摘 要:針對(duì)基于光電非接觸式及圖像處理式的斷紗檢測(cè)方式對(duì)車間生產(chǎn)環(huán)境、安裝位置、安裝角度要求高且設(shè)備昂貴等問題,根據(jù)靜電感應(yīng)式檢測(cè)基本原理,設(shè)計(jì)了靜電荷感應(yīng)式斷紗傳感器,對(duì)其總體結(jié)構(gòu)及關(guān)鍵模塊進(jìn)行理論分析及實(shí)驗(yàn)測(cè)試,并搭建了靜電荷感應(yīng)式斷紗傳感器試驗(yàn)臺(tái)對(duì)該傳感器的功能進(jìn)行測(cè)試。結(jié)果表明:雖然運(yùn)動(dòng)紗線速度及其材料是影響靜電荷感應(yīng)式斷紗傳感器的主要影響因素,但這兩個(gè)因素所導(dǎo)致的電壓波動(dòng)在靜電荷感應(yīng)式斷紗傳感器關(guān)鍵模塊后端輸出點(diǎn)的數(shù)值遠(yuǎn)小于運(yùn)動(dòng)紗線在斷裂和未斷裂狀態(tài)之間切換時(shí)所產(chǎn)生的電壓波動(dòng)。因此,檢測(cè)靜電荷感應(yīng)式斷紗傳感器關(guān)鍵模塊后端輸出點(diǎn)的電壓值,可實(shí)現(xiàn)對(duì)運(yùn)動(dòng)紗線斷紗情況的準(zhǔn)確判斷。
關(guān)鍵詞:運(yùn)動(dòng)紗線;斷紗檢測(cè);靜電荷感應(yīng);傳感器;電壓波動(dòng)
中圖分類號(hào):TS103.7
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-265X(2024)03-0014-07
收稿日期:20230728
網(wǎng)絡(luò)出版日期:20231102
基金項(xiàng)目:浙江省“尖兵”“領(lǐng)雁”研發(fā)攻關(guān)計(jì)劃(2022C01202);浙江理工大學(xué)科研啟動(dòng)基金項(xiàng)目(23242083-Y)
作者簡(jiǎn)介:呂競(jìng)則(2002—),浙江紹興人,主要從事紡織自動(dòng)化設(shè)備與傳感器的研究。
通信作者:戴寧, E-mail:990713260@qq.com
紡紗是將動(dòng)植物纖維加工成紗線的工藝過程,其加工工序主要包括梳棉、并條、粗紗、細(xì)紗和絡(luò)筒等[1]。在紡紗生產(chǎn)中,對(duì)細(xì)紗和絡(luò)筒環(huán)節(jié)中的紗線,特別是對(duì)細(xì)紗線進(jìn)行斷紗檢測(cè)是監(jiān)測(cè)設(shè)備運(yùn)行狀態(tài)和提高紡紗生產(chǎn)質(zhì)量的重要手段[2]。當(dāng)前,斷紗檢測(cè)通常采用傳感器實(shí)現(xiàn),主要有接觸式傳感器和非接觸式傳感器兩種[3]。接觸式傳感器檢測(cè)方式通過在紗線走線路線上安裝張力輪,以此控制紗線斷紗觸發(fā)裝置,實(shí)現(xiàn)對(duì)紗線斷裂情況的檢測(cè)。然而,不同品種紗線可適應(yīng)張力程度不同,使用接觸式傳感器的斷紗檢測(cè)方式會(huì)導(dǎo)致斷紗,且斷紗后生產(chǎn)人員需要對(duì)紗線張力輪進(jìn)行復(fù)位,額外增加了紗線生產(chǎn)的人力和時(shí)間成本。
考慮到成本及影響紗線張力等各種因素,行業(yè)內(nèi)斷紗檢測(cè)方式主要以光電非接觸式斷紗檢測(cè)為主[4-5],即通過紗線對(duì)光源的遮擋程度來檢測(cè)是否存在斷紗。然而,在實(shí)際紡紗車間內(nèi)棉絮、灰塵較多,光電檢測(cè)通道內(nèi)的漫反射會(huì)降低傳感器的靈敏度。同時(shí),車間內(nèi)光強(qiáng)的變化對(duì)光電接收器接收信號(hào)也會(huì)產(chǎn)生影響;針對(duì)這種現(xiàn)象,李效東等[6]提出了一種改變檢測(cè)頭安裝角度的改進(jìn)方案,以解決光強(qiáng)疊加對(duì)對(duì)面光電接收器接收信號(hào)的影響。
近年來,有關(guān)圖像處理的斷紗檢測(cè)研究成為熱點(diǎn)。陳泰芳[7]對(duì)基于視覺的環(huán)錠紡斷紗檢測(cè)方法展開了研究,提出了細(xì)紗圖像平滑和增強(qiáng)方法,解決了高噪聲下細(xì)紗圖像中紗線特征弱的特點(diǎn),為環(huán)錠紡細(xì)紗斷紗檢測(cè)提供一定的理論方法與技術(shù)工具。孟立凡等[8]設(shè)計(jì)了一種基于FPGA的灰度投影算法檢測(cè)平臺(tái),經(jīng)過灰度投影計(jì)算、局部極值法、極值點(diǎn)校正等處理后得到特征值,進(jìn)而實(shí)現(xiàn)紗線的斷紗檢測(cè)。以上研究雖通過圖像在一定程度上實(shí)現(xiàn)了斷紗檢測(cè),但同樣存在光電非接觸式斷紗檢測(cè)的缺點(diǎn),甚至對(duì)光照及安裝條件更加苛刻,且價(jià)格昂貴,在有成百上千錠數(shù)的紡紗工序中較難推廣,因此該方式目前仍處于研究探索階段,在實(shí)際紡紗生產(chǎn)線中未見產(chǎn)業(yè)化應(yīng)用。
本文根據(jù)靜電感應(yīng)式檢測(cè)基本原理,設(shè)計(jì)靜電荷感應(yīng)式斷紗傳感器,并對(duì)其總體結(jié)構(gòu)及關(guān)鍵模塊進(jìn)行理論分析及實(shí)驗(yàn)測(cè)試。同時(shí),搭建靜電荷感應(yīng)式斷紗傳感器試驗(yàn)臺(tái)對(duì)該傳感器的功能以及影響其檢測(cè)性能的因素進(jìn)行分析,進(jìn)而為運(yùn)動(dòng)紗線斷紗情況的準(zhǔn)確判斷提供理論及實(shí)驗(yàn)依據(jù)。
1 靜電荷感應(yīng)式斷紗傳感器檢測(cè)原理及總體結(jié)構(gòu)設(shè)計(jì)
靜電荷感應(yīng)式斷紗傳感器的工作原理如圖1所示。當(dāng)紗線在U型導(dǎo)紗氧化鋁內(nèi)以某一速度運(yùn)動(dòng)時(shí),根據(jù)靜電感應(yīng)式檢測(cè)基本原理,探測(cè)電極表面感應(yīng)出動(dòng)態(tài)的感應(yīng)電荷[9-10];而當(dāng)紗線出現(xiàn)斷裂時(shí),動(dòng)態(tài)感應(yīng)電荷量為"0。
考慮到探測(cè)電極表面的感應(yīng)電荷較為微弱,因此需要對(duì)其進(jìn)行放大處理。靜電荷感應(yīng)式斷紗傳感器總體結(jié)構(gòu)如圖2所示,主要由探測(cè)電級(jí)、一級(jí)信號(hào)放大模塊、整形與二級(jí)放大模塊、輸出及顯示模塊組成。其中一級(jí)信號(hào)放大模塊實(shí)現(xiàn)感應(yīng)電荷的信號(hào)增強(qiáng),整形及二級(jí)放大模塊實(shí)現(xiàn)信號(hào)的電平轉(zhuǎn)換,輸出模塊將運(yùn)動(dòng)紗線是否斷紗的情況進(jìn)行外部輸出,顯示模塊中的LED單元實(shí)現(xiàn)斷紗情況的實(shí)時(shí)顯示。LM324[11]作為通用的帶有真差動(dòng)輸入的四運(yùn)算放大器,可實(shí)現(xiàn)同相、反相及差分放大,可滿足靜電荷感應(yīng)式斷紗傳感器所需的信號(hào)放大及整形輸出等功能。
2 靜電荷感應(yīng)式斷紗傳感器關(guān)鍵模塊電路設(shè)計(jì)
2.1 一級(jí)信號(hào)放大模塊設(shè)計(jì)
考慮到探測(cè)電極表面的感應(yīng)電荷較為微弱,因此需要對(duì)其進(jìn)行放大處理。本文設(shè)計(jì)一級(jí)信號(hào)放大模塊,實(shí)現(xiàn)感應(yīng)電荷的信號(hào)增強(qiáng),一級(jí)信號(hào)放大模塊如圖3所示。圖3中,V1為上拉電源,其值為5.6 V;R1、R2、R3、R4均為電阻,其值分別為10、0.1、5.6、10 MΩ;C1、C2均為反饋電容,其值分別為0.022 μF、6.2 pF;U1為L(zhǎng)M324第一路運(yùn)算放大器;IN1為探測(cè)電極輸入的電信號(hào);OUT1為一級(jí)信號(hào)放大模塊輸出的電信號(hào)。
由圖3可知,探測(cè)電極輸入電信號(hào)IN1經(jīng)過一級(jí)信號(hào)放大模塊后輸出放大后的電信號(hào)OUT1。其中C2是反饋電容,具有相位補(bǔ)償、防振蕩等作用。R4與R3組成反饋回路。R1是探測(cè)器偏置電阻,考慮到C2上電荷的積累作用,R3阻值一般為兆歐量級(jí),用于釋放C2上電荷,實(shí)現(xiàn)電荷平衡,并產(chǎn)生直流負(fù)反饋,進(jìn)而實(shí)現(xiàn)電信號(hào)的放大。C1、R2串聯(lián)并接在R4與R3組成的反饋回路上,用于穩(wěn)定帶內(nèi)增益。
通過測(cè)量一級(jí)信號(hào)放大模塊的OUT1端,得到圖4所示輸出波形。如圖4所示,斷紗狀態(tài)下,OUT1輸出端輸出約5.6 V直流電壓,運(yùn)動(dòng)紗線未斷紗狀態(tài)下,OUT1輸出類正弦波形,波峰值電壓約66 V。
2.2 整形與二級(jí)放大模塊設(shè)計(jì)
經(jīng)一級(jí)信號(hào)放大模塊實(shí)現(xiàn)感應(yīng)電荷的信號(hào)增強(qiáng)后,需設(shè)計(jì)整形及二級(jí)放大模塊實(shí)現(xiàn)信號(hào)的電平轉(zhuǎn)換,圖5為整形與二級(jí)放大模塊。圖5中,V2、V3為電源標(biāo)識(shí),其值分別為12、7 V;GND為V1、V2、V3電源地標(biāo)識(shí);R5、R6、R7、R8、R9、R10均為電阻標(biāo)識(shí),其值分別為0.001、5.6 、0.051、10、1、1 MΩ;C3、C4、C5均為電容標(biāo)識(shí),其值分別為220 nF、22 nF、30 pF;U3為L(zhǎng)M324第三路運(yùn)算放大器;D1、D2為二極管標(biāo)識(shí);T1為三極管標(biāo)識(shí);IN3為二級(jí)放大電路輸入電信號(hào);OUT3為二級(jí)放大模塊輸出的電信號(hào)。
如圖5所示,當(dāng)斷線時(shí),由于C3的隔直作用,以及D1及R6組成的分壓電路,T1處于截止?fàn)顟B(tài),由于R7、D2、R8組成的分壓電路,且R7的阻值相對(duì)R8的阻值可忽略不計(jì),因此,此時(shí)IN3處電壓幅值接近為0 V。當(dāng)運(yùn)動(dòng)紗線未斷線時(shí),類正弦信號(hào)通過C3,在T1基極處放大,并控制T1管分時(shí)導(dǎo)通及截止,此時(shí),分別對(duì)整形單元中T1基電極、集電極以及IN3處信號(hào)進(jìn)行檢測(cè),得到圖6所示輸出波形。
如圖6所示,運(yùn)動(dòng)紗線在IN3處產(chǎn)生交流小信號(hào),經(jīng)圖5中二級(jí)放大單元進(jìn)行放大及平滑處理后在OUT3處輸出電壓,其值約為10.6 V。
2.3 輸出及顯示模塊設(shè)計(jì)
結(jié)合運(yùn)動(dòng)紗線斷紗及未斷紗狀態(tài)下整形與二級(jí)放大模塊OUT3處輸出的不同電壓可知,只需設(shè)計(jì)比較電路,并根據(jù)兩個(gè)比較電壓輸出值,即可實(shí)現(xiàn)運(yùn)動(dòng)紗線未斷、斷情況的判定。此模塊采用LM324中的第二路運(yùn)算放大器U2實(shí)現(xiàn),同時(shí)為了報(bào)警提醒,斷紗狀態(tài)下,U2輸出端OUT2連接LED指示燈,當(dāng)運(yùn)動(dòng)紗線運(yùn)行時(shí),LED燈熄滅,指示運(yùn)動(dòng)紗線未斷且功能正常。當(dāng)運(yùn)動(dòng)紗線斷紗時(shí),LED燈亮起,指示運(yùn)動(dòng)紗線斷裂。
3 靜電荷感應(yīng)式斷紗傳感器性能影響因素分析
3.1 試驗(yàn)臺(tái)架結(jié)構(gòu)
靜電荷感應(yīng)式斷紗傳感器主體由金屬殼體、控制電路PCB板(嵌于金屬殼體內(nèi),主要由一級(jí)信號(hào)放大模塊、整形與二級(jí)放大模塊、輸出及顯示模塊等部分組成)、U形導(dǎo)紗氧化鋁及電源引線等組成。整體組成結(jié)構(gòu)如圖7所示,其中金屬殼體與控制電路PCB板為檢測(cè)裝置的主要組成部分。金屬殼體由鐵制材料經(jīng)加工直接成型并電鍍,將控制電路PCB板與U型導(dǎo)紗氧化鋁連接后插入殼體。此外,電源引線用于給控制電路PCB板供電,輸出信號(hào)引線給出運(yùn)動(dòng)紗線未斷及斷時(shí)的信號(hào)輸出。
結(jié)合紗線運(yùn)動(dòng)特性,本文搭建的運(yùn)動(dòng)紗線模擬檢測(cè)平臺(tái)如圖8所示。
如圖8所示,運(yùn)動(dòng)紗線模擬檢測(cè)平臺(tái)主要由靜電荷感應(yīng)式斷紗傳感器、穩(wěn)壓源、前羅拉、鐵架臺(tái)、導(dǎo)紗鉤、紗筒、示波器等部分組成。測(cè)試過程中,紗線經(jīng)前羅拉作用,從紗筒上退繞,并經(jīng)導(dǎo)紗鉤裝置,向上穿過U形導(dǎo)紗氧化鋁,測(cè)試信號(hào)引線接入示波器,通過靜電荷感應(yīng)式斷紗傳感器上LED燈亮滅情況以及示波器內(nèi)存儲(chǔ)數(shù)據(jù)實(shí)現(xiàn)對(duì)當(dāng)前運(yùn)動(dòng)紗線斷紗情況的準(zhǔn)確檢測(cè)。
3.2 試驗(yàn)數(shù)據(jù)分析
靜電荷感應(yīng)式斷紗傳感器性能基于靜電荷感應(yīng)的強(qiáng)弱,結(jié)合靜電荷感應(yīng)機(jī)理,可以得出紗線運(yùn)動(dòng)速度和紗線材料[12]是影響靜電荷感應(yīng)式斷紗傳感器輸出端電壓信號(hào)幅值的主要影響因素,取相同線密度的兩類紗線(均為18.2 tex),并以當(dāng)前市場(chǎng)上細(xì)紗機(jī)工作錠速(約為10000~20000 rmin)[3]為測(cè)試依據(jù),對(duì)紗線在13600 rmin與15000 rmin的細(xì)紗機(jī)模擬工作錠速下以及斷紗狀態(tài)下(0 rmin)靜電荷感應(yīng)式斷紗傳感器關(guān)鍵模塊輸出點(diǎn)電壓值進(jìn)行統(tǒng)計(jì)分析,其中OUT1、OUT3、OUT2處信號(hào)輸出電壓值如表1所示。
由表1可知,相比于導(dǎo)電混紡紗,純棉棉紗運(yùn)動(dòng)未斷裂時(shí),靜電荷感應(yīng)式斷紗傳感器關(guān)鍵模塊輸出點(diǎn)OUT1、OUT3、OUT2端電壓值相對(duì)較低;同類型紗線隨著運(yùn)行速度的增加,關(guān)鍵模塊輸出點(diǎn)電壓值也隨之增加,且相較于純棉棉紗,導(dǎo)電混紡紗引起的關(guān)鍵模塊輸出點(diǎn)電壓值增幅較大。此外,OUT1、OUT3、OUT2端電壓值在運(yùn)動(dòng)紗線斷裂及未斷兩種狀態(tài)下偏差較大,特別是靜電荷感應(yīng)式斷紗傳感器關(guān)鍵模塊后端輸出點(diǎn)OUT3、OUT2處,兩種狀態(tài)下電壓值偏差明顯,該特性可有效用于對(duì)運(yùn)動(dòng)紗線斷紗情況的準(zhǔn)確判斷。
4 結(jié) 語
本文根據(jù)靜電感應(yīng)式檢測(cè)基本原理,構(gòu)建了靜電荷感應(yīng)式斷紗傳感器,并對(duì)其總體結(jié)構(gòu)及關(guān)鍵模塊設(shè)計(jì)進(jìn)行了理論分析及實(shí)驗(yàn)測(cè)試,最后,搭建了可模擬細(xì)紗機(jī)工作中紗線運(yùn)動(dòng)方式的靜電荷感應(yīng)式斷紗傳感器試驗(yàn)臺(tái),對(duì)其性能及影響因素進(jìn)行了反復(fù)測(cè)試,可得到如下結(jié)論:
a)運(yùn)動(dòng)紗線速度及其材料是影響靜電荷感應(yīng)式斷紗傳感器的主要影響因素。
b)同類型紗線隨著運(yùn)行速度的增加,靜電荷感應(yīng)式斷紗傳感器二級(jí)放大單元以及輸出模塊點(diǎn)處電壓值也逐步增加。不同類型運(yùn)動(dòng)紗線由于其單位線長(zhǎng)內(nèi)帶電荷量存在差異,最終導(dǎo)致在相同速度下,不同類型的運(yùn)動(dòng)紗線引起靜電荷感應(yīng)式斷紗傳感器二級(jí)放大單元以及輸出模塊處電壓值也存在差別。
c)雖然運(yùn)動(dòng)紗線速度及其材料是影響靜電荷感應(yīng)式斷紗傳感器的主要影響因素,但該影響遠(yuǎn)小于運(yùn)動(dòng)紗線斷裂及未斷裂兩種狀態(tài)時(shí),靜電荷感應(yīng)式斷紗傳感器二級(jí)放大單元以及輸出模塊處電壓偏差值,因此,該特性可用于對(duì)運(yùn)動(dòng)紗線斷紗情況的準(zhǔn)確判斷。
本文設(shè)計(jì)的靜電荷感應(yīng)式斷紗傳感器體積較小,不受密閉空間的限制。傳感器通過密閉鋁殼封住電路與探測(cè)電極,減少了空氣中的灰塵與電荷干擾,便于電荷信號(hào)的采集,且對(duì)于具有微小電荷量變化的不同種類紗線,可獲得變化較大的輸出電壓用于辨識(shí)。因此,對(duì)于細(xì)紗工序中攜帶靜電的紗線,該裝置具有更好的狀態(tài)檢測(cè)效果。
參考文獻(xiàn):
[1]"王鄧峰,駱曉蕾,陳文浩,等.絹絲毛棉色紡紗的組成調(diào)控與性能分析[J].現(xiàn)代紡織技術(shù),2024,32(2):50-56.
WANG Dengfeng, LUO Xiaolei, CHEN Wenhao, et al. Composition control and performance of silkwoolcotton colored spun yarn[J]. Advanced Textile Technology,2024,32(2):50-56.
[2]"倪遠(yuǎn),王臘保.ITMA2019巴塞羅那國(guó)際紡機(jī)展若干新技術(shù)評(píng)析:細(xì)紗相關(guān)裝備[J].紡織器材,2021,48(2):48-52.
NI Yuan, WANG Labao. Eveluation and analysis of some new technologies on spinning equipments at Barcelona International Textile Machinery Exhibition (ITMA 2019)[J]. Textile Accessories, 2021,48(2):48-52.
[3]"秦浩杰,張昊,周文聰,等.光電式斷紗檢測(cè)系統(tǒng)的研制[J].機(jī)械制造與自動(dòng)化,2023,52(4):209-213.
QIN Haojie, ZHANG Hao, ZHOU Wencong, et al. Deve-lopment of photoelectric broken yarn detection system[J]. Machine Building amp; Automation, 2023,52(4):209-213.
[4]"呂鵬飛,李新榮,劉立冬.環(huán)錠紡紗斷頭監(jiān)測(cè)技術(shù)的創(chuàng)新發(fā)展[J].紡織器材,2019,46(4):42-48.
L"Pengfei, LI Xinrong, LIU Lidong. Innovative development of monitoring technology for ring spinning breakage[J]. Textile Accessories, 2019,46(4):42-48.
[5]"李效東,徐陽,金前鵬,等.基于紅外傳感器的環(huán)錠紡斷紗在線檢測(cè)裝置[J].激光與紅外,2018,48(3):333-337.
LI Xiaodong, XU Yang, JIN Qianpeng, et al. On-line detection device of ring spun-yarn breakage based on infrared sensor[J]. Laser amp; Infrared, 2018, 48(3): 333-337.
[6]"李效東,湯繼忠,程?hào)|明,等.細(xì)紗斷紗檢測(cè)裝置檢測(cè)頭安裝角度優(yōu)化[J].棉紡織技術(shù),2017,45(5):20-24.
LI Xiaodong, TANG Jizhong, CHENG Dongming, et al.Detector installation angle optimization of broken yarn detector in spinning frame[J]. Cotton Textile Technology, 2017, 45(5):20-24.
[7]"陳泰芳.機(jī)器視覺驅(qū)動(dòng)的環(huán)錠紡斷紗巡游檢測(cè)方法研究[D].上海:東華大學(xué),2022.
CHEN Taifang.Research on Detection Method of Ring Spinning Broken Yarn Cruise Driven by Machine Vision[D]. Shanghai: Donghua University, 2012.
[8]"孟立凡,高文學(xué).一種應(yīng)用FPGA的灰度投影法斷紗檢測(cè)平臺(tái)設(shè)計(jì)[J].現(xiàn)代電子技術(shù),2020,43(4):4-7.
MENG Lifan, GAO Wenxue. Design of FPGA-based broken yarn detection platform using gray projection algorithm[J]. Modern Electronics Technique, 2020, 43(4): 4-7.
[9]"陳茗,胡邊,李靖.靜電感應(yīng)法在線測(cè)量煤粉速度[J].電工技術(shù),2023(2):58-59.
CHEN Ming, HU Bian, Li Jing. On-line measurement of pulverized coal velocity by electrostatic induction method[J].Electric Engineering, 2023(2):58-59.
[10]"陳建閣,李德文,王杰,等.基于靜電感應(yīng)法的粉塵質(zhì)量濃度檢測(cè)裝置優(yōu)化[J].煤炭學(xué)報(bào),2022,47(7):2668-2677.
CHEN Jiange, LI Dewen, WANG Jie, et al. Optimization of dust concentration detection device based on electrostatic induction method[J]. Journal of China Coal Society, 2022, 47(7): 2668-2677.
[11]"吳冬玲.基于應(yīng)用LM324制作函數(shù)信號(hào)發(fā)生器電路的改造[J].內(nèi)燃機(jī)與配件,2017(14):112-114.
WU Dongling. Transformation of function signal generator circuit based on LM324 application[J]. Internal Combustion Engine amp; Parts, 2017(14):112-114.
[12]"余秀艷,胡廣,趙明慧,等.導(dǎo)電紗線導(dǎo)電性能測(cè)試方法探討[J].棉紡織技術(shù),2019,47(7):78-81.
YU Xiuyan, HU Guang, ZHAO Minghui, et al. Discussion on test method of conductive yarn electroconductive property[J]. Cotton Textile Technology, 2019, 47(7): 78-81.
國(guó)之棟梁不可無,生命之水不可枯
——公益廣告
Design of electrostatic charge-induced yarn breakage sensors
L"Jingze1, DAI Ning2, HU Xudong2, XU Kaixin2, XU Yushan3
(1.College of Computer and Information Science (School of Software), Southwest University, Chongqing 400715, China;
2.Key Laboratory of Modern Textile Machinery amp; Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China;
3.Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing 312500, China)
Abstract:
In the spinning process, yarn breakage detection, especially for fine yarns, is an essential means to improve the performance of spinning equipment. Considering the cost and factors affecting yarn tension, yarn breakage detection in the industry is mainly based on photoelectric non-contact yarn breakage detection. The actual spinning workshop has much cotton wool and dust, which is easy to cause diffuse reflection in the photoelectric detection channel and reduce the sensor's accuracy. At the same time, changes in light intensity in the workshop will also impact the signal received by the opposite photoelectric receiver. In recent years, the spinning industry's image processing related to yarn breakage detection research is also emerging. Still, with the above-mentioned photoelectric detection principle of the same shortcomings, the approach is even more demanding on the light and installation conditions and expensive, with hundreds of spindles in the spinning process being more challenging to promote.
To promote the yarn breakage detection technology for yarns, especially fine yarns, in the spinning link,it is necessary to reduce the dependence of the existing yarn breakage detection methods on the working link and installation conditions, and reduce the cost of yarn breakage detection. Based on the basic principle of electrostatic inductive detection, the electrostatic charge-induced yarn breakage sensor was constructed, and its overall structure, as well as the design of critical components such as primary signal amplification module, shaping and secondary amplification module, output and display module, were theoretically analyzed and experimentally tested. Finally, the test bench of the electrostatic charge induction yarn breakage sensor was construct to test the degree of influence of the moving yarn speed and its material on the electrostatic charge induction yarn breakage sensor in combination with the mechanism of electrostatic charge induction yarn breakage sensor performance based on the electrostatic charge induction strength.
On this basis,we statistically analyzed the output point voltage values of the critical module of the electrostatic charge-induced yarn breakage sensor under the simulated working spindle speeds of the spinning machine at 13,600 rmin and 15,000 rmin, as well as under the yarn breakage condition.
The research found that the speed of the moving yarn and its material are the main influencing factors of the electrostatic charge-induced yarn breakage sensor. Still, the influence is much smaller than the value of the voltage deviation at the output points OUT3 and OUT2 of the back end of the key module of the electrostatic charge-induced yarn breakage sensor when the two states of the moving yarn are broken and unbroken so that this characteristic can be used for the accurate judgment of the broken connection of the yarn.
The sensor seals the circuit and detection electrodes utilizing a closed aluminium case, which reduces dust and charge interference in the air, facilitates the collection of charge signals, and obtains output voltages with significant variations for identifying different types of yarns with minor charge variations. Therefore, the device has a better state detection effect for the yarn carrying static electricity in the spinning process.
Keywords:
moving yarn; yarn break detection; electrostatic charge induction; sensor; voltage fluctuation