亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類四階方程基于降階格式的譜 Galerkin 逼近及誤差估計(jì)

        2024-05-16 00:00:00王遠(yuǎn)路江劍韜

        摘要:本文針對(duì)一類四階方程提出了一種基于降階格式的有效譜 Galerkin 逼近.首先,引入一個(gè)輔助函數(shù),將四階方程化為兩個(gè)耦合的二階方程,并推導(dǎo)了它們的弱形式及其離散格式.其次,利用 Lax-Milgram 引理和非一致帶權(quán) Sobolev 空間中正交投影算子的逼近性質(zhì),嚴(yán)格地證明了弱解和逼近解的存在唯一性及它們之間的誤差估計(jì).最后,通過(guò)一些數(shù)值算例,數(shù)值結(jié)果表明該算法是收斂和高精度的.

        關(guān)鍵詞:四階方程;降階格式;譜 Galerkin 逼近;誤差估計(jì)

        中圖分類號(hào): O241"" 文獻(xiàn)標(biāo)識(shí)碼:A"" 文章編號(hào):1009-3583(2024)-0081-04

        Spectral Galerkin Approximation and Error Estimates Based on Reduced Order Scheme for A Class of Fourth Order Equations

        WANG Yuan-lu , JIANG Jian-tao

        (School of Mathematical Science, Guizhou Normal University, Guiyang 550025, China)

        Abstract: In this paper, we propose a spectral Galerkin approximation and error estimates based on reduced order scheme for a class of fourth order equations. Firstly, by introducing a auxiliary function, we transform the original problems to two coupled second order equa- tions, and their weak form and corresponding discrete format are also derived. Secondly, by using Lax-Milgram lemma and the approxi- mation properties of orthogonal projection operators in non-uniform weighted Sobolev spaces, we strictly prove the existence and uni- queness of weak solution and approximate solution and as well the error estimate. At the end, we conduct some numerical experiments, which show that the algorithm is convergent and high accurate.

        keywords: fourth order equation; reduced order scheme; spectral Galerkin approximation; error estimation

        四階方程在流體力學(xué)、物理學(xué)和生物學(xué)等多個(gè)領(lǐng)域有著廣泛應(yīng)用,許多復(fù)雜的非線性問(wèn)題[1]的計(jì)算最終都?xì)w結(jié)于反復(fù)求解一個(gè)四階方程問(wèn)題,如Cahn- Hiliard 方程[1-4]、擴(kuò)展的 Fisher-Kolmogorov 方程[5-8]等.因此,提出一種有效求解四階方程的高精度數(shù)值方法是非常有意義的.

        到目前為止,已有很多數(shù)值方法求解不同邊界條件下四階方程問(wèn)題,主要包括有限元法[9-12]、譜方法及其他高階數(shù)值方法[13-19].對(duì)于有限元方法,區(qū)域剖分和對(duì)連續(xù)可微的有限元空間的要求將產(chǎn)生大量的自由度,要獲得高精度的數(shù)值解將需要很多計(jì)算時(shí)間和內(nèi)存容量.

        眾所周知,譜方法是一種具有譜精度的高階數(shù)值方法[19-20],是求解微分方程的一種重要的數(shù)值方法.據(jù)文獻(xiàn)所知,很少提到關(guān)于四階方程基于降階格式的譜方法.因此,本文針對(duì)一類四階方程提出了一種基于降階格式的有效譜 Galerkin 逼近.該方法首先是通過(guò)引入一個(gè)輔助函數(shù),將四階方程化為兩個(gè)耦合的二階方程,并推導(dǎo)它們的弱形式及其離散格式.其次,利用 Lax-Milgram 引理和正交投影算子的逼近性質(zhì),嚴(yán)格地證明弱解和逼近解的存在唯一性及它們之間的誤差估計(jì).最后,給出了一些數(shù)值算例,通過(guò)數(shù)值結(jié)果表明算法是收斂和高精度的.

        1降階格式及其變分形式

        作為一個(gè)模型,本文考慮下面的四階問(wèn)題

        令 .則方程(1)可化為下面兩個(gè)耦合的二階問(wèn)題

        引入通常的Sobolev 空間: ; , 相應(yīng)的內(nèi)積和范數(shù)分別為,其中I=(-1,1),則(2)、(3)的弱形式為:找, 使得

        2 誤差估計(jì)

        3算法的有效實(shí)現(xiàn)

        4數(shù)值實(shí)驗(yàn)

        為了測(cè)試該算法的有效性,本文將給出2個(gè)數(shù)值算例,并在MATLAB 2019b 平臺(tái)上進(jìn)行編程計(jì)算.

        例1:令 ,顯然滿足邊界條件. 將代入(3)可得,再將代入(2)可得f.對(duì)不同的 N,精確解,和逼近解 N,N 在三種模下的誤差分別在表1和表2中列出,方程(2)和(3)的精確解和逼近解的擬合圖及誤差圖分別在圖1和圖2中給出.

        從表1和表2可知,當(dāng)N≥25時(shí),逼近解 N,N 達(dá)到大約10-14的精度.另外, 從圖1和圖2中可以看出該算法是收斂的和高精度的.

        例2:令 ,顯然滿足邊界條件。將代入(2.3)可得,再將代入(2.2)可得f.對(duì)不同的 N,精確解,和逼近解 N,N 在三種模下的誤差分別在表3和表4中列出,方程(2.2)和(2.3)的精確解和逼近解的擬合圖及誤差圖分別在圖3和圖4中給出.

        從表3和表4可知,當(dāng)N≥25時(shí),逼近解 N,N 達(dá)到大約10-12的精度。另外, 從圖3和圖4中可以看出該算法是收斂的和高精度的.

        5結(jié)論

        本文提出了一種邊界條件下四階方程的高精度數(shù)值方法.首先,將四階問(wèn)題化為兩個(gè)耦合的二階問(wèn)題,并建立了相應(yīng)的弱形式及其離散格式.其次,對(duì)所提出的算法進(jìn)行了嚴(yán)格的誤差分析.此外,通過(guò)2個(gè)數(shù)值算例,數(shù)值結(jié)果驗(yàn)證了算法是非常有效的.最后發(fā)現(xiàn)文中提出的方法還可以通過(guò)使用譜元方法或有限元方法延伸到復(fù)雜區(qū)域上的高維問(wèn)題.

        參考文獻(xiàn):

        [1]廖家鋒,張鵬.一類含超線性項(xiàng)奇異橢圓方程的不可解性[J].遵義師范學(xué)院學(xué)報(bào),2013, 15(4):82-83.

        [2]Li D, Qiao Z. On the stabilization size of semi-implicit Four- ier-spectral methods for 3D Cahn Hilliard equations[J]. Communications in Mathematical Sciences,2003, 15(6):1489-1506.

        [3]Guo R,Xu Y. Semi-implicit spectral deferred correction meth- od based on the invariant energy quadratization approach for phase field problems[J]. Communications in Computational Physics,2019,26(1):87-113.

        [4]Liu F, Shen J. Stabilized semi-implicit spectral deferred cor- rection methods for Allen-Cahn and Cahn-Hilliard equations[J]. Mathematical Methods in the Applied Sciences,2015,38(18):4564-4575.

        [5]Shen J,Yang X. Numerical approximations of allen-cahn and cahn-hilliard equations[J]. Discrete Contin. Dyn. Syst,2010, 28(4):1669-1691.

        [6]Danumjaya P, Pani A K. Numerical methods for the extended Fisher-Kolmogorov (EFK) equation[J]. International Journal of Numerical Analysis and Modeling, 2006,3(2):186-210.

        [7]Ilati M, Dehghan M. Direct local boundary integral equation method for numerical solution of extended Fisher--Ko lmogorov equation[J]. Engineering with Computers,2018,34(1):203-213.

        [8]Danumjaya P, Pani A K. Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation [J]. Journal of computational and applied mathematic,2005, 174(1):101-117.

        [9]Stepan T,Julia C. Periodic and homoclinic solutions of ex- tended Fisher--Kolmogorov equations[J]. Journal of Mathe matical Analysis and Applications,2001,260(2):490-506.

        [10]Canuto C. Eigenvalue approximations by mixed methods[J]. RAIRO-Analyse numérique, 1978, 12(1):27-50.

        [11]Rappaz J, Mercier B, Osborn J and Raviart P A. Eigenvalue approximation by mixed and hybrid methods[J].Mathematics of Computation, 1981,36(154):427-453.

        [12]Chen W, Lin Q. Approximation of an eigenvalue problem as- sociated with the stokes problem by the stream function-vor- ticity-pressure method[J]. Applications of Mathematics, 2006,51(1):73-88.

        [13]Yang Y D , Jiang W. Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the stokes eigenvalue problem[J]. Science China Mathe- matics,2013,56(6):1313-1330.

        [14]楊秀德,吳波.Thomas-Fermi 方程的特征分析與數(shù)值求解[J].遵義師范學(xué)院學(xué)報(bào),2010, 12(3):73-74.

        [15]Bernardi C, Maday Y, Rapetti F. Discretisations Variationnel les de Problemes aux Limites Elliptique[M].Berlin:Springer, 2004.

        [16]Canuto C, Hussaini M Y , Quarteroni A, et al. Spectral Me- thods: Evolution to complex Geometries and Applications to Fluid Dynamics[M].Berlin:Springer,2007.

        [17]Guo B Y, Jia H Y. Spectral method on quadrilaterals[J]. Math. Comput, 2010,79,2237-2264.

        [18]Guo B Y, Wang L L. Error analysis of spectral method on a triangle[J].Adv. Comput.Math,2007,26, 473-496.

        [19]Jia H L, Guo B Y. Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on poly- gons[J]. Chin. Ann. Math, 2010,31B,855-878.

        [20]Karniadakis G E, SherwinS J. Spectral/hp Element Methods for CFD[M]. Qxdord:xford University Press,2005.

        [21]Shen J, Tang T, Wang L L. Spectral methods: algorithms, analysis and applications[M]. Berlin:Heidelberg Springer

        Science and Business Media,2011.

        [22]Doha E H, Bhrawy A H. Efficient spectral-Galerkin algor- ithms for direct solution of fourth-order differential equations using Jacobi polynomials[J]. Appl. Numer. Math,2008,58, 1224-1244.

        [23]Shen J,Tang T.Spectral methods: algorithms, analysis and applications [M].Beijing:Science Press,2006.

        (責(zé)任編輯:羅東升)

        97人人模人人爽人人喊网| 国产熟女乱综合一区二区三区| 国产成人精品一区二三区在线观看 | 永久免费的拍拍拍网站| 日本女同视频一区二区三区| 国内永久福利在线视频图片| 久久亚洲色www成人欧美| 九九免费在线视频| 女同国产日韩精品在线| 亚洲另类丰满熟妇乱xxxx| 天堂а√在线最新版中文在线| 91精品福利一区二区| 少妇爽到爆视频网站免费| 亚洲国产中文字幕无线乱码| 免费人成网站在线观看欧美| 国产免费破外女真实出血视频| 免费看泡妞视频app| 欧美视频九九一区二区| 久久精品亚洲乱码伦伦中文| 亚洲成人av一二三四区| 无码人妻精品一区二区在线视频| 国产精品99久久久久久98AV| 大岛优香中文av在线字幕| 手机看片自拍偷拍福利| 亚洲一区二区三区无码国产| 高清无码精品一区二区三区| 亚洲av综合色区久久精品| 谷原希美中文字幕在线| 国产精品人妻一区二区三区四| 亚洲日韩欧美一区二区三区| 日本一区二区三本视频在线观看 | 无码成人aaaaa毛片| 国产在线高清视频| 青青草免费在线手机视频| 中文字幕一区二区中出后入| 伊人久久久精品区aaa片| 人妻无码中文专区久久五月婷| 美女被射视频在线观看91| 蜜桃tv在线免费观看| 国产真人性做爰久久网站| 国产伦精品一区二区三区四区|