摘要 磷是作物生長(zhǎng)發(fā)育必需的營(yíng)養(yǎng)元素之一,在作物的生命過程中發(fā)揮重要作用。作物在長(zhǎng)期進(jìn)化過程中形成了一系列低磷適應(yīng)機(jī)制,主要涉及土壤磷的活化、吸收、轉(zhuǎn)運(yùn)和內(nèi)部磷的循環(huán)、再利用等過程。從作物低磷脅迫下的根系形態(tài)、根系分泌物、與微生物共生體系、分子機(jī)制4個(gè)方面綜述了作物耐低磷機(jī)制的最新研究進(jìn)展,旨在為作物栽培調(diào)控及耐低磷作物品種的改良與選育提供借鑒。
關(guān)鍵詞 作物;低磷脅迫;根系形態(tài);有機(jī)酸;微生物共生體系;分子機(jī)制
中圖分類號(hào) Q945 文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 0517-6611(2024)08-0001-05
doi:10.3969/j.issn.0517-6611.2024.08.001
Research Progress on Mechanism of Low Phosphorus Tolerance in Crops
CHEN Ying-hui,SHE Bing-yu,GE Cai-lin et al
(College of Bioscience and Biotechnology,Yangzhou University,Yangzhou,Jiangsu 225009)
Abstract Phosphorus is one of the essential nutrients for crop growth and development,and plays an important role in the life process of crops.Crops have formed a series of low phosphorus adaptation mechanisms in the long-term evolution process,mainly involving the activation,absorption,transport of soil phosphorus and the recycling and reuse of phosphorus in crop tissues.In this paper,the latest research progress on the mechanism of low phosphorus tolerance of crops was reviewed from four aspects:root morphology,root exudates,symbiotic system with microorganisms,and molecular mechanism under low phosphorus stress,in order to provide reference for crop cultivation regulation and improvement and breeding of low phosphorus tolerant crop varieties.
Key words Crop;Low phosphorus stress;Root morphology;Organic acids;Microbial symbiosis system;Molecular mechanism
磷(phosphorus)是作物生長(zhǎng)發(fā)育必需的大量元素之一,但其在作物中的可利用性、流動(dòng)性最低。磷是核酸、磷脂、ATP等生物分子的組成部分,參與了能量傳遞、信號(hào)轉(zhuǎn)導(dǎo)、光合作用、呼吸作用等重要過程,對(duì)作物生長(zhǎng)起關(guān)鍵性作用。充足的磷有利于促進(jìn)植物細(xì)胞分裂和作物的生長(zhǎng)發(fā)育,有利于提高作物對(duì)干旱、冷害、病害等逆境的耐受性和抗倒伏能力[1]。土壤中的磷主要以HPO42-和H2PO4-的形式被作物吸收利用,但土壤有效磷濃度很少超過10 μmol/L ,這一濃度遠(yuǎn)低于作物的最佳生長(zhǎng)濃度[2-3]。全球約有43%的耕地缺乏磷,我國(guó)約有66%的耕地缺乏磷[4]。我國(guó)大部分土壤中的總磷儲(chǔ)量很大,但能被作物直接吸收利用的有效磷含量很低,這嚴(yán)重限制了作物產(chǎn)量[3]。在農(nóng)業(yè)生產(chǎn)中,人們大量使用磷肥增加作物的磷供應(yīng),但超過80%的磷肥沒有被作物吸收利用,未被利用的磷會(huì)通過各種形式進(jìn)入水環(huán)境,造成水體富營(yíng)養(yǎng)化和生物多樣性減少等問題[5-6]。此外,目前用于生產(chǎn)磷肥的磷礦資源迅速減少,開采磷礦和生產(chǎn)磷肥的成本較高[7-8]。通過施用磷肥改善作物磷營(yíng)養(yǎng)帶來的一系列問題正受到人們的重視,促使尋找更環(huán)保、更經(jīng)濟(jì)可行的農(nóng)業(yè)措施來提高低磷土壤上的作物產(chǎn)量。
研究表明,作物主要采取兩種策略抵御低磷脅迫,即對(duì)內(nèi)提高磷的利用效率、對(duì)外增加土壤磷的吸收[9]。作物提高內(nèi)部磷利用效率的機(jī)制包括從液泡中釋放磷;重塑細(xì)胞膜,減少對(duì)磷脂的依賴;將衰老葉中的磷運(yùn)送至生長(zhǎng)旺盛的部位;改變糖酵解等反應(yīng)途徑,繞過消耗磷的步驟等。作物增加吸收土壤磷的機(jī)制包括重塑根系形態(tài),增加根系吸收土壤磷的表面積;根系進(jìn)行“表土覓食”;根系分泌有機(jī)酸、質(zhì)子、酸性磷酸酶等磷增溶物質(zhì);與微生物共生等。該研究主要從作物低磷脅迫下的根系形態(tài)、根系分泌物、菌根共生和分子機(jī)制4個(gè)方面綜述作物低磷適應(yīng)機(jī)制的最新研究進(jìn)展,為作物栽培調(diào)控及耐低磷作物品種的改良與選育提供借鑒。
1 根系形態(tài)變化增加磷吸收表面積
根系是作物吸收土壤養(yǎng)分的器官,根系形態(tài)決定了作物的營(yíng)養(yǎng)吸收范圍。作物面對(duì)低磷脅迫常會(huì)重塑根系形態(tài),增加對(duì)土壤磷的吸收,主要表現(xiàn)為縮短根長(zhǎng)、增加側(cè)根和根毛的長(zhǎng)度、密度、增加根冠比等。土壤中的磷主要位于土壤上層,磷含量隨土壤深度的增加而遞減。一部分作物在磷缺乏情況下,會(huì)通過縮短根長(zhǎng)、減少根深,增加對(duì)表層土壤中磷的吸收[10]。如,擬南芥[11]、甘蔗[12]、玉米[13]等作物在低磷土壤中,根系傾向于分布在土壤表層。低磷一方面會(huì)抑制作物的主根伸長(zhǎng),另一方面能促進(jìn)作物的側(cè)根發(fā)育。側(cè)根是作物根系中吸收土壤水分和養(yǎng)分最活躍的部位,作物側(cè)根生長(zhǎng)可增加根系吸收磷的表面積。低磷脅迫下,小麥的側(cè)根形成受到促進(jìn)[14],水稻的側(cè)根長(zhǎng)度和數(shù)量增加[15],棉花的側(cè)根數(shù)量和密度增加[16]。根毛是由作物的根表皮細(xì)胞伸展形成的,根毛表面積可以占到作物根系總表面積的77%,所以根毛是作物根系吸收土壤磷的主要結(jié)構(gòu)[17]。缺磷幾乎總是使作物的根毛長(zhǎng)度和密度增加,這有助于作物最大程度地吸收磷。如,棉花在低磷脅迫時(shí),根毛長(zhǎng)度增加[16];水稻在低磷環(huán)境中,根毛長(zhǎng)度和密度增加[18];擬南芥在低磷條件下,根毛密度是高磷條件下的5倍[19],根毛長(zhǎng)度是高磷條件下的3倍[20]。低磷脅迫時(shí),作物普遍會(huì)將光合產(chǎn)物優(yōu)先分配到根系,促進(jìn)根系生長(zhǎng),使得作物能利用更大范圍的土壤磷,增加根冠比是作物抵御低磷脅迫的重要形態(tài)變化之一[11]。在小麥[14]、水稻[15]、玉米[21]、甘藍(lán)型油菜[22]等作物中,均觀察到低磷脅迫促進(jìn)其光合產(chǎn)物向根系運(yùn)輸,根系干重增加而地上部干重減少,作物的根冠比明顯變化。
低磷條件下,白羽扇豆和幾種禾本科植物會(huì)形成“排根”。排根也稱為叢生根,是在側(cè)根上形成的密集的、瓶刷狀的特殊側(cè)根結(jié)構(gòu)。白羽扇豆是排根植物中唯一的農(nóng)作物,排根導(dǎo)致白羽扇豆的根系磷吸收面積大大增加[23-24]。
2 根系分泌物提高土壤磷有效性
土壤中的大部分磷被土壤中的各種因素固定,導(dǎo)致作物無法直接吸收利用。如,酸性土壤中,土壤磷易被Fe3+、Al3+固定成難溶的沉淀物。堿性土壤中,土壤磷易被Ca2+固定等[7]。作物通過根系分泌有機(jī)酸和質(zhì)子活化土壤難溶性無機(jī)磷,低磷條件下作物根系分泌的有機(jī)酸主要有檸檬酸、異檸檬酸、草酸、蘋果酸、延胡索酸、琥珀酸等,一般情況下,檸檬酸是作物根系分泌最多的有機(jī)酸[25]。有機(jī)酸活化土壤磷的機(jī)制主要有:①與土壤中的Fe3+、Al3+、Ca2+等金屬離子的磷化合物進(jìn)行絡(luò)合反應(yīng);②與磷酸根離子競(jìng)爭(zhēng)結(jié)合土壤顆粒;③改變土壤中鐵鋁氧化物等吸附劑表面的電荷,降低其對(duì)磷酸根的吸附固定;④降低根際pH,促進(jìn)難溶性無機(jī)磷的溶解[26-27],而質(zhì)子則是通過降低根際土壤的pH增溶土壤磷。低磷脅迫下,白菜、馬鈴薯根系分泌的檸檬酸、琥珀酸量顯著增加[28],玉米根系分泌的檸檬酸、蘋果酸量大大增加[29],大豆根系分泌的草酸、蘋果酸、檸檬酸量增加明顯[30-31]。低磷時(shí),水稻根系分泌的質(zhì)子量比充足供磷時(shí)高60%[32],大豆、番茄、鷹嘴豆、白羽扇豆根系分泌的質(zhì)子量增加[31,33]。此外,在石灰性或堿性低磷土壤中,作物根系分泌質(zhì)子活化土壤難溶性磷被證明比分泌有機(jī)酸更有效。
酸性磷酸酶(acid phosphatase,APase)是作物根系分泌的一種能水解土壤無效磷、增加土壤有效磷的重要磷酸鹽水解酶。研究表明,低磷普遍誘導(dǎo)作物根系分泌的酸性磷酸酶活性,這是作物適應(yīng)低磷脅迫的重要機(jī)制之一。如,低磷脅迫下,水稻[34]、玉米[35]、白羽扇豆[36]、甘藍(lán)型油菜[22]等作物根系分泌的酸性磷酸酶活性均顯著增加。紫色酸性磷酸酶(purple acid phosphatase,PAP)是酸性磷酸酶家族最龐大的成員,廣泛存在于細(xì)菌、真菌、植物和動(dòng)物中,在植物中多以基因家族形式存在[37]。如,擬南芥[38]、水稻[39]、大豆[40]和玉米[41]基因組中分別有29、26、35和33個(gè)紫色酸性磷酸酶基因。紫色酸性磷酸酶具有與酸性磷酸酶相同的催化磷酸單酯或酸酐裂解、釋放無機(jī)磷酸根離子的作用,但是據(jù)目前的報(bào)道,紫色酸性磷酸酶主要在作物組織內(nèi)發(fā)揮磷酸鹽水解作用,根系分泌型紫色酸性磷酸酶種類較少。
低磷脅迫下,白羽扇豆形成的排根除了通過增加根系面積改善磷吸收,還能分泌大量的有機(jī)酸,排根結(jié)構(gòu)有利于白羽扇豆在低磷土壤上的生長(zhǎng)[24]。如,低磷條件下,白羽扇豆的排根分泌較多的檸檬酸和蘋果酸,顯著促進(jìn)了其磷營(yíng)養(yǎng)[42-43]。腐爛生物中的核酸是土壤有機(jī)磷的重要組成部分,作物常通過根系分泌核糖核酸酶水解其中的核糖核酸,使這部分磷釋放出來并被作物吸收利用。有研究表明,磷缺乏通常顯著誘導(dǎo)作物根系分泌的核糖核酸酶活性[44]。
3 與微生物共生促進(jìn)作物磷吸收
作物根際土壤有復(fù)雜、多樣的微生物群落,這些微生物被證實(shí)與作物的營(yíng)養(yǎng)吸收、生長(zhǎng)、抗逆性等密切相關(guān)。其中,叢枝菌根真菌(AMF)和溶磷細(xì)菌(PSB)是對(duì)作物磷吸收具有較高幫助作用的兩類微生物。土壤中與作物根系共生的AMF有Glomus、Diversispora、Rhizophagus、Entrophospora、Diversispora等[45-46],PSB有放線菌、農(nóng)桿菌、固氮細(xì)菌、芽孢桿菌、假單胞菌、紅球菌、鏈霉菌等[47]。AMF促進(jìn)作物磷吸收的主要機(jī)制是AMF的叢枝狀菌絲結(jié)構(gòu)能穿透作物的根皮質(zhì)細(xì)胞壁并在土壤中建立龐大的叢枝,菌絲將作物根系和根外土壤連接起來,大大增加了作物可利用的土壤體積,且研究表明,AMF菌絲的磷吸收效率比根系直接吸收土壤磷的效率更高。低磷土壤中,接種AMF的大豆地上部磷含量增加[48],與AMF共生的棉花中部分磷酸鹽轉(zhuǎn)運(yùn)蛋白基因表達(dá)量和磷濃度增加[49],接種AMF提高了玉米根部和地上部的磷濃度[50]等,這些報(bào)道均證實(shí)了AMF對(duì)改善作物磷營(yíng)養(yǎng)具有促進(jìn)作用。PSB促進(jìn)作物適應(yīng)低磷土壤的機(jī)制與AMF不同,PSB主要是通過分泌物增加作物的磷吸收。植物激素對(duì)作物根系發(fā)育具有重要作用,PSB可產(chǎn)生植物激素并被作物根系吸收,導(dǎo)致作物根系的內(nèi)源激素含量和根表面積增加,從而有利于作物根系利用更多的土壤磷[51]。同時(shí),PSB產(chǎn)生的植物激素也能作用于AMF,促進(jìn)AMF菌絲定殖到作物根系并在根系中建立叢枝[52]。PSB還能分泌有機(jī)酸、質(zhì)子、酸性磷酸酶、紫色酸性磷酸酶、核糖核酸酶等磷增溶物質(zhì)動(dòng)員土壤磷,PSB分泌物活化出的有效磷除了可以通過根表皮細(xì)胞直接運(yùn)輸至作物組織內(nèi),還可以由AMF菌絲協(xié)助運(yùn)送到作物根系,且AMF可以提供碳促進(jìn)PSB生長(zhǎng),增加PSB分泌的磷增溶物質(zhì)[45,53-54]。
4 作物耐低磷分子機(jī)制
作物響應(yīng)低磷脅迫的分子機(jī)制主要包括調(diào)節(jié)有機(jī)酸、酸性磷酸酶、磷酸鹽轉(zhuǎn)運(yùn)蛋白等基因的表達(dá),以及調(diào)節(jié)microRNA、轉(zhuǎn)錄因子等[55]。
低磷會(huì)誘導(dǎo)作物中有機(jī)酸、酸性磷酸酶等合成和釋放相關(guān)基因的表達(dá)。如,轉(zhuǎn)錄組和代謝組數(shù)據(jù)顯示,低磷脅迫28 d后,燕麥中與有機(jī)酸合成和釋放有關(guān)的基因持續(xù)上調(diào)表達(dá),燕麥根系分泌的檸檬酸和蘋果酸量增加[56]。水稻根系的低磷脅迫誘導(dǎo)表達(dá)基因芯片分析表明,根系中1個(gè)酸性磷酸酶基因(APA)、2個(gè)磷酸烯醇式丙酮酸羧化酶基因(PEPC)、1個(gè)電壓依賴陰離子通道1基因(VDAC1)、1個(gè)具有陰離子通道1活性的C4-二羧酸轉(zhuǎn)運(yùn)/蘋果酸轉(zhuǎn)運(yùn)蛋白基因(C4-DT/MAT)等基因顯著誘導(dǎo)表達(dá)[57]。
PHT1(phosphorus transporter 1)蛋白是作物根系在低磷脅迫下吸收、轉(zhuǎn)運(yùn)土壤磷的主要磷轉(zhuǎn)運(yùn)蛋白。在高磷供應(yīng)下,作物會(huì)抑制PHT1基因的轉(zhuǎn)錄,避免攝入的磷過多,產(chǎn)生磷中毒。植物中的PHT1基因最早在擬南芥中被鑒定出來,隨后研究者在馬鈴薯、白羽扇豆、番茄、水稻、玉米和小麥等作物中均鑒定出了PHT1基因[58-59]。研究表明,PHT1基因主要在作物的根中表達(dá),特別是在根表皮細(xì)胞、側(cè)根和根毛中的表達(dá)豐度很高。如,擬南芥的9個(gè)PHT1基因有8個(gè)在根中表達(dá)[60],水稻的13個(gè)PHT1基因均在根中表達(dá)[61]。部分PHT1基因家族成員被發(fā)現(xiàn)在作物的地上部莖、葉和花等器官中表達(dá),說明PHT1蛋白除了主要參與根系從土壤吸收磷的過程,還參與磷從作物根部運(yùn)輸?shù)降厣喜恳约坝蔂I(yíng)養(yǎng)器官再分配到繁殖器官的過程。如,擬南芥AtPHT1;6[62]、水稻OsPHT1;7[63]在花粉中表達(dá),可能與作物的結(jié)實(shí)率有關(guān)。水稻OsPHT1;2、OsPHT1;6在根和芽中表達(dá),可能介導(dǎo)磷從作物的根部運(yùn)載到地上部[64]。擬南芥AtPHT1;5[65]、水稻OsPHT1;7[63]、水稻OsPHT1;3[66]、大麥HvPHT1;6[67-68]在衰老葉片維管束的韌皮部表達(dá),可能介導(dǎo)磷從衰老葉片再分配到幼嫩組織。作物磷穩(wěn)態(tài)的維持不僅依賴于磷的獲取,還需要磷在體內(nèi)進(jìn)行重新分配,PHO1(Phosphate 1)蛋白在將磷裝載到根的木質(zhì)部導(dǎo)管以及從根部運(yùn)送到地上部過程中發(fā)揮重要作用。擬南芥AtPHO1突變體與野生型相比,根系吸收磷的速率和根部磷含量沒有變化,但磷轉(zhuǎn)運(yùn)到根的木質(zhì)部導(dǎo)管以及地上部存在明顯缺陷,作物地上磷含量嚴(yán)重不足,表現(xiàn)出缺磷癥狀[69]。水稻PHO1基因與擬南芥PHO1基因功能類似,在將磷從作物根部運(yùn)送到地上部過程中起著關(guān)鍵作用,水稻OsPHO1;2突變體中根部轉(zhuǎn)移到地上部的磷明顯減少[70]。
microRNAs(miRNAs)是由21~25個(gè)核苷酸構(gòu)成的非編碼小RNA,通過干擾磷饑餓反應(yīng)基因的轉(zhuǎn)錄和翻譯過程調(diào)控作物抵御低磷脅迫。miRNAs因其分子量小,所以可以在作物中進(jìn)行長(zhǎng)距離運(yùn)輸,在不同的作物器官中發(fā)揮作用。以miRNA399為例,miRNA399通過誘導(dǎo)切割泛素結(jié)合酶PHO2基因的mRNA抑制PHO2蛋白表達(dá),PHO2能對(duì)PHT1、PHO1等磷吸收轉(zhuǎn)運(yùn)相關(guān)蛋白進(jìn)行泛素化修飾,因此miRNA399有利于作物的磷穩(wěn)態(tài)調(diào)控[71-74]。miRNAs家族成員在水稻[75]、玉米[76]、大豆[77]、苜蓿[78]等作物中具有調(diào)控低磷響應(yīng)基因表達(dá),幫助作物適應(yīng)低磷環(huán)境的作用也有報(bào)道。
轉(zhuǎn)錄因子可以激活磷饑餓反應(yīng)基因表達(dá),提高作物對(duì)低磷脅迫的耐受性。PHR(phosphate starvation response)轉(zhuǎn)錄因子屬于MYB轉(zhuǎn)錄因子家族,通過與磷饑餓反應(yīng)基因啟動(dòng)子區(qū)域的P1BS順式作用元件結(jié)合激活PHT1、PHO1(Phosphate 1)、microRNA399等基因表達(dá)[79-81]。在過表達(dá)OsPHR2的水稻[82]、過表達(dá)BnPHR1的甘藍(lán)型油菜[83]、過表達(dá)TaPHR1-A1的小麥[84]中,都觀察到幾個(gè)低磷反應(yīng)基因(如PHT1、microRNA399基因)的轉(zhuǎn)錄水平上調(diào),作物組織中的磷水平增加且作物在低磷脅迫下表現(xiàn)出更好的生長(zhǎng)。充足供磷條件下,OsMYB2P-1過表達(dá)水稻較野生型水稻生長(zhǎng)緩慢、生物量低、根長(zhǎng)較短,出現(xiàn)磷中毒癥狀;而低磷條件下, OsMYB2P-1過表達(dá)水稻的生長(zhǎng)狀況優(yōu)于野生型,生物量增加、根長(zhǎng)更長(zhǎng)、分蘗更多、根系組織內(nèi)磷含量增加[85]。與前述PHR基因過表達(dá)作物一致,過表達(dá)OsMYB2P-1基因的水稻在磷充足和缺乏條件下均降低了PHO2和增強(qiáng)了紫色酸性磷酸酶PAP、microRNA399等磷饑餓響應(yīng)基因的表達(dá),水稻的耐磷饑餓性增強(qiáng)[85]。
WKRY轉(zhuǎn)錄因子主要與磷饑餓反應(yīng)基因啟動(dòng)子區(qū)域的W-box順式作用元件結(jié)合調(diào)控PHO1、PHT1等基因表達(dá)[86-88]。如,低磷條件下,擬南芥AtWRKY6、 AtWRKY42基因表達(dá)下調(diào),上調(diào)了PHO1基因表達(dá)[89-90];擬南芥AtWRKY45、 AtWRKY75基因表達(dá)上調(diào),上調(diào)了PHT1基因表達(dá)[91-92],這些研究結(jié)果表明,WRKY6、WRKY42可能是作物低磷脅迫應(yīng)答的負(fù)調(diào)控因子,WRKY45、WRKY75可能是正調(diào)控因子。低磷脅迫下,擬南芥AtWRKY75 RNAi沉默株較野生型植株,作物組織內(nèi)的磷酸酶、PHT1等磷信號(hào)基因表達(dá)下調(diào),磷吸收量大幅減少,進(jìn)一步證明WRKY75可能具有正調(diào)控磷饑餓反應(yīng)的作用[91]。
5 展望
近年來,研究者利用正向和反向遺傳學(xué)方法,借助蛋白組學(xué)、轉(zhuǎn)錄組學(xué)、代謝組學(xué)、脂質(zhì)組學(xué)、分子生物學(xué)等分析技術(shù),對(duì)作物耐低磷機(jī)制進(jìn)行了深入系統(tǒng)的研究,并取得了大量的研究成果。基于這些研究,人們對(duì)作物的耐低磷機(jī)制有了較為全面的理解。在低磷脅迫下,作物通過地上部和地下部的形態(tài)重塑適應(yīng)低磷環(huán)境。作物地上部分通過光合作用、呼吸作用、質(zhì)膜重構(gòu)、花青素及活性氧(ROS)等的改變適應(yīng)低磷脅迫,而作物地下部分則通過根系形態(tài)(主根、側(cè)根、根毛等)、根系分泌物(有機(jī)酸、酶類蛋白、糖類、類黃酮等)以及與微生物的共生關(guān)系等的調(diào)控應(yīng)對(duì)低磷脅迫。在作物耐低磷分子機(jī)制方面,大量研究集中在維持作物體內(nèi)磷穩(wěn)態(tài)相關(guān)的基因,包括磷信號(hào)(如激素ABA、乙烯、IAA等)、轉(zhuǎn)錄因子(WRKYs、MYBs、PHRs等)、磷吸收轉(zhuǎn)運(yùn)(PHTs)等相關(guān)基因功能的揭示,這些研究均豐富了人們對(duì)作物耐低磷機(jī)制的認(rèn)識(shí)。
同時(shí),作物對(duì)磷的吸收與代謝的復(fù)雜性也越來越受到人們的關(guān)注。作物磷吸收不僅與氮、鋅等營(yíng)養(yǎng)物質(zhì)的平衡密切相關(guān),還受到各種環(huán)境因子(包括光照、溫度、鹽分、干旱等)的調(diào)控,而作物磷吸收過程受到這些內(nèi)外因素的共同作用,其中的很多機(jī)制尚未清楚,如NIGT1如何直接調(diào)控磷轉(zhuǎn)運(yùn)基因PHT1;1、 PHT1;4的表達(dá)?PHT1基因家族有多個(gè)成員,它們的表達(dá)水平調(diào)節(jié)與環(huán)境因子的關(guān)系等。而這些問題的闡明,對(duì)全面理解作物耐低磷機(jī)制具有重要意義。因此,從系統(tǒng)生物學(xué)的角度解析作物耐低磷的機(jī)制,對(duì)全面認(rèn)識(shí)作物磷穩(wěn)態(tài)維持機(jī)制至關(guān)重要。這些問題的闡明將有助于通過基因工程的方法有效提高作物的磷吸收與利用效率,降低農(nóng)業(yè)成本,保護(hù)生態(tài)環(huán)境,實(shí)現(xiàn)農(nóng)業(yè)的可持續(xù)發(fā)展。
參考文獻(xiàn)
[1] 張霞.玉米轉(zhuǎn)錄因子ABP9在轉(zhuǎn)基因擬南芥ROS代謝平衡、ABA信號(hào)傳導(dǎo)及非生物逆境耐受性中的功能分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2008.
[2] BIELESKI R L.Phosphate pools,phosphate transport,and phosphate availability[J].Annual review of plant physiology,1973,24:225-252.
[3] 付禹.大豆磷轉(zhuǎn)運(yùn)蛋白GmPHT2家族成員的功能分析[D].長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2021.
[4] BATTEN G D.A review of phosphorus efficiency in wheat[J].Plant and soil,1992,146(1):163-168.
[5] LOPEZ-BUCIO J,DE LA VEGA O M,GUEVARA-GARC′IA A,et al.Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate[J].Nature biotechnology,2000,18(4):450-453.
[6] ELSER J J.Phosphorus:A limiting nutrient for humanity?[J].Current opinion in biotechnology,2012,23(6):833-838.
[7] COOPER J,CARLIELL-MARQUET C.A substance flow analysis of phosphorus in the UK food production and consumption system[J].Resources conservation amp; recycling,2013,74:82-100.
[8] ELSER J,BENNETT E.Phosphorus cycle:A broken biogeochemical cycle[J].Nature,2011,478(7367):29-31.
[9] VANCE C P,UHDE-STONE C,ALLAN D L.Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource[J].New phytologist,2003,157(3):423-447.
[10] 吳愛姣.不同根系類型作物/品種的根系對(duì)低磷脅迫的響應(yīng)機(jī)制[D].北京:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心),2021.
[11] LOPEZ-BUCIO J,HERNANDEZ-ABREU E,SANCHEZ-CALDERON L,et al.Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J] .Plant physiology,2002,129(1):244-256.
[12] LYNCH J P,BROWN K M.Topsoil foraging-an architectural adaptation of plants to low phosphorus availability[J].Plant and soil,2001,237(2):225-237.
[13] SUN B R,GAO Y Z,LYNCH J P.Large crown root number improves topsoil foraging and phosphorus acquisition[J].Plant physiology,2018,177(1):90-104.
[14] SOUMYA P R,SHARMA S,MEENA M K,et al.Response of diverse bread wheat genotypes in terms of root architectural traits at seedling stage in response to low phosphorus stress[J].Plant physiology reports,2021,26(1):152-161.
[15] 李海波,夏銘,吳平.低磷脅迫對(duì)水稻苗期側(cè)根生長(zhǎng)及養(yǎng)分吸收的影響[J].植物學(xué)報(bào),2001,43(11):1154-1160.
[16] ZHANG Z C,ZHU L X,LI D X,et al.In situ root phenotypes of cotton seedlings under phosphorus stress revealed through RhizoPot[J].Frontiers in plant science,2021,12:1-15.
[17] PARKER J S,CAVELL A C,DOLAN L,et al.Genetic interactions during root hair morphogenesis in Arabidopsis[J].Plant cell,2000,12(10):1961-1974.
[18] NESTLER J,KEYES S D,WISSUWA M.Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions[J].Journal of experimental botany,2016,67(12):3699-3708.
[19] MA Z,BIELENBERG D G,BROWN K M,et al.Regulation of root hair density by phosphorus availability in Arabidopsis thaliana[J].Plant cell and environment,2001,24(4):459-467.
[20] BATES T R,LYNCH J P.The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition[J].American journal of botany,2000,87(7):964-970.
[21] 張麗梅,郭再華,張琳,等.缺磷對(duì)不同耐低磷玉米基因型酸性磷酸酶活性的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(4):898-910.
[22] 王文華,范婷婷,羅蘭艷,等.甘藍(lán)型油菜不同磷效率品種根系形態(tài)及生理特性的研究[J].中國(guó)土壤與肥料,2011(4):26-29.
[23] GALLARDO C,HUFNAGEL B,CASSET C,et al.Anatomical and hormonal description of rootlet primordium development along white lupin cluster root[J].Physiologia plantarum,2019,165(1):4-16.
[24] SHANE M W,LAMBERS H.Cluster roots:A curiosity in context[J].Plant and soil,2005,274(1/2):101-125.
[25] HINSINGER P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:A review[J].Plant and soil,2001,237(2):173-195.
[26] CANARINI A,KAISER C,MERCHANT A,et al.Root exudation of primary metabolites:Mechanisms and their roles in plant responses to environmental stimuli[J].Frontiers in plant science,2019,10:1-15.
[27] ADELEKE R,NWANGBURUKA C,OBOIRIEN B.Origins,roles and fate of organic acids in soils:A review[J].South African journal of botany,2017,108:393-406.
[28] DECHASSA N,SCHENK M K.Root exudation of organic anions bycabbage,carrot and potato plants as affected by P supply[M]//HORST W J,SCHENK M K,BRKERT A,et al.Plant nutrition.Dordrecht:Springer Netherlands,2001:544-545.
[29] GAUME A,MACHLER F,DE LEON C,et al.Low-P tolerance by maize (Zea mays L.) genotypes:Significance of root growth,and organic acids and acid phosphatase root exudation[J].Plant and soil,2001,228(2):253-264.
[30] DONG D F,PENG X X,YAN X L.Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes[J].Physiologia plantarum,2004,122(2):190-199.
[31] 張振海,陳琰,韓勝芳,等.低磷脅迫對(duì)大豆根系生長(zhǎng)特性及分泌H+和有機(jī)酸的影響[J].中國(guó)油料作物學(xué)報(bào),2011,33(2):135-140.
[32] KIRK G J D,VAN DU L E.Changes in rice root architecture,porosity,and oxygen and proton release under phosphorus deficiency[J].New phytologist,1997,135(2):191-200.
[33] NEUMANN G,ROMHELD V.Root excretion of carboxylic acids and protons in phosphorus-deficient plants[J].Plant and soil,1999,211(1):121-130.
[34] LIM J H,CHUNG I M,RYU S S,et al.Differential responses of rice acid phosphatase activities and isoforms to phosphorus deprivation[J].Journal of biochemistry and molecular biology,2003,36(6):597-602.
[35] DU Q G,WANG K,XU C,et al.Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize[J].BMC plant biology,2016,16(1):1-12.
[36] WASAKI J,YAMAMURA T,SHINANO T,et al.Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J].Plant and soil,2003,248(1/2):129-136.
[37] KUANG R B,CHAN K H,YEUNG E,et al.Molecular and biochemical characterization of AtPAP15,a purple acid phosphatase with phytase activity,in Arabidopsis[J].Plant physiology,2009,151(1):199-209.
[38] LI D P,ZHU H F,LIU K F,et al.Purple acid phosphatases of Arabidopsis thaliana.Comparative analysis and differential regulation by phosphate deprivation[J].Journal of biological chemistry,2002,277(31):27772-27781.
[39] ZHANG Q,WANG C,TIAN J,et al.Identification of rice purple acid phosphatases related to posphate starvation signalling[J].Plant biology,2011,13(1):7-15.
[40] LI C C,GUI S H,YANG T,et al.Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J].Annals of botany,2012,109(1):275-285.
[41] GONZALEZ-MUNOZ E,AVENDANO-VAZQUEZ A O,CHAVEZ MONTES R A,et al.The maize (Zea mays ssp.mays var.B73) genome encodes 33 members of the purple acid phosphatase family[J].Frontiers in plant science,2015,6:1-12.
[42] CHEN Y L,SIDDIQUE K H M,RENGEL Z.Temporal and spatial dynamics of rhizosphere chemistry among cluster-root-forming white lupin and yellow lupin and non-cluster-root narrow-leafed lupin[C]//International society of root research 9th international symposium.Canberra,Australia:ISRR,2015.
[43] DINKELAKER B,ROMHELD V,MARSCHNER H.Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J].Plant cell amp; environment,1989,12(3):285-292.
[44] 常小箭.水稻磷酸鹽轉(zhuǎn)運(yùn)蛋白基因家族的功能分析[D].武漢:華中農(nóng)業(yè)大學(xué),2012.
[45] ZHANG L,XU M G,LIU Y,et al.Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J].New phytologist,2016,210(3):1022-1032.
[46] LI M G,SHINANO T,TADANO T.Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions[J].Soil science and plant nutrition,1997,43(1):237-245.
[47] ETESAMI H.Enhanced phosphorus fertilizer use efficiency with microorganisms[M]//MEENA R S.Nutrient dynamics for sustainable crop production.Singapore:Springer Singapore,2020:215-245.
[48] 劉云龍,錢浩宇,張?chǎng)?,?叢枝菌根真菌對(duì)豆科作物生長(zhǎng)和生物固氮及磷素吸收的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2021,32(5):1761-1767.
[49] GAO X P,GUO H H,ZHANG Q,et al.Arbuscular mycorrhizal fungi (AMF) enhanced the growth,yield,fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.)[J].Scientific reports,2020,10:1-12.
[50] SUN C Y,YANG Y S,ZEESHAN M,et al.Arbuscular mycorrhizal fungi reverse selenium stress in Zea mays seedlings by improving plant and soil characteristics[J].Ecotoxicology and environmental safety,2021,228:1-10.
[51] ETESAMI H,MAHESHWARI D K.Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture:Action mechanisms and future prospects[J].Ecotoxicology and environmental safety,2018,156:225-246.
[52] ETESAMI H,JEONG B R,GLICK B R.Contribution of arbuscular mycorrhizal fungi,phosphate-solubilizing bacteria,and silicon to P Uptake by Plant[J].Frontiers in plant science,2021,12:1-29.
[53] JONES D L,OBURGER E.Solubilization of phosphorus by soil microorganisms[M]//BNEMANN E,OBERSON A,F(xiàn)ROSSARD E.Phosphorus in action:Biological processes in soil phosphorus cycling.Berlin,Heidelberg:Springer Berlin Heidelberg,2011:169-198.
[54] JANSA J,BUKOVSKA P,GRYNDLER M.Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts - or just soil free-riders?[J].Frontiers in plant science,2013,4:1-8.
[55] 邢國(guó)芳,郭平毅.植物響應(yīng)低磷脅迫的功能基因組研究進(jìn)展[J].生物技術(shù)通報(bào),2013(7):1-6.
[56] WANG Y L,LYSE E,ARMAREGO-MARRIOTT T,et al.Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat[J].Journal of experimental botany,2018,69(15):3759-3771.
[57] 胡訓(xùn)霞,史春陽(yáng),丁艷,等.水稻根系中磷高效吸收和利用相關(guān)基因表達(dá)對(duì)低磷脅迫的應(yīng)答[J].中國(guó)水稻科學(xué),2016,30(6):567-576.
[58] MUCHHAL U S,PARDO J M,RAGHOTHAMA K G.Phosphate transporters from the higher plant Arabidopsis thaliana[J].Proceedings of the national academy of sciences of the united states of America,1996,93(19):10519-10523.
[59] NUSSAUME L,KANNO S,JAVOT H,et al.Phosphate import in plants:Focus on the PHT1 transporters[J].Frontiers in plant science,2011,2:1-12.
[60] LAPIS-GAZA H R,JOST R,F(xiàn)INNEGAN P M.Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate[J].BMC plant biology,2014,14:1-19.
[61] YANG S Y,GRNLUND M,JAKOBSEN I,et al.Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J] .Plant cell,2012,24(10):4236-4251.
[62] MUDGE S R,RAE A L,DIATLOFF E,et al.Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J].Plant journal,2002,31(3):341-353.
[63] DAI C R,DAI X L,QU H Y,et al.The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development[J].Plant physiology,2022,188(4):2272-2288.
[64] AI P H,SUN S B,ZHAO J N,et al.Two rice phosphate transporters,OsPht1;2 and OsPht1;6,have different functions and kinetic properties in uptake and translocation[J].The plant journal,2009,57(5):798-809.
[65] NAGARAJAN V K,JAIN A,POLING M D,et al.Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling[J].Plant physiology,2011,156(3):1149-1163.
[66] CHANG M X,GU M,XIA Y W,et al.OsPHT1;3 mediates uptake,translocation,and remobilization of phosphate under extremely low phosphate regimes[J].Plant physiology,2019,179(2):656-670.
[67] RAE A L,CYBINSKI D H,JARMEY J M,et al.Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family[J].Plant molecular biology,2003,53(1):27-36.
[68] PREUSS C P,HUANG C Y,GILLIHAM M,et al.Channel-like characteristics of the low-affinity barley phosphate transporter PHT1;6 when expressed in Xenopus oocytes[J].Plant physiology,2010,152(3):1431-1441.
[69] HAMBURGER D,REZZONICO E,MACDONALD-COMBER PETTOT J,et al.Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J].Plant cell,2002,14(4):889-902.
[70] SECCO D,BAUMANN A,POIRIER Y.Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons[J].Plant physiology,2010,152(3):1693-1704.
[71] LIU T Y,HUANG T K,TSENG C Y,et al.PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis[J].Plant cell,2012,24(5):2168-2183.
[72] SEGA P,KRUSZKA K,ZEWC ,et al.Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene[J].Plant molecular biology,2020,102(1/2):73-88.
[73] PARK B S,SEO J S,CHUA N H.NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J].Plant cell,2014,26(1):454-464.
[74] PACAK A,BARCISZEWSKA-PACAK M,SWIDA-BARTECZKA A,et al.Heat stress affects Pi-related genes expression and inorganic phosphate deposition/accumulation in barley[J].Frontiers in plant science,2016,7:1-19.
[75] HU B,ZHU C G,LI F,et al.LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J].Plant physiology,2011,156(3):1101-1115.
[76] NIE Z,REN Z Y,WANG L B,et al.Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize[J].Physiologia plantarum,2016,157(2):161-174.
[77] XU F,LIU Q,CHEN L Y,et al.Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation[J].BMC genomics,2013,14:1-30.
[78] LI Z Y,XU H Y,LI Y,et al.Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.)[J].Plant molecular biology,2018,96(4/5):473-492.
[79] RUBIO V,LINHARES F,SOLANO R,et al.A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J].Genes amp; development,2001,15(16):2122-2133.
[80] SHIN H,SHIN H S,CHEN R,et al.Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J].Plant journal,2006,45(5):712-726.
[81] CHEN A Q,GU M,SUN S B,et al.Identification of two conserved cis-acting elements,MYCS and P1BS,involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species[J].New phytologist,2011,189(4):1157-1169.
[82] ZHOU J,JIAO F C,WU Z C,et al.OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J].Plant physiology,2008,146(4):1673-1686.
[83] REN F,GUO Q Q,CHANG L L,et al.Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation[J].PLoS One,2012,7(8):1-14.
[84] WANG J,SUN J H,MIAO J,et al.A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat[J].Annals of botany,2013,111(6):1139-1153.
[85] DAI X Y,WANG Y Y,YANG A,et al.OsMYB2P-1,an R2R3 MYB transcription factor,is involved in the regulation of phosphate-starvation responses and root architecture in rice[J].Plant physiology,2012,159(1):169-183.
[86] LI L Q,HUANG L P,PAN G,et al.Identifying the genes regulated by AtWRKY6 using comparative transcript and proteomic analysis under phosphorus deficiency[J].International journal of molecular sciences,2017,18(5):1-20.
[87] 王慧.擬南芥WRKY45轉(zhuǎn)錄因子參與響應(yīng)低磷脅迫的實(shí)驗(yàn)證據(jù)[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2014.
[88] 張飛萃.擬南芥WRKY28和WRKY42調(diào)控磷吸收和轉(zhuǎn)運(yùn)的機(jī)制研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
[89] CHEN Y F,LI L Q,XU Q,et al.The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis[J].Plant cell,2009,21(11):3554-3566.
[90] SU T,XU Q,ZHANG F C,et al.WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J].Plant physiology,2015,167(4):1579-1591.
[91] DEVAIAH B N,KARTHIKEYAN A S,RAGHOTHAMA K G.WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J].Plant physiology,2007,143(4):1789-1801.
[92] WANG H,XU Q,KONG Y H,et al.Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation[J].Plant physiology,2014,164(4):2020-2029.
基金項(xiàng)目 國(guó)家自然科學(xué)基金項(xiàng)目(32272198)。
作者簡(jiǎn)介 陳穎慧(1997—),女,江蘇宿遷人,碩士研究生,研究方向:作物逆境分子生物學(xué)。*通信作者,副教授,博士,從事作物逆境分子生物學(xué)研究。
收稿日期 2023-06-04