摘要:研究一類帶加性噪聲的隨機(jī)偏微分方程在不同相空間中的中心流形的存在性.通過引入隨機(jī)變換的方法處理噪聲項(xiàng),得到隨機(jī)偏微分方程的解,生成隨機(jī)動(dòng)力系統(tǒng),再通過Lyapunov-Perron方法證明中心流形的存在性.
關(guān)鍵詞:隨機(jī)偏微分方程;隨機(jī)動(dòng)力系統(tǒng);隨機(jī)中心流形;加性噪聲
中圖分類號(hào):O175.29 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2024)04-0555-07
doi:10.3969/j.issn.1001-8395.2024.04.013
0 引言
本文研究一類帶加性噪聲的隨機(jī)偏微分方程
其中,Aε,0<ε≤ε0(ε0是一個(gè)常數(shù))是一簇稠定、自伴,在可分的實(shí)Hilbert空間上有緊預(yù)解的線性算子;Fε(vε)是一簇從Xε到它自身的非線性算子;hε(x)是Xε中的一個(gè)元素,并且hε(0)=0.相空間Xε隨著ε改變而改變.
不變流形對(duì)描述和理解非線性動(dòng)力系統(tǒng)的動(dòng)力學(xué)行為起著十分重要的作用,已經(jīng)被廣泛用于研究無(wú)窮維確定動(dòng)力系統(tǒng).Hadamard[1]最早提出確定動(dòng)力系統(tǒng)的不變流形理論,然后Lyapunov[2]和Perron[3]使用了不同的方法進(jìn)行研究.其中Hadamard的圖變換方法是一種幾何方法,而LyapunovPerron方法是一種解析方法.從那時(shí)起,產(chǎn)生了大量研究有限維和無(wú)限維確定動(dòng)力系統(tǒng)的不變流形的文獻(xiàn)[411].本文將通過解析方法研究在不同的相空間中,帶加性噪聲的隨機(jī)偏微分方程的中心流形的存在性.
Hale等[12]把確定動(dòng)力系統(tǒng)的研究推廣到了薄域上,建立了一類反應(yīng)擴(kuò)散方程,他們研究了從二維薄域崩潰到一維區(qū)域時(shí)慣性流形的持久性.此后,他們的結(jié)果被用于研究各種問題[218].最近,Arrieta等[13]針對(duì)處理一類帶有奇異擾動(dòng)的確定發(fā)展方程建立了一個(gè)基本框架,并建立了慣性流形的收斂.
對(duì)于隨機(jī)常微分方程(有限維隨機(jī)動(dòng)力系統(tǒng))的不變流形理論已經(jīng)被廣泛研究[1921],但是,對(duì)于隨機(jī)偏微分方程的研究仍然處于早期階段.最近,對(duì)帶加性噪聲或者乘性噪聲的隨機(jī)偏微分方程的不變流形理論的研究已經(jīng)有一些成果[2229].此外,文獻(xiàn)[30]證明了帶非線性乘性噪聲的隨機(jī)波動(dòng)方程的不變流形的存在性,文獻(xiàn)[3132]研究了隨機(jī)微分方程的中心流形收斂于其WongZakai近似方程的中心流形,文獻(xiàn)[3334]討論了帶乘性噪聲的隨機(jī)偏微分方程的不變流形的近似行為.
1 預(yù)備知識(shí)
參考文獻(xiàn)[19]給出隨機(jī)動(dòng)力系統(tǒng)的基本概念,參考文獻(xiàn)[23]介紹在Hilbert空間中的線性算子Aε和非線性算子Fε及其性質(zhì).
1.1 隨機(jī)動(dòng)力系統(tǒng)
設(shè)(Ω,F,P)是一個(gè)概率空間,X是一個(gè)可分的Hilbert空間,其范數(shù)為‖·‖.分別使用B(R)、B(R+)和B(X)表示在R、R+和X上的Borel集.
參考文獻(xiàn)
[1]HADAMARDJ.Surliterationetlessolutionsasymptotiquesdesequationsdifferentielles[J].BulletindelaSocieteMathematique"deFrance,1901,29:224-228.
[2]LYAPUNOVA.Problemgeneraldelastabilitedumouvement[M].Princeton:PrincetonUniversityPress,1947.
[3]PERRONO.berstabilit-tundasymptotischesverhaltenderintegralevondifferentialgleichungssystemen[J].Mathematische Zeitschrift,1929,29(1):129-160.
[4]BATESPW,LUKN,ZENGCC.Persistenceofoverflowingmanifoldsforsemiflow[J].CommunicationsonPureandApplied Mathematics,1999,52(8):983-1046.
[5]BATESPW,LUKN,ZENGCC.Approximatelyinvariantmanifoldsandglobaldynamicsofspikestates[J].InventionesMath-ematicae,2008,174(2):355-433.
[6]BATESPW,LUKN,WANGBX.Randomattractorsforstochasticreactiondiffusionequationsonunboundeddomains[J].JournalofDifferentialEquations,2009,246(2):845-869.
[7]CARABALLOT,DUANYJ,LUKN,etal.Invariantmanifoldsforrandomandstochasticpartialdifferentialequations[J].Ad-vancedNonlinearStudies,2010,10(1):23-52.
[8]CARRJ.Applicationofcentermanifoldtheory[M].Berlin:SpringerVerlag,1981.
[9]CHOW SN,LUKN.Ckcentreunstablemanifolds[J].ProceedingsoftheRoyalSocietyofEdinburghSectionA:Mathematics,1988,108(3/4):303-320.
[10]CHOW SN,LUKN.InvariantmanifoldsforflowsinBanachspaces[J].JournalofDifferentialEquations,1988,74(2):285-317.
[11]LUK,SCHMALFUSSB.Invariantfoliationsforstochasticpartialdifferentialequations[J].StochasticsandDynamics,2008,8(3):505-518.
[12]HALEJ,RAUGELG.Reactiondiffusionequationonthethindomain[J].JournaldeMathmatiquesPuresetAppliqus,1992,71(1):33-95.
[13]ARRIETAJ,SANTAMAR?AE.Estimatesonthedistanceofinertialmanifolds[J].DiscreteandContinuousDynamicalSystems"SeriesA,2014,34(10):3921-3944.
[14]SANGIAMSUNTHORNP.Invariantmanifoldsforparabolicequationsunderperturbationofthedomain[J].NonlinearAnalysis:Theory,Methods&Applications,2013,80:28-48.
[15]PRIZZIM,RYBAKOWSKIK.Theeffectofdomainsqueezinguponthedynamicsofreactiondiffusionequations[J].Journalof"DifferentialEquations,2001,174(2):271-320.
[16]PRIZZIM,RYBAKOWSKIKP.Inertialmanifoldsonsqueezeddomains[J].JournalofDynamicsandDifferentialEquations,2003,15(1):1-48.
[17]PRIZZIM,RYBAKOWSKIKP.Oninertialmanifoldsforreactiondiffusionequationsongenuinelyhighdimensionalthindo-mains[J].StudiaMathematica,2003,154(3):253-275.
[18]VARCHONN.Domainperturbationandinvariantmanifolds[J].JournalofEvolutionEquations,2012,12(3):547-569.
[19]ARNOLDL.Randomdynamicalsystems[M].Berlin:SpringerVerlag,1998.
[20]MOHAMMEDS,SCHEUTZOW M.Thestablemanifoldtheoremforstochasticdifferentialequations[J].TheAnnalsofProba-bility,1999,27(2):615-652.
[21]SCHMALFUSSB.Arandomfixedpointtheoremandtherandomgraphtransformation[J].JournalofMathematicalAnalysisand"Applications,1998,225(1):91-113.
[22]BENSOUSSANA,FLANDOLIF.Stochasticinertialmanifold[J].StochasticsandStochasticReports,1995,53(1/2):13-39.
[23]CARABALLOT,CHUESHOVI,LANGAJA.Existenceofinvariantmanifoldsforcoupledparabolicandhyperbolicstochastic"partialdifferentialequations[J].Nonlinearity,2005,18(2):747-767.
[24]CHUESHOVID,SCHEUTZOW M.Inertialmanifoldsandformsforstochasticallyperturbedretardedsemilinearparabolicequa-tions[J].JournalofDynamicsandDifferentialEquations,2001,13(2):355-380.
[25]DUANJQ,LUKN,SCHMALFUSSB.Invariantmanifoldsforstochasticpartialdifferentialequations[J].TheAnnalsofProb-ability,2003,31(4):2109-2135.
[26]DUANJQ,LUKN,SCHMALFUSSB.Smoothstableandunstablemanifoldsforstochasticevolutionaryequations[J].Journal"ofDynamicsandDifferentialEquations,2004,16(4):949-972.
[27]LU K N,SCHMALFUB.Invariantmanifoldsforstochasticwaveequation[J].JournalofDifferentialEquations,2007,236(2):460-492.
[28]SCHMALFUSSB,SCHNEIDERKR.Invariantmanifoldsforrandomdynamicalsystemswithslowandfastvariables[J].Jour-nalofDynamicsandDifferentialEquations,2008,20(1):133-164.
[29] ZHAO J, SHEN J.Smooth invariantmanifoldsforarandomlyperturbed nonautonomouscoupled system and their"approximations[J].JournalofDifferentialEquations,2021,303(5):86-122.
[30]SHENJ,LUKN.WongZakaiapproximationsandcentermanifoldsofstochasticdifferentialequations[J].JournalofDifferen-tialEquations,2017,263(8):4929-4977.
[31]ZHAOJ,SHENJ,LUKN.Conjugatedynamicsoncentermanifoldsforstochasticpartialdifferentialequations[J].Journalof"DifferentialEquations,2020,269(7):5997-6054.
[32]SHIL.SmoothconvergenceofrandomcentermanifoldsforSPDEsinvaryingphasespaces[J].JournalofDifferentialEqua-tions,2020,269(3):1963-2011.
[33]SHENJ,LUKN,WANGBX.Convergenceandcentermanifoldsfordifferentialequationsdrivenbycolorednoise[J].Dis-creteandContinuousDynamicalSystems:SeriesA,2019,39(8):4797-4840.
[34]DAPRATOG,ZABCZYKJ.Stochasticequationsininfinitedimensions[M].Cambridge:CambridgeUniversityPress,1992.
[35]CASTAINGC,VALADIERM.Convexanalysisandmeasurablemultifunctions[M].Berlin:Springer-Verlag,1977.
(編輯 鄭月蓉)
基金項(xiàng)目:四川省科技廳應(yīng)用基礎(chǔ)計(jì)劃(2016JY0204)