摘要:首先,介紹在重力作用下,無(wú)旋、無(wú)黏性和不可壓縮的流體的表面波傳播的一維(或兩維單向)淺水波運(yùn)動(dòng)的各種不同模型(PDE),這些模型對(duì)應(yīng)的行波系統(tǒng)一般是奇平面動(dòng)力系統(tǒng).其次,用著名的廣義CamassaHolm方程作為例子,通過(guò)對(duì)應(yīng)的行波系統(tǒng)的精確解來(lái)研究該方程的尖孤子、周期尖波、偽尖孤子、偽周期尖波及有界破缺波解的存在性.第三,應(yīng)用動(dòng)力系統(tǒng)分支理論和奇攝動(dòng)幾何理論相結(jié)合的方法,建立了奇非線性行波方程研究的理論和方法,介紹奇非線性行波動(dòng)力學(xué)行為的2個(gè)主要定理,完整地解決了波的光滑性與非光滑性、完整性和破缺性的判定問(wèn)題.第四,介紹當(dāng)伴隨正則系統(tǒng)直線解上的奇點(diǎn)是結(jié)點(diǎn)時(shí),如何用相軌道識(shí)別對(duì)應(yīng)的波形,并研究一個(gè)非線性水波方程,獲得該系統(tǒng)的各型光滑的孤立波和周期波在不同參數(shù)條件下的存在性和精確的參數(shù)表示.
關(guān)鍵詞:淺水波方程模型;廣義CamassaHolm方程;奇非線性行波方程;分枝;動(dòng)力系統(tǒng)方法
中圖分類號(hào):O175 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2024)04-0451-18
doi:10.3969/j.issn.1001-8395.2024.04-003
參考文獻(xiàn)
[1]QUIRCHMAYRR.Anewhighlynonlinearshallowwaterwaveequation[J].JournalofEvolutionEquations,2016,16(3):539-567.
[2]KORTEWEGK,DEVRIESG.Onthechangeofformoflongwavesadvancingintherectangularcanal,andonanewtypeoflongstationarywaves[J].PhilosophicalMagazine,2011,91(6):1007-1028.
[3]CAMASSAR,HOLM DD.Anintegrableshallowwaterequationwithpeakedsolitons[J].PhysicalReviewLetters,1993,71(11):1661-1664.
[4]CAMASSAR,HOLMDD,HYMANJM.Anewintegrableshallowwaterequation[J].AdvancesinAppliedMechanics,1994,31:1-33.
[5]CAMASSA R,HYMAN JM,LUCE B P.Nonlinearwavesandsolitonsinphysicalsystems[J].PhysicaD:NonlinearPhenomena,1998,123(1/2/3/4):120.
[6]LIJB.Singularnonlineartravelingwaveequations:bifurcationsandexactsolutions[M].Beijing:SciencePress,2013.
[7]SERREF.Contributionl’tudedescoulementspermanentsetvariablesdanslescanaux[J].LaHouilleBlanche,1953,39(3):374-388.
[8]DIASD,MILEWSKIP.OnthefullynonlinearshallowwatergeneralizedSerreequations[J].PhysicsLettersA,2010,374(8):1049-1053.
[9]MITSOTAKISD,DUTYKHD,ASSYLBEKULYA,etal.Onweaklysingularandfullynonlineartravellingshallowcapillarygravitywavesinthecriticalregime[J].PhysicsLettersA,2017,381(20):1719-1726.
[10]DUTYKHD,HOEFERM,MITSOTAKISD.SolitarywavesolutionsandtheirinteractionsforfullynonlinearwaterwaveswithsurfacetensioninthegeneralizedSerreequations[J].TheoreticalandComputationalFluidDynamics,2018,32(3):371-397.
[11]ARAIA.ExactsolutionsofmulticomponentnonlinearSchrdingerandKleinGordonequationsintwodimensionalspacetime[J].JournalofPhysicsA:MathematicalandGeneral,2001,34(20):4281-4288.
[12]BYRDPF,FRIDMANMD.Handbookofellipticintegralsforengineersandscientists[M].Berlin:Springer,1971.
[13]LIJB,CHENGR.Onaclassofsingularnonlineartravelingwaveequations[J].InternationalJournalofBifurcationandChaos,2007,17(11):4049-4065.
[14]LIJB,QIAOZJ.BifurcationsandexacttravelingwavesolutionsofthegeneralizedtwocomponentCamassaHolmequation[J].InternationalJournalofBifurcationandChaos,2014,22(12):1250305.
[15]LIJB.Variform exactonepeakonsolutionsforsomesingularnonlineartravelingwaveequationsofthefirstkind[J].InternationalJournalofBifurcationandChaos,2014,24(12):1450160.
[16]LIJB,ZHUW J,CHENGR.Understandingpeakons,periodicpeakonsandcompactonsviaashallowwaterwaveequation[J].InternationalJournalofBifurcationandChaos,2016,26(12):1650207.
[17]LIJB,CHENGR,DENGSF.Smoothexacttravelingwavesolutionsdeterminedbysingularnonlineartravelingwavesystems:twomodels[J].InternationalJournalofBifurcationandChaos,2019,29(4):1950047.
(編輯 周 ?。?/p>
基金項(xiàng)目:國(guó)家自然科學(xué)基金(11871231、12071162和11701191)