)行清洗,接著加入1 mL 2 μmol/L的HCl/體積分?jǐn)?shù)0.5%的Triton X-100,室溫緩慢渦旋處理1 h;加入1 mL 0.1 mol/L的Na2BO4(pH 8.5)重懸,中和酸;離心棄上清液,體積分?jǐn)?shù)為0.5%的Tween 20/質(zhì)量分?jǐn)?shù)為1%的BSA/PBS洗1次后加入BrdU-PE抗體(1∶100, AB396305, BD Biosciences),室溫緩慢渦旋孵育1 h;體積分?jǐn)?shù)為0.5%的Tween 20/質(zhì)量分?jǐn)?shù)為1%的BSA/PBS洗3次,加入300~500 μL的PBS,進(jìn)行流式檢測,用FlowJo軟件分析數(shù)據(jù).
1.10 流式細(xì)胞術(shù)檢測細(xì)胞周期
收集對(duì)照組和實(shí)驗(yàn)組細(xì)胞,用300 μL PBS重懸后懸滴置700 μL預(yù)冷的無水乙醇中,-20 ℃固定過夜.離心后,將細(xì)胞沉淀懸浮于300~500 μL含有20 μg/mL RNAaseA(1∶200)和40 μg/mL PI的PBS中,室溫孵育15 min;采用流式細(xì)胞術(shù)檢測并用FlowJo軟件分析數(shù)據(jù).
1.11 流式細(xì)胞術(shù)檢測細(xì)胞凋亡
取處于對(duì)數(shù)生長期的實(shí)驗(yàn)組和對(duì)照組細(xì)胞,以2×105/孔的細(xì)胞量接種于12孔板中,置于細(xì)胞培養(yǎng)箱中培養(yǎng)48 h,24 h用800 μmol/L的H2O2對(duì)細(xì)胞進(jìn)行損傷刺激.收集細(xì)胞,加入100 μL 1×Binding Buffer重懸細(xì)胞,然后加入5 μL V-FITC和10 μL PI,輕混,室溫避光孵育15 min,加入400 μL 1×Binding Buffer,置于冰上,采用流式細(xì)胞術(shù)檢測細(xì)胞凋亡,F(xiàn)lowJo軟件分析數(shù)據(jù).
1.12 細(xì)胞遷移能力的檢測
將處于對(duì)數(shù)生長期的細(xì)胞接種至24孔板中,置于培養(yǎng)箱中培養(yǎng)24 h.然后更換不含血清的 DMEM 培養(yǎng)基饑餓18 h,消化后用不含血清的 DMEM重懸并計(jì)數(shù).在 Transwell 上室中鋪2×103個(gè)細(xì)胞,在Transwell下室中加入 500 μL 含體積分?jǐn)?shù)20% FBS 的 DMEM,培養(yǎng) 24~36 h 后,將小室移至含1 mL 質(zhì)量分?jǐn)?shù)為4%的多聚甲醛的24孔板中,固定15 min,接著移至加1 mL 質(zhì)量分?jǐn)?shù)為0.5%結(jié)晶紫溶液的孔中染色10 min.用水輕輕沖洗小室后,用棉簽小心將小室內(nèi)部的結(jié)晶紫及未穿過膜的細(xì)胞擦拭干凈,在顯微鏡下對(duì)穿過小室的細(xì)胞拍照并進(jìn)行統(tǒng)計(jì)分析.
1.13 轉(zhuǎn)錄組測序及基因表達(dá)定量分析
提取敲低INTS10基因以及對(duì)照組的HepG2細(xì)胞的總RNA,通過北京貝瑞和康生物技術(shù)有限公司在Illumina Hi Seq X Ten平臺(tái)上采用150 堿基對(duì)的雙端配對(duì)策略進(jìn)行轉(zhuǎn)錄測序(RNA-seq).接著,采用了Fast QC軟件對(duì)測序的數(shù)據(jù)進(jìn)行質(zhì)量評(píng)價(jià),并利用trim-galore去除低質(zhì)量的數(shù)據(jù)和接頭序列.以Genome Reference Consortium Human Build 38(GRCh38/hg38)基因組序列為參考,采用salmon對(duì)通過質(zhì)量評(píng)估的測序數(shù)據(jù)進(jìn)行序列比對(duì)和定量.進(jìn)一步,利用DE Seq軟件進(jìn)行基因的差異表達(dá)分析.然后采用Benjamin-Hochberg(BH)方法對(duì)這些基因進(jìn)行多重檢驗(yàn)校正,將敲低INTS10前后log2[fold change]gt;0.3及Plt;0.05的基因定義為顯著差異表達(dá)基因.最后,使用Metascape網(wǎng)站對(duì)顯著差異的表達(dá)基因進(jìn)行功能富集分析,并鑒定INTS10對(duì)HCC影響的生物學(xué)過程或信號(hào)通路[16].
1.14 臨床相關(guān)性分析
首先在UALCAN和Human Protein Atlas公共數(shù)據(jù)庫[17]中分析INTS10在HCC和正常組織中mRNA和蛋白的表達(dá)水平,接著在13對(duì)HCC患者的臨床樣本(來自南京)中進(jìn)一步驗(yàn)證INTS10表達(dá)的水平.
1.15 統(tǒng)計(jì)學(xué)分析
HCC和正常組織間INTS10的差異表達(dá)分析采用雙側(cè)t檢驗(yàn).所有實(shí)驗(yàn)均至少重復(fù)3次,所有
統(tǒng)計(jì)學(xué)檢驗(yàn)采用SPSS統(tǒng)計(jì)軟件完成,數(shù)據(jù)的可視化采用GraphPad 8.0完成.
2 結(jié)果
2.1 HCC組織中INTS10的表達(dá)水平
為了探究INTS10在HCC組織中的表達(dá)水平,首先在UALCAN和Human Protein Atlas公共數(shù)據(jù)庫中分析INTS10在HCC和正常組織中mRNA與蛋白的表達(dá)水平,結(jié)果顯示,INTS10在HCC組織中的mRNA和蛋白表達(dá)水平顯著低于正常組織(圖1a、b).接著選取了13對(duì)HCC患者的臨床樣本進(jìn)行驗(yàn)證,結(jié)果顯示,INTS10的mRNA在HCC組織中低表達(dá)(圖1c),由此,推測INTS10可能在HCC中發(fā)揮抑癌基因的功能.
2.2 INTS10對(duì)HCC細(xì)胞生長能力的影響
通過慢病毒感染法構(gòu)建穩(wěn)定過表達(dá)或穩(wěn)定敲低INTS10的HCC細(xì)胞株,并采用 qRT-PCR 及Western blotting技術(shù)驗(yàn)證INTS10的過表達(dá)或敲低效果.結(jié)果顯示:在HepG2和HCC97H細(xì)胞系中,與對(duì)照組(pLV-Flag)相比,過表達(dá)組(pLV-Flag-INTS10)中INTS10的mRNA和蛋白質(zhì)水平均顯著增加(圖2a、a′);與對(duì)照組(sh-Ctrl)相比,敲低組(Sh-INTS10#2和Sh-INTS10#3)中INTS10的表達(dá)顯著降低(圖2b、b′).從而證明成功構(gòu)建了穩(wěn)定干擾INTS10的HCC細(xì)胞株.首先采用 CCK-8 實(shí)驗(yàn)評(píng)價(jià)了INTS10對(duì)HCC細(xì)胞生長能力的影響.結(jié)果顯示,過表達(dá)INTS10可顯著抑制HepG2和HCC97H細(xì)胞的生長能力(圖2c、c′),而敲低INTS10則顯著促進(jìn)HCC細(xì)胞的生長能力(圖2d、d′).其次,通過細(xì)胞克隆形成實(shí)驗(yàn),檢測了INTS10對(duì)HCC細(xì)胞克隆形成能力的影響.結(jié)果顯示:過表達(dá)INTS10可顯著抑制HepG2和HCC97H細(xì)胞的克隆形成能力(圖2e、e′),而敲低INTS10則顯著促進(jìn)HCC細(xì)胞的克隆形成能力(圖2f、f′).最后,采用BrdU染色法檢測了增殖期細(xì)胞的數(shù)量,BrdU陽性率越高說明細(xì)胞的增殖能力越強(qiáng)[18].結(jié)果顯示:與對(duì)照組(pLV-Flag/Sh-Ctrl)BrdU的陽性率相比,過表達(dá)INTS10的細(xì)胞其BrdU的陽性率顯著降低(圖2g、g′),而敲低組細(xì)胞BrdU的陽性率顯著升高(圖2h、h′).總之,這些結(jié)果表明,INTS10可抑制HCC細(xì)胞的生長能力.
2.3 INTS10對(duì)HCC細(xì)胞遷移能力的影響
用Transwell 實(shí)驗(yàn)評(píng)價(jià)INTS10對(duì)HCC細(xì)胞遷移能力的影響.結(jié)果顯示:INTS10過表達(dá)后可顯著抑制HepG2和HCC97H細(xì)胞的遷移能力(圖3a、a′),而敲低INTS10后則顯著促進(jìn)其遷移能力(圖3b、b′).上述結(jié)果表明,INTS10可抑制HCC細(xì)胞的生長及遷移能力,在HCC進(jìn)展中可能發(fā)揮抑癌基因的功能.
2.4 INTS10對(duì)HCC細(xì)胞凋亡能力的影響
腫瘤細(xì)胞凋亡的異常是腫瘤發(fā)生發(fā)展的重要生物學(xué)機(jī)制之一.為了探索INTS10的異常表達(dá)對(duì)HCC細(xì)胞凋亡的影響,采用 Annexin V-APC/PI 染色法,檢測擾動(dòng)INTS10基因后對(duì) HepG2和HCC97H細(xì)胞凋亡的影響(圖4).結(jié)果顯示:在靜息狀態(tài)下,過表達(dá)INTS10可顯著促進(jìn)HepG2細(xì)胞的凋亡,而對(duì)HCC97H細(xì)胞的凋亡沒有顯著的影響(圖4a、a′);在800 μmol/L H2O2刺激下,與對(duì)照組相比,過表達(dá)INTS10后可顯著促進(jìn)HepG2和HCC97H細(xì)胞的凋亡(圖4b、b′).相反,在靜息狀態(tài)下,敲低INTS10可顯著抑制HepG2細(xì)胞的凋亡,但對(duì)HCC97H細(xì)胞的凋亡沒有顯著的影響(圖4c、c′);在800 μmol/L H2O2刺激后,敲低INTS10則顯著抑制HepG2和HCC97H細(xì)胞的凋亡(圖4d、d′).
2.5 INTS10對(duì)HCC細(xì)胞周期進(jìn)程的影響
細(xì)胞周期作為細(xì)胞生命活動(dòng)的基本過程,是腫瘤發(fā)生發(fā)展的重要生物學(xué)機(jī)制之一[19].為了探索INTS10異常表達(dá)對(duì)肝癌細(xì)胞周期的影響,通過流式細(xì)胞術(shù),觀察HepG2和HCC97H細(xì)胞中擾動(dòng)INTS10基因后細(xì)胞周期的變化(圖5a).結(jié)果顯示:過表達(dá)INTS10后,處于 G1 期的HCC細(xì)胞數(shù)量顯著增加,處于S期的細(xì)胞數(shù)量顯著減少,而處于 G2/M 期的細(xì)胞數(shù)量無顯著差別(圖5a、a′).反之,敲低INTS10則顯著減少處于G1期的HCC細(xì)胞數(shù)量,顯著增加了處于S期的細(xì)胞數(shù)量,同時(shí),對(duì) G2/M期的細(xì)胞數(shù)量沒有顯著影響(圖5b、b′).以上結(jié)果提示,INTS10能夠抑制HCC細(xì)胞的G1/S期進(jìn)程.
2.6 INTS10對(duì)周期相關(guān)蛋白的影響
癌細(xì)胞最顯著的特征之一是其生長失去正常的調(diào)控.這往往是由于基因突變導(dǎo)致癌細(xì)胞的增殖和抗凋亡能力的失調(diào),而這種失調(diào)能力主要與細(xì)胞周期密切相關(guān)[20-21].前面的研究已顯示,干擾INTS10基因后對(duì)HCC細(xì)胞的周期和生長有顯著的影響(圖2c~d′,圖4).為了探索INTS10對(duì)HCC細(xì)胞的作用機(jī)制,在HepG2細(xì)胞中敲低INTS10并進(jìn)行RNA-seq分析.結(jié)果顯示:敲低INTS10后可顯著上調(diào) 1 881個(gè)基因的表達(dá),下調(diào) 1 443個(gè)基因的表達(dá)(圖6a).隨后針對(duì)所有差異表達(dá)基因的功能富集分析顯示:INTS10調(diào)控的相關(guān)基因顯著富集于細(xì)胞周期和凋亡等相關(guān)信號(hào)通路(圖6b).其中,CDC25A和CDKN1A這2個(gè)基因是公認(rèn)的與細(xì)胞周期進(jìn)展相關(guān)的關(guān)鍵調(diào)節(jié)因子[22-23].已知在不同的腫瘤細(xì)胞中CDC25A和CDKN1A可影響細(xì)胞周期蛋白質(zhì)依賴性激酶4(cyclin-dependent-kinase,CDK4)的表達(dá),進(jìn)而影響細(xì)胞周期進(jìn)程[23-25].為此,采用qRT-PCR和Western blotting實(shí)驗(yàn)在HepG2和HCC97H細(xì)胞系中驗(yàn)證INTS10對(duì)CDC25A、CDKN1A和CDK4表達(dá)的影響.結(jié)果顯示:過表達(dá)INTS10后,CDC25A和CDK4的mRNA和蛋
白質(zhì)水平均顯著減少,而CDKN1A的水平顯著增加;相反,敲低INTS10后,CDC25A和CDK4的mRNA和蛋白質(zhì)水平顯著增加,而CDKN1A的水平顯著減少(圖6c~d′).綜上所述,本文初步揭示了INTS10在HCC細(xì)胞中可能通過影響細(xì)胞周期G1/S期相關(guān)蛋白質(zhì)的表達(dá)而發(fā)揮抑癌基因的功能.
3 討論
HCC是常見的消化系統(tǒng)惡性腫瘤之一[26].近年來,HCC的發(fā)病率和死亡率均呈上升趨勢[27-28].因此,鑒定與HCC發(fā)生發(fā)展相關(guān)的基因并闡明其功能和致病機(jī)制,將為HCC的防治提供理論依據(jù).本研究在HCC細(xì)胞系中初步探索了INTS10基因?qū)CC細(xì)胞的生長、遷移、凋亡和細(xì)胞周期等的影響,并通過初步的生物信息學(xué)分析和功能實(shí)驗(yàn),提示了該基因可能通過影響細(xì)胞周期G1/S期相關(guān)蛋白質(zhì)的表達(dá),進(jìn)而抑制HCC的發(fā)生發(fā)展.
INTS10作為整合因子蛋白質(zhì)復(fù)合體家族中的一員,已被發(fā)現(xiàn)可能抑制HBV病毒的復(fù)制[8].但是,INTS10在相關(guān)癌癥方面的生物學(xué)功能還鮮見報(bào)道.本研究通過細(xì)胞學(xué)實(shí)驗(yàn)首次發(fā)現(xiàn),INTS10能夠顯著抑制HCC細(xì)胞系的生長和遷移能力以及細(xì)胞周期進(jìn)程,顯著促進(jìn)細(xì)胞的死亡.這些結(jié)果均提示INTS10在HCC的發(fā)生發(fā)展中可能發(fā)揮抑癌基因的功能.
已知整合因子蛋白質(zhì)復(fù)合體主要參與轉(zhuǎn)錄調(diào)控作用,并且已有少量研究[29]提示,該復(fù)合體的部分亞基可能參與惡性腫瘤的發(fā)生發(fā)展過程.例如,INTS6/DICE1可通過影響細(xì)胞G1/S期蛋白表達(dá)和Wnt信號(hào)通路從而抑制前列腺癌細(xì)胞的生長[30].通過轉(zhuǎn)錄組測序和生物信息學(xué)分析以及初步的實(shí)驗(yàn)研究發(fā)現(xiàn),INTS10能夠顯著下調(diào)細(xì)胞周期相關(guān)蛋白質(zhì)CDC25A和CDK4的表達(dá)水平,上調(diào)CDKN1A的表達(dá)水平,從而初步揭示了INTS10在HCC中發(fā)揮抑癌基因功能的機(jī)制.已知整合因子復(fù)合體可以與RNAP Ⅱ相互作用,調(diào)控核內(nèi)小 RNA(small nuclear RNA,snRNA)的加工,進(jìn)而直接調(diào)控目的基因的轉(zhuǎn)錄[31];可以調(diào)控目的基因啟動(dòng)子區(qū)RNAP Ⅱ的暫?;蜥尫?,進(jìn)而直接調(diào)控其轉(zhuǎn)錄[32];也可以通過與其他轉(zhuǎn)錄因子相互作用,作為轉(zhuǎn)錄輔因子間接參與目的基因的轉(zhuǎn)錄[33].然而,INTS10對(duì)周期相關(guān)基因的轉(zhuǎn)錄方式尚需深入研究.
未來將進(jìn)一步研究INTS10在HCC發(fā)生發(fā)展中詳細(xì)的功能和分子機(jī)制,為肝癌的臨床診治提供科學(xué)依據(jù).
參 考 文 獻(xiàn):
[1] HOLVOET T, RAEVENS S, VANDEWYNCKEL Y P, et al. Systematic review of guidelines for management of intermediate hepatocellular carcinoma using the appraisal of guidelines research and evaluation Ⅱ instrument[J]. Dig Liver Dis, 2015, 47(10): 877-883. DOI: 10.1016/j.dld.2015.07.005.
[2] GILLES H, GARBUTT T, LANDRUM J. Hepatocellular carcinoma[J]. Crit Care Nurs Clin N Am, 2022, 34(3): 289-301. DOI: 10.1016/j.cnc.2022.04.004.
[3] LUO P, WU S Y, YU Y L, et al. Current status and perspective biomarkers in AFP negative HCC: towards screening for and diagnosing hepatocellular carcinoma at an earlier sage[J]. Pathol Oncol Res, 2020, 26(2): 599-603. DOI: 10.1007/s12253-019-00585-5.
[4] WANG W Y, WEI C. Advances in the early diagnosis of hepatocellular carcinoma[J]. Genes Dis, 2020, 7(3): 308-319. DOI: 10.1016/j.gendis.2020.01.014.
[5] LEE J S, LIM T S, LEE H W, et al. Suboptimal performance of hepatocellular carcinoma prediction models in patients with hepatitis B virus-related cirrhosis[J]. Diagnostics, 2022, 13(1): 3. DOI: 10.3390/diagnostics13010003.
[6] MARENGO A, ROSSO C, BUGIANESI E. Liver cancer: connections with obesity, fatty liver, and cirrhosis[J]. Annu Rev Med, 2016, 67: 103-117. DOI: 10.1146/annurev-med-090514-013832.
[7] GONG C W, AI J Y, FAN Y, et al. NCAPG promotes the proliferation of hepatocellular carcinoma through PI3K/AKT signaling[J]. Onco Targets Ther, 2019, 12: 8537-8552.. DOI: 10.2147/OTT.S217916
[8] 思蘭蘭. INTS10蛋白抑制乙型肝炎病毒復(fù)制的分子機(jī)制的初步研究[D].南寧:廣西醫(yī)科大學(xué), 2015. DOI: 10.7666/d.Y2876795
[9] LUI K Y, ZHAO H, QIU C H, et al. Integrator complex subunit 6 (INTS6) inhibits hepatocellular carcinoma growth by Wnt pathway and serve as a prognostic marker[J]. BMC Cancer, 2017, 17(1): 644. DOI: 10.1186/s12885-017-3628-3.
[10] LI Z B, ZHU P W, WANG M L, et al. Correlation between oncogene integrator complex subunit 7 and a poor prognosis in lung adenocarcinoma[J]. J Thorac Dis, 2022, 14(12): 4815-4827. DOI: 10.21037/jtd-22-1533.
[11] ELENA S, MOHINI L, ANNAMIL A T, et al. NACK and INTEGRATOR act coordinately to activate Notch-mediated transcription in tumorigenesis[J]. Cell Commun Signal, 2021, 19(1): 96. DOI:10.1186/s12964-021-00776-1.
[12] INAGAKI Y, YASUI K, ENDO M, et al. CREB3L4, INTS3, and SNAPAP are targets for the 1q21 amplicon frequently detected in hepatocellular carcinoma[J]. Cancer Genet Cytogenet, 2008, 180(1): 30-36. DOI: 10.1016/j.cancergencyto.2007.09.013.
[13] JUNG H M, CHOI S J, KIM J K. Expression profiles of SV40-immortalization-associated genes upregulated in various human cancers[J]. J Cell Biochem, 2009, 106(4): 703-713. DOI: 10.1002/jcb.22063.
[14] SIMPSON H M, KHAN R Z, SONG C, et al. Concurrent Mutations in ATM and genes associated with common γ chain signaling in peripheral T cell lymphoma[J]. PLoS One, 2015, 10(11): e0141906. DOI: 10.1371/journal.pone.0141906.
[15] LI Y F, SI L L, ZHAI Y, et al. Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese[J].Nat Commun, 2016, 7: 11664. DOI: 10.1038/ncomms11664.
[16] 張靜,程敏,金倩,等.多聚嘧啶區(qū)結(jié)合蛋白1通過調(diào)控基因的可變剪接促進(jìn)膽管癌細(xì)胞的生長、遷移及侵襲能力[J].中國生物化學(xué)與分子生物學(xué)報(bào), 2022, 38(7): 899-910. DOI:10.13865/j.cnki.cjbmb.2022.06.1058.
[17] 霍勵(lì)耘,魏英城,譚文亮,等.SMC基因家族在肝癌中的表達(dá)及其預(yù)測肝癌預(yù)后的臨床意義[J].嶺南現(xiàn)代臨床外科, 2021, 21(1): 24-28. DOI: 10.3969/j.issn.1009-976X.2021.01.005.
[18] 馬孟杰,彭小忠,舒鵬程.COMPASS核心成員Ash2l通過調(diào)控細(xì)胞周期影響神經(jīng)祖細(xì)胞增殖[J].中國生物化學(xué)與分子生物學(xué)報(bào), 2022, 38(6): 742-748. DOI: 10.13865/j.cnki.cjbmb.2022.05.1090.
[19] KREIS N N, LOUWEN F, YUAN J P. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy[J]. Cancers, 2019, 11(9): 1220. DOI: 10.3390/cancers11091220.
[20] CHANDRASEKARAN A P, SURESH B, SARODAYA N, et al. Ubiquitin specific protease 29 functions as an oncogene promoting tumorigenesis in colorectal carcinoma[J]. Cancers, 2021, 13(11): 2706. DOI: 10.3390/cancers13112706.
[21] SHEN T, HUANG S L. The role of Cdc25A in the regulation of cell proliferation and apoptosis[J]. Anticancer Agents Med Chem, 2012, 12(6): 631-639. DOI: 10.2174/187152012800617678.
[22] WANG C, ZENG J, LI L J, et al. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells[J]. Cell Death Dis, 2021, 12(11): 1055. DOI: 10.1038/s41419-021-04342-y.
[23] KAYA Z, KARAN B M, ALMAL1 N. CDKN1A (p21 gene) polymorphisms correlates with age in esophageal cancer[J]. Mol Biol Rep, 2022, 49(1): 249-258. DOI: 10.1007/s11033-021-06865-1.
[24] HAN J, ZHANG Z X. Screening of pyroptosis-related genes influencing the therapeutic effect of dehydroabietic acid in liver cancer and construction of a survival nomogram[J]. Biochem Biophys Res Commun, 2021, 585: 103-110. DOI: 10.1016/j.bbrc.2021.11.027.
[25] TANG Z P, ZHAO P, ZHANG W X, et al. SALL4 activates PI3K/AKT signaling pathway through targeting PTEN, thus facilitating migration, invasion and proliferation of hepatocellular carcinoma cells[J]. Aging, 2022, 14(24): 10081-10092. DOI: 10.18632/aging.204446.
[26] SUN J F, HU J Y, WANG G J, et al. RETRACTED ARTICLE: LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 1-11. DOI: 10.1186/s13046-018-0771-x.
[27] PAWLOTSKY J M, NEGRO F, AGHEMO A, et al. EASL recommendations on treatment of hepatitis C: Final update of the series[J]. J Hepatol, 2020, 73(5): 1170-1218. DOI: 10.1016/j.jhep.2020.08.018.
[28] DOS SANTOS W, DOS REIS M B, PORTO J, et al. Somatic targeted mutation profiling of colorectal cancer precursor lesions[J]. BMC Med Genom, 2022, 15(1): 143. DOI: 10.1186/s12920-022-01294-w.
[29] FEDERICO A, RIENZO M, ABBONDANZA C, et al. Pan-cancer mutational and transcriptional analysis of the integrator complex[J]. Int J Mol Sci, 2017, 18(5): 936. DOI: 10.3390/ijms18050936.
[30] FILLEUR S, HIRSCH J, WILLE A, et al. INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and Wnt signaling[J]. Cancer Cell Int, 2009, 9(1): 1-9. DOI: 10.1186/1475-2867-9-28.
[31] PFLEIDERER M M, GALEJ W P. Emerging insights into the function and structure of the Integrator complex[J]. Transcription, 2021, 12(5): 251-265. DOI: 10.1080/21541264.2022.2047583.
[32] WILLIAMS L H, FROMM G, GOKEY N G, et al. Pausing of RNA polymerase Ⅱ regulates mammalian developmental potential through control of signaling networks[J]. Mol Cell, 2015, 58(2): 311-322. DOI: 10.1016/j.molcel.2015.02.003.
[33] SABATH K, STUBLI M L, MARTI S, et al. INTS10-INTS13-INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module[J]. Nat Commun, 2020, 11: 3422. DOI: 10.1038/s41467-020-17232-2.
(責(zé)任編輯:趙藏賞)
收稿日期:2023-05-11;修回日期:2023-06-15
基金項(xiàng)目:
國家自然科學(xué)基金青年基金資助項(xiàng)目( 8190061543)
第一作者:王雪婷(1998—),女,河北大學(xué)碩士研究生,主要從事遺傳學(xué)和整合組學(xué)研究.E-mail:1379402926@qq.com
通信作者:周鋼橋(1972—),男,軍事醫(yī)學(xué)研究院研究員,主要從事遺傳學(xué)和整合組學(xué)研究.E-mail:zhougq114@126.com