摘" " " 要:剩余污泥(WAS)作為城市污水處理廠運(yùn)行的必然產(chǎn)物,其產(chǎn)量也在逐年增加。WAS中含有大量的未穩(wěn)定的有機(jī)物,針對此類有機(jī)物的資源化利用無疑會(huì)給污泥的減量化處置帶來實(shí)際意義。WAS厭氧發(fā)酵產(chǎn)生的短鏈脂肪酸(SCFAs)被公認(rèn)為優(yōu)質(zhì)碳源,但污泥水解是厭氧發(fā)酵的限速步驟,需要通過預(yù)處理方法促進(jìn)污泥水解,從而提高SCFAs產(chǎn)量。本文綜述了化學(xué)預(yù)處理剩余污泥中堿解預(yù)處理、氧化劑預(yù)處理和聯(lián)合預(yù)處理等預(yù)處理方法研究進(jìn)展,為以后以剩余污泥水解液為碳源的工藝提供技術(shù)指導(dǎo)。
關(guān)" 鍵" 詞:剩余污泥; 厭氧發(fā)酵; 短鏈脂肪酸; 堿處理
中圖分類號:TE992.3" " "文獻(xiàn)標(biāo)識(shí)碼: A" " "文章編號: 1004-0935(2024)04-0612-05
活性污泥法是目前世界上采用最多的污水生物處理方法之一。這一過程必然會(huì)產(chǎn)生大量的WAS[1]。隨著工業(yè)與科技的發(fā)展,城市污水量日漸增大,這也導(dǎo)致大量WAS待處理,剩余污泥中又含有有機(jī)微污染物、病原體和重金屬物等,若剩余污泥問題未得到及時(shí)處理,就會(huì)對環(huán)境造成二次污染[2]。因此,為了避免造成污泥二次污染,對污泥中的資源回收利用,同時(shí)降低污泥處理中的碳排放,污泥預(yù)處理對實(shí)現(xiàn)污水處理行業(yè)的碳中和具有重大深遠(yuǎn)意義[3]。
現(xiàn)如今,中國南方污水處理廠普遍存在COD/N較低的問題,需要外加碳源,以達(dá)到脫氮除磷的指標(biāo)。剩余污泥厭氧消化過程中會(huì)產(chǎn)生大量易生物降解的有機(jī)物和SCFAs,其中以乙酸、丙酸為主的SCFAs能作為反硝化菌優(yōu)先利用的碳源[4]。厭氧消化是一種常見的污泥處理方法,它不但可以達(dá)到污泥減量化的目標(biāo),也可以實(shí)現(xiàn)污泥的資源化利用。 但由于厭氧消化池的體積較大,污泥滯留時(shí)間長,水解又是厭氧消化的一個(gè)緩慢而有限的階段[5-6]。因此,研究厭氧消化前的預(yù)處理方法或水解方法的改進(jìn)是很重要的[7]。污泥預(yù)處理的方法包括機(jī)械分解處理、超聲波處理、熱處理、化學(xué)處理以及生物預(yù)處理[8]。通過預(yù)處理破壞污泥絮凝體和細(xì)胞,釋放內(nèi)部有機(jī)物,加速污泥水解,從而增加揮發(fā)性脂肪酸的產(chǎn)量[9]。對剩余污泥進(jìn)行預(yù)處理,需考察污泥在厭氧條件下的脫水性和生物降解性[9]。此外,還需考慮回收污泥預(yù)處理后產(chǎn)生的有機(jī)物質(zhì),如SCFAs、營養(yǎng)物質(zhì)(氮、磷、鉀)和酶等[11-12]。本文綜述了化學(xué)預(yù)處理剩余污泥中堿解預(yù)處理、高級氧化法預(yù)處理和聯(lián)合預(yù)處理等預(yù)處理方法研究進(jìn)展,以期利用非外加碳源解決污水處理廠碳源不足問題。
1" 厭氧消化機(jī)理
厭氧消化技術(shù)由于其成本效益和能量回收,被廣泛認(rèn)為是一種有前途的和可持續(xù)的污泥處理技
術(shù)[13]。厭氧消化是一個(gè)復(fù)雜的過程,需要嚴(yán)格的厭氧條件來進(jìn)行,并依賴于一個(gè)復(fù)雜的微生物結(jié)合的協(xié)調(diào)活動(dòng),將有機(jī)物質(zhì)轉(zhuǎn)化為主要是二氧化碳和甲烷厭氧消化可以將WAS中的有機(jī)物生物轉(zhuǎn)化為有價(jià)值的生物產(chǎn)物,如短鏈脂肪酸、氫、甲烷等[14]。WAS厭氧發(fā)酵生產(chǎn)SCFAs越來越受到關(guān)注,因?yàn)榘l(fā)酵產(chǎn)出的SCFAs可以直接作為污水處理廠的首選碳源,提高生物養(yǎng)分去除效率[15]。通常,WAS由細(xì)胞外聚合物質(zhì)(EPS)和微生物細(xì)胞形成的聚合網(wǎng)絡(luò)組成,由于細(xì)胞壁和EPS存在物理和化學(xué)障礙,阻礙了細(xì)胞內(nèi)有機(jī)物的釋放和進(jìn)一步利用[16]。增溶水解、酸化和產(chǎn)甲烷是污泥厭氧發(fā)酵的三個(gè)主要步驟,污泥顆粒有機(jī)物的溶解、水解是關(guān)鍵的限速步驟。所以預(yù)處理通常用于破壞污泥絮凝體,以加速污泥水解過程[17]。
2" 化學(xué)預(yù)處理方法
2.1" 堿解預(yù)處理
許多研究者調(diào)查發(fā)現(xiàn)WAS堿解預(yù)處理可以改善水解和酸化的機(jī)制,這些研究普遍指出,堿解預(yù)處理可以破壞EPS基質(zhì),增加溶解性有機(jī)物(DOM)濃度,抑制產(chǎn)甲烷菌,特別是增加蛋白質(zhì)濃度,顯著有利于SCFAs的生產(chǎn)[18]。DOM的增加是SCFAs產(chǎn)生的最重要原因之一,水解階段產(chǎn)生絡(luò)合物DOM,DOM是生成SCFAs的直接底物[19]。除了DOM的濃度外,DOM的特性也對其轉(zhuǎn)化SCFAs有顯著影響[20]。
Chen等研究了pH 4.0~11.0對WAS水解酸化的影響。結(jié)果表明,在pH 7.0 ~ 11.0范圍內(nèi),可溶性蛋白和碳水化合物含量均隨pH的增加而增加。而在pH 7.0 ~ 4.0范圍內(nèi),可溶性蛋白和碳水化合物含量的增加幅度較小。pH值對SCFAs濃度也有影響,堿性條件下SCFAs產(chǎn)量顯著高于其他條件下[21]。Wu等研究發(fā)現(xiàn)污泥發(fā)酵5 d后,pH為10.0 ~ 11.0時(shí),SCFAs產(chǎn)率最高可達(dá)312.9 mg COD/g VSS,是中性pH和酸性pH下的1.8倍。對厭氧發(fā)酵產(chǎn)生的短鏈脂肪酸的組成和分布進(jìn)行了研究,確定乙酸、丙酸、異丁酸、正丁酸、異戊酸和正戊酸的最大比例分別為49.4%、34.4%、14.6%、12.2%、17.9%和6.3%。且污泥發(fā)酵產(chǎn)生的SCFAs濃度與可溶性有機(jī)化合物的濃度呈正相關(guān),而與甲烷的產(chǎn)生呈負(fù)相關(guān)。在堿性條件下可以抑制產(chǎn)甲烷菌的活性,從而減少SCFAs的消耗[22]??乱技t等研究發(fā)現(xiàn),在不同預(yù)處理污泥厭氧發(fā)酵過程中,VFAs 的積累主要發(fā)生在發(fā)酵前 24 h,產(chǎn)酸效果表現(xiàn)為 pH = 11>90 ℃>pH = 10>70 ℃>pH= 3>pH= 4>控制組,堿處理產(chǎn)酸有較明顯優(yōu)勢,酸處理效果最差。乙酸為SCFAs的主要成分,pH = 11 組的乙酸濃度最高達(dá)到
1 232. 31 mg /L,為控制組的5.2 倍[23]。Huang等研究發(fā)現(xiàn)堿處理促進(jìn)了SCOD和SCFAs的產(chǎn)生,最適pH為10。高通量測序結(jié)果表明,堿處理對擬桿菌門(Bacteroidetes)有抑制作用,對厚壁菌門(Firmicutes)和變形菌門(Proteobacteria)富集作用[24]。Wu等發(fā)現(xiàn)堿解預(yù)處理中,在2 L WAS中加入6 mol氫氧化鈉(NaOH),將pH調(diào)至10.0。樣品在磁攪拌器上以
250 r·min-1的速度混合30 min。與空白對照組相比,SCFAs產(chǎn)量提高12.5倍[25]。Ma等研究堿性發(fā)酵(pH不受控,7、8、9、10)中溶解有機(jī)物的官能團(tuán)、熒光組分、分子特征以及蛋白質(zhì)的分子量,發(fā)現(xiàn)pH 10時(shí),厭氧發(fā)酵會(huì)產(chǎn)生難溶解性有機(jī)物,所以需進(jìn)一步研究剩余污泥堿性發(fā)酵液對脫氮除磷BNR工藝出水水質(zhì)的影響,尋找消除難降解有機(jī)物的處理方法[26]。Yuan等研究pH(4、10和未受控)對SCFAs積累、微生物群落和污泥減量的影響。研究發(fā)現(xiàn)在pH 10時(shí),SCFA累積量和污泥減量最高,進(jìn)水COD為31.65 mg /L。在pH為10時(shí),污泥水解的增強(qiáng)和甲烷生成的抑制促成了SCFAs的大量積累。Illumina MiSeq測序和FISH分析顯示,在pH 10時(shí),水解菌/產(chǎn)酸菌的豐度增加,而產(chǎn)甲烷古菌的豐度被抑制[27]。
以上研究表明,污泥的厭氧發(fā)酵在堿性條件下,產(chǎn)酸效果明顯高于中性和酸性條件的產(chǎn)酸效果。一些研究發(fā)現(xiàn),堿解預(yù)處理方法雖然改善了厭氧發(fā)酵的水解,但反應(yīng)pH值的過度升高會(huì)抑制甚至失活厭氧微生物,有時(shí)需要用酸對預(yù)處理過的污泥進(jìn)行中和,但這樣會(huì)增加污泥預(yù)處理的成本。因此,優(yōu)化堿性劑量對增強(qiáng)分解效果,減少堿或酸的消耗,對提高厭氧消化效率具有重要意義。
2.2" 高級氧化法預(yù)處理
高級氧化法(AOPs)在實(shí)現(xiàn)污泥減量、脫水和有機(jī)資源循環(huán)利用等方面受到廣泛關(guān)注[28]。AOPs是一種有效可行的WAS預(yù)處理方法,AOPs通過對EPS的影響在兩個(gè)方面改善了污泥的脫水性能:(1)具有降解EPS的潛力;(2)影響EPS的多功能基團(tuán),促進(jìn)其參與多種相互作用[29-30]。AOPs既可以增強(qiáng)短鏈脂肪酸的積累,而且還可以消除污水中難溶解有機(jī)物[31]。
Li等研究發(fā)現(xiàn)氧化劑CaO2的加入顯著提高了WAS的水解和酸化性能,抑制了甲烷的生成。在CaO2濃度為0.2 g/g VSS、發(fā)酵時(shí)間為7 d時(shí),總短鏈脂肪酸(TSCFA)產(chǎn)量最高,達(dá)到284 mg COD/g VSS,是對照的3.9倍。此外,CaO2的加入導(dǎo)致其他SCFAs轉(zhuǎn)化為乙酸[32]。Wang等提出了一種新的預(yù)處理技術(shù)——過碳酸鈉(SPC)對SCFAs生產(chǎn)廢棄活性污泥(WAS)進(jìn)行預(yù)處理。實(shí)驗(yàn)結(jié)果表明,在
0.2 g SPC/g TSS條件下,SCFAs產(chǎn)量最高可達(dá)
1 605.7 mg COD/L,乙酸產(chǎn)量最高可達(dá)52.9%。SPC顯著提高了水解微生物的相對豐度[33]。Zhang等利用Ca(ClO)2實(shí)現(xiàn)了廢活性污泥(WAS)厭氧發(fā)酵過程中同步促進(jìn)揮發(fā)性脂肪酸(SCFAs),研究發(fā)現(xiàn)最佳添加量的Ca(ClO)2(0.01 g Ca(ClO)2/g TSS)能顯著促進(jìn)WAS發(fā)酵過程中SCFAs的產(chǎn)生。主要原因可以歸結(jié)為它們對加速WAS增溶和水解的積極作用。它為發(fā)酵細(xì)菌提供了充足的生物可利用底物,這是高效生產(chǎn)SCFAs的先決條件。其次,產(chǎn)酸厭氧菌豐度豐富,具有良好的活性和生存能力。此外,Ca(ClO)2能有效去除發(fā)酵液中的PO43-,同時(shí)還能滅活病原菌,從而提高了所產(chǎn)SCFAs的質(zhì)量,有利于發(fā)酵污泥的進(jìn)一步處理[34]。Luo等研究了不同催化劑活化過硫酸鹽(PDS)和單過硫酸鹽(PMS)對廢活性污泥(WAS)厭氧發(fā)酵的影響,研究發(fā)現(xiàn),各處理均能有效促進(jìn)SCFAs的生成,其中乙酸含量最高。PMS在MnO2的催化下,預(yù)處理效果最為顯著,預(yù)處理效果順序?yàn)镻MS/MnO2gt; PMS/Zngt; PDS/Zn gt; PMS/Fe gt; PDS/Fe gt; PDS/MnO2[35]。Jin等研究發(fā)現(xiàn)低有機(jī)含量的廢活性污泥(WAS-LOC)往往導(dǎo)致厭氧發(fā)酵的失敗。在WAS-LOC厭氧發(fā)酵系統(tǒng)中應(yīng)用了一種基于·SO4-的單過硫酸鉀(PMS)技術(shù),可顯著提高細(xì)胞內(nèi)和細(xì)胞外成分,提高生物酶活性,生成大量SCFAs。結(jié)果表明,SCFAs的最大產(chǎn)量為716.72 mg COD/L (0.08mg PMS/mg SS),與空白組相比增加了43.70倍[36]。Li等采用堿性高鐵酸鹽預(yù)處理WAS,堿性高鐵酸鹽預(yù)處理是一種有前景的提高WAS厭氧發(fā)酵性能的預(yù)處理方法,組合試驗(yàn)(高鐵酸鹽
0.5 g/g VSS, pH 10)的VFAs產(chǎn)量在第5天達(dá)到
322.6 mg COD/g VSS(揮發(fā)性懸浮物),空白試驗(yàn)的VFAs產(chǎn)量在第6天達(dá)到135.1 mg COD/g VSS。與空白組(35.9%)相比,聯(lián)合組乙酸顯著提高至57%。此外,單獨(dú)的高鐵酸鹽測試比單獨(dú)的pH 10測試表現(xiàn)出更好的性能和與聯(lián)合測試的相似性,這表明高鐵酸鹽在聯(lián)合測試中對增強(qiáng)VFA的產(chǎn)量貢獻(xiàn)更大[37]。Guo等研究發(fā)現(xiàn)多金屬氧酸鹽(POMs)對WAS的增溶性、釋放有機(jī)物的生物降解性、WAS水解、產(chǎn)酸、產(chǎn)乙酰和產(chǎn)甲烷的生物過程以及微生物群落的影響,并對POMs預(yù)處理對厭氧污泥發(fā)酵的潛在機(jī)制其潛在機(jī)制進(jìn)行了深入研究,實(shí)驗(yàn)結(jié)果表明,隨著POMs從0 g/g TSS增加到0.05 g/g TSS,最大SCFAs產(chǎn)量增加了6.18倍。此外,POMs對SCFAs生產(chǎn)者的抑制不如對SCFAs消費(fèi)者的抑制嚴(yán)重,從而導(dǎo)致SCFAs的積累[38]。
高級氧化法預(yù)處理研究結(jié)果表明,不同氧化劑對污泥厭氧發(fā)酵水解步驟都有不同的促進(jìn)效果,同一氧化劑對不同污泥也有不同的處理效果,氧化劑的多樣性決定了還需要研究者大量的探索。但對氧化劑預(yù)處理氧化機(jī)理研究相對較少,氧化機(jī)理研究可做未來的研究方向。
2.3" 聯(lián)合預(yù)處理
化學(xué)預(yù)處理中除了堿解預(yù)處理和高級氧化法預(yù)處理,還有一些研究者利用堿性條件和游離亞硝酸、亞硫酸鹽、熱處理等預(yù)處理方法進(jìn)行聯(lián)合預(yù)處理,聯(lián)合預(yù)處理方法即使用兩種或兩種以上預(yù)處理方法進(jìn)行預(yù)處理,協(xié)同促進(jìn)厭氧發(fā)酵水解,提高短鏈脂肪酸產(chǎn)量,并達(dá)到節(jié)約成本的目的。
Dong等研究在低能耗預(yù)處理的最佳條件下,即在100 ℃下預(yù)處理污泥60 min,調(diào)整初始pH 9.0后發(fā)酵6 d,可達(dá)到最大的SCFA生成量348.6 mg COD/g VSS,高于以往堿解預(yù)處理研究[39]。Zhao等研究了一種新的pH 10的游離亞硝酸(FNA)處理方法,結(jié)果表明,F(xiàn)NA預(yù)處理的最佳質(zhì)量濃度為
1.54 mg/L,發(fā)酵時(shí)間為2 d, pH 10,發(fā)酵的最佳時(shí)間為2 d,在此條件下,每g VSS,COD可達(dá)370.1 mg,分別是空白(無對照)和單一pH 10體系的4.7倍和1.5倍。與pH 10相比,F(xiàn)NA加速了EPS和細(xì)胞包膜的破壞。此外,F(xiàn)NA預(yù)處理聯(lián)合pH 10發(fā)酵對污泥增溶、水解和酸化過程具有正向協(xié)同作用[40]。Wu等研究采用FNA和冷凍預(yù)處理相結(jié)合的方法,將1.07 mg N/L FNA與- 5℃連續(xù)冷凍48 h相結(jié)合,可將空白(無預(yù)處理)的6.7 mg COD/g VSS的SCFAs產(chǎn)量提高到124.0 mg COD/g VSS。研究表明,F(xiàn)NA和冷凍聯(lián)合預(yù)處理具有提高污水處理廠SCFAs產(chǎn)量和污泥脫水性能的潛力[41]。Liu等發(fā)現(xiàn)用500 mg/L亞硫酸鹽預(yù)處理和pH 9.5條件下聯(lián)合預(yù)處理發(fā)酵4 d,可獲得最優(yōu)的SCFAs產(chǎn)量為324.8±9.5 mg COD/g VSS,分別是空白、pH 9.5和亞硫酸鹽預(yù)處理體系的16.2、2.0和2.9倍[42]。Chen等為加強(qiáng)污泥中SCFAs的連續(xù)生產(chǎn),聯(lián)合使用表面活性劑(十二烷基苯磺酸鈉(SDBS))和堿解預(yù)處理(pH 10),在污泥停留時(shí)間(SRT)為12 d的SDBS和pH 10條件下,SCFA產(chǎn)量達(dá)到最大(2 056 mg COD/L),遠(yuǎn)高于空白、單一SDBS或pH 10。熒光原位雜交分析表明,SDBS和pH 10可提高細(xì)菌豐度,降低古菌豐度。SBDS引起蛋白質(zhì)結(jié)構(gòu)改變,有利于蛋白質(zhì)水解[43]。Zhao等研究表明,F(xiàn)NA和SDBS聯(lián)合處理不僅提高了SCFAs的積累量,而且縮短了發(fā)酵時(shí)間。在1.54 mg FNA/L處理和0.02 g干污泥處理下,SCFAs累積量最大,達(dá)到334.5 mg COD/g VSS,分別是FNA處理和單獨(dú)含SDBS污泥處理的1.79倍和1.41倍。機(jī)理研究表明,F(xiàn)NA預(yù)處理和SDBS聯(lián)合使用可加速增溶、水解和酸化過程,抑制了甲烷生成[44]。
聯(lián)合預(yù)處理方法既能顯著提高SCFAs產(chǎn)量,而且還可以減少成本,達(dá)到低能耗預(yù)處理提高SCFAs產(chǎn)量的效果。結(jié)果表明,聯(lián)合預(yù)處理工藝的能耗比其他預(yù)處理方法更經(jīng)濟(jì),對工程項(xiàng)目有一定的指導(dǎo)意義。
4" 結(jié)束語
化學(xué)預(yù)處理方法可不同程度上促進(jìn)了厭氧發(fā)酵的水解反應(yīng),破壞EPS結(jié)構(gòu),釋放有機(jī)物,提高SCFAs產(chǎn)量,為污水處理中脫氮除磷工藝提供碳源。聯(lián)合預(yù)處理方法實(shí)現(xiàn)了降低成本,提高SCFAs產(chǎn)量和污泥處理效率目的。這些方法都是經(jīng)過大量實(shí)驗(yàn)數(shù)據(jù)證明其化學(xué)預(yù)處理方法提高SCFAs產(chǎn)量的可行性,為以后的工程項(xiàng)目提供重要依據(jù)?;瘜W(xué)預(yù)處理方法中對化學(xué)機(jī)理研究相對較少,研究者更應(yīng)注重機(jī)理研究,從機(jī)理中發(fā)現(xiàn)問題所在,以更好地發(fā)揮化學(xué)預(yù)處理技術(shù)在剩余污泥資源化利用中的作用。此外,由于氮磷去除系統(tǒng)中PO43-的額外負(fù)荷,將降低SCFAs作為污水處理廠外部碳源的利用價(jià)值。所以通過同時(shí)降低發(fā)酵液中PO43-和提高發(fā)酵污泥中SCFAs產(chǎn)量的研究在WAS處理中更有吸引力。
參考文獻(xiàn):
[1]LI X,MA H,WANG Q,et al.Isolation,identification of sludge-lysing strain and its utilization in thermopHilic aerobic digestion for WASte activated sludge[J]. Bioresource Technology,2009,100 ( 9 ) :2475-2481.
[2]曹媛,宋秀蘭.城市剩余污泥預(yù)處理促進(jìn)短鏈脂肪酸產(chǎn)生的研究進(jìn)展[J].現(xiàn)代化工,2021,41:73-77.
[3]LUO J, ZHANG Q, ZHAO J, et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review[J]. Journal Hazardous Materials, 2020,383:121176.
[4]熊子康,鄭懷禮,尚娟芳,等.污水反硝化脫氮工藝中外加碳源研究進(jìn)展[J].土木與環(huán)境工程學(xué)報(bào),2021,43(2):168-181.
[5] LI Y, CHEN Y, WU J, et al. Enhancement of methane production in anaerobic digestion process a review[J]. Appl Energ,2019, 240:120-137.
[6]JUNIOR IV , DE ALMAIDA R, CAMMAROTA MC, et al. A review of sludge pretreatment methods and co-digestion to boost biogas produc-tion and energy self-sufficiency in wastewater treatment plants[J]. Water Process,2021,40:101857.
[7]LI H,LI C,LIU W,et al.Optimized alkaline pretreatment of sludge before anaerobic digestion[J].Bioresour Technol,2012,123: 189-194.
[8]LUO K,PANG Y,YANG Q,et al. A critical review of volatile fatty acids produced from WASte activated sludge: enhanced strategies and its applications[J]. Environmental Science and Pollution Research,2019,26( 14) : 13984-13998.
[9]KIM J S,PARK CH,KIM T H,et al. Effects of various pretreatment for enhanced anaerobic digestion with WASte activated sludge[J]. J. Biosci. Bioeng,2003,95:271-275
[10] MAGDALENA ?,GRZEGORZ CEMA1, et al. Sewage sludge pretreatment: current status and future prospects[J].Environmental Science and Pollution Research,2023:454-479.
[11] SICHLER TC, ADAM C, MONTAG D, et al. Future nutrient recovery from sewage sludge regarding three different scenarios-German case study[J]. Clean Prod,2021,333:130130.
[12] YE Y, NHO HH, GUO W, et al. Nutrient recovery from wastewater: from technol-ogy to economy[J]. Bioresour Technol Rep,2020,11:100425.
[13] FENG Y, ZHANG Y , QUAN X, et al. Enhanced anaerobic digestion of WASte activated sludge digestion by the addition of zero valent iron[J]. Water Res. 2014,52:242-250.
[14] KOR-BICAKCI G, ESKICIOGLU C, et al. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion[J]. Renew. Sustain. Energy Rev,2019,110: 423-443.
[15] TONG, J., CHEN, Y,et al. Enhanced biological pHospHorus removal driven by short-chain fatty acids produced from WASte activated sludge alkaline fermentation[J]. Environ. Sci. Technol. 2007,41(20):7126-7130.
[16] ZHANG J, LV C, TONG J,et al. Optimization and microbial community analysis of anaerobic co-digestion of food WASte and sewage sludge based on microwave pretreatment[J]. Bioresour. Technol,2016,200:253-261.
[17] ZHEN G, LU X, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives[J]. Renew. Sustain. Energy Rev. 2017,69:559-577.
[18] MASPOLIM Y, ZHOU Y, GUO C, et al. The effect of pH on solubi-lization of organic matter and microbial community structures in sludge fermentation[J]. Bioresour. Technol, 2015,190:289-298.
[19] YEKTA S S, GONSIOR M, SCHMITT-KOPPLIN P, et al. Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: a qualitative overview[J]. Environ.Sci. Technol. 2012,46 (22):1271 1-12719.
[20] KAMJUNKE N, VON TUMPLING W, HERTKORN N, et al. A new approach for evaluating transformations of dissolved organic matter (DOM) via high-resolution mass spectrometry and relating it to bacterial activity[J]. Water Res. 2017,123:513-523.
[21] CHEN Y,JIANG S,YUAN H, et al.Hydrolysis and acidification of WASte activated sludge at different pHs[J].ScienceDirect,2007,41:683 -689
[22] WU H,GAO J,YANG D,et al.Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism[J].Chemical Engineering Journal,2010,160:1-7
[23] 柯壹紅,曾藝芳,李華藩,等.不同預(yù)處理方法對污泥厭氧發(fā)酵產(chǎn)酸效果的影響[J].環(huán)境工程,2020,38(8):22-26
[24] HUANG X, DONG W,WANG H,et al.Role of acid/alkali-treatment in primary sludge anaerobic fermentation: insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing[J].Bioresource Technology,2017,249:943-952
[25] WU L,ZHANG C,HU H,et al.pHospHorus and short-chain fatty acids recovery from WASte activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment[J].Bioresour Technol,2017,240: 192-196.
[26] MA S,HU H,WANG J,et al.The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production[J]. Water Res,2019,164: 114924.
[27] YUAN Y,WANG S,LIU Y,et al.Long-Term Effect of pH on Short-Chain Fatty Acids Accumulation and Micro-bial Community in Sludge Fermentation Systems[J].Bioresource Technology,2015,197:56-63
[28] YE F,LIU X, LI Y,et al.Effects of potassium ferrate on extracellular polymeric substances (EPS) and pHysicochemical properties of excess activated sludge[J].Journal of Hazardous Materials,2012,200:158-163
[29] NEYENS E, BAEYENS J. A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater. 2003,98: 33–50
[30] E. NEYENS, J. BAEYENS, R. DEWIL, B. DE HEYDER, Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J].J.Hazard. Mater. 2004,106:83–92.
[31] LUO J, ZHU Y, ZHANG Q, et al.Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: Performance and mechanisms[J]. Bioresour. Technol.2020,295.
[32] LI Y,WANG J,ZHANG A,et al.Enhancing the quantity and quality of short-chain fatty acids production from WASte activated sludge using CaO2 as an additive[J].Water Res,2015,83: 84-93.
[33] WANG Y,SUN P,GUO H,et al.Performance and mechanism of sodium percarbonate (SPC) enhancing short-chain fatty acids production from anaerobic WASte activated sludge fermentation[J].Journal of Environmental Management ,2022,313:115025.
[34] ZHANG Q,WU Y,LUO J,et al. Enhanced volatile fatty acids production from WASte activated sludge with synchronous pHospHorus fixation and pathogens inactivation by calcium hypochlorite stimulation[J].Sci Total Environ,2020,712: 136500.
[35] LUO J,ZHU Y,ZHANG Q,et al. Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: Performance and mechanisms [J].Bioresour Technol,2020,295: 122278.
[36] JIN B,NIU J,DAI J,et al.New insights into the enhancement of biochemical degradation potential from WASte activated sludge with low organic content by Potassium Monopersulfate treatment[J]. Bioresource Technology,2018,265:8-16.
[37] LI L,HE J,WANG M,et al. Efficient Volatile Fatty Acids Production from WASte Activated Sludge after Ferrate Pretreatment with Alkaline Environment and the Responding Microbial Community Shift[J].Sustainable Chemistry amp; Engineering,2018,6:16819-16827.
[38] GUO H,WANG Y,TIAN L,et al.Insight into the enhancing short-chain fatty acids (SCFAs) production from WASte" "activated sludge via polyoxometalates pretreatment:Mechanisms and implications[J].Science of the Total Environment,2021,800:149392.
[39] DONG B,GAO P,ZHANG D,et al. A new process to improve shortchain fatty acids and bio-methane generation from WASte activated sludge[J].J Environ Sci ( China) ,2016,43: 159-168.
[40] ZHAO J,WANG D,LI X,et al.Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from WASte activated sludge[J].Water Res,2015,78: 111-120.
[41] WU Y,SONG K,SUN X,et al.Effects of free nitrous acid and freezing co-pretreatment on sludge short-chain fatty acids production and dewaterability[J].Sci Total Environ,2019,669: 600-607.
[42] LIU X,DU M,YANG J,et al.Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from WASte activated sludge[J]. Chemical Engineering Journal,2020,385: 123991.
[43] CHEN Y,LIU K,SU Y,et al.Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.Bioresource Technology,2013,140:97-102.
[44] ZHAO J,LIU Y,NI B,et al.Combined Effect of Free Nitrous Acid Pretreatment and Sodium" Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from WASte Activated Sludge[J].Scientific reports,2016,6:21622.
Research Progress in Preparation of Carbon Source
by Chemical Pretreatment of Excess Sludge
DENG Jiaxing1, WANG Jian2, LIU Yuguang3, ZHANG Tong3, YOU Kun1
(1. Shenyang Jianzhu University, Shenyang Liaoning 110168, China;
2. CNNC (Liaoning Shenfu New Zone) Environmental Protection Technology Co., Ltd., Fushun Liaoning 110172, China;
3. China Construction Installation Group Co., Ltd. Northeast Branch, Dalian Liaoning 116021, China)
Abstract:" Waste activated sludge (WAS) is an inevitable product of the operation of municipal sewage treatment plant, and its output is increasing year by year. WAS contains a large number of unstable organic matter, and the utilization of such organic matter will undoubtedly bring practical significance to the reduction and disposal of sludge. Short-chain fatty acids (SCFAs) produced by WAS anaerobic fermentation have been recognized as high quality carbon sources, but sludge hydrolysis is a rate-limiting step of anaerobic fermentation, which needs to be promoted by pretreatment methods to improve the yield of SCFAs. In this paper, the research progress of acid base pretreatment, oxidizer pretreatment and combined pretreatment in chemical pretreatment of residual sludge was reviewed, providing technical guidance for the future process using residual sludge hydrolysate as carbon source.
Key words: Waste activated sludge; Anaerobic fermentation; Short-chain fatty acids; Alkali pretreatment