張興宇 郭琪 陳小雨
基金項(xiàng)目:國(guó)家自然科學(xué)基金(82172552)和上海市青年科技英才揚(yáng)帆計(jì)劃(22YF1417900)
摘要:肌少癥是一種與年齡相關(guān)的疾病,其特征為肌肉質(zhì)量減少與肌肉力量下降。肌少癥會(huì)增加跌倒的風(fēng)險(xiǎn),嚴(yán)重影響患者的生活質(zhì)量,并可能與各種年齡相關(guān)的慢性疾病有關(guān)。晚期糖基化終末產(chǎn)物(AGE)是蛋白質(zhì)、脂質(zhì)或核酸等物質(zhì)的游離氨基與還原糖的游離羰基經(jīng)過(guò)縮合、重排、裂解和氧化修飾等一系列反應(yīng)后形成的一類穩(wěn)定糖基化產(chǎn)物。近期研究表明,AGE與肌肉質(zhì)量、肌肉力量和肌少癥之間都有相關(guān)性。AGE可以通過(guò)糖化交聯(lián)導(dǎo)致骨骼肌細(xì)胞外基質(zhì)硬化、與AGE受體結(jié)合導(dǎo)致炎癥和氧化應(yīng)激,進(jìn)而造成肌肉質(zhì)量和肌肉力量的下降,可在肌少癥的發(fā)生和發(fā)展中發(fā)揮重要作用。本文對(duì)AGE在肌少癥發(fā)病機(jī)制中的作用進(jìn)行綜述,可為深入探討肌少癥的發(fā)病機(jī)制提供理論支持。
關(guān)鍵詞:肌少癥;晚期糖基化終末產(chǎn)物;晚期糖基化終末產(chǎn)物受體
中圖分類號(hào): R685;R592? 文獻(xiàn)標(biāo)識(shí)碼: A? 文章編號(hào):1000-503X(2024)01-0111-08
DOI:10.3881/j.issn.1000-503X.15521
Research Progress in the Role of Advanced Glycation End Products in the Pathogenesis of Sarcopenia
ZHANG Xingyu1,2,GUO Qi1,CHEN Xiaoyu1
1College of Rehabilitation Sciences,Shanghai University of Medicine & Health Sciences,Shanghai 201318,China
2Tianjin Key Laboratory of Exercise Physiology and Sports Medicine,Institute of Sport,Exercise & Health,Tianjin University of Sport,Tianjin 301617,China
Corresponding author:CHEN Xiaoyu? Tel:18822002275,E-mail:1334427886@qq.com
ABSTRACT:Sarcopenia is an age-related condition characterized by a decrease in muscle mass and a decline in muscle strength.Sarcopenia increases the risk of falls,severely affecting the quality of life of patients,and it may be associated with various age-related chronic diseases.Advanced glycation end products(AGEs)are a class of stable glycation products produced by condensation,rearrangement,cleavage,and oxidative modification between the free amino groups of proteins,lipids or nucleic acids and the free carbonyl groups of reducing sugars.Studies have revealed associations of AGEs with muscle mass,muscle strength,and sarcopenia.AGEs can lead to hardening of the extracellular matrix of skeletal muscle through glycation cross-linking.The binding of AGEs to receptors induces inflammation and oxidative stress,consequently resulting in decreases in muscle mass and muscle strength.Therefore,AGEs may play a role in the occurrence and development of sarcopenia.This review summarizes the role of AGEs in the pathogenesis of sarcopenia,offering theoretical support for probing into the mechanisms underlying sarcopenia.
Key words:sarcopenia;advanced glycation end products;receptor for advanced glycation end products
Acta Acad Med Sin,2024,46(1):111-118
隨著人口老齡化進(jìn)程的加劇,肌少癥越來(lái)越受到人們的關(guān)注。肌少癥是一種以肌肉質(zhì)量和肌肉力量下降為基本特征,與年齡相關(guān)的進(jìn)行性和全身性骨骼肌疾?。?]。全球目前約有5000萬(wàn)人罹患肌少癥,預(yù)計(jì)至2050年肌少癥患病人數(shù)將高達(dá)5億[2]。在中國(guó)老年男性和女性人群中,肌少癥的患病率分別為14%和15%[3]。肌少癥不僅能夠增加老年人跌倒、功能下降和身體虛弱等不良后果的發(fā)生率,還會(huì)影響老年人的執(zhí)行功能和生活質(zhì)量,同樣也增加了住院風(fēng)險(xiǎn)和住院期間的護(hù)理費(fèi)用[4-7]。肌少癥的發(fā)病機(jī)制可能與多種因素有關(guān),如激素水平變化、營(yíng)養(yǎng)不良、氧化應(yīng)激、慢性炎癥等[8-12]。
晚期糖基化終末產(chǎn)物(advanced glycation end products,AGE)是蛋白質(zhì)、脂質(zhì)或核酸等物質(zhì)的游離氨基與還原糖的游離羰基經(jīng)過(guò)縮合、重排、裂解和氧化修飾等一系列反應(yīng)后形成的一類穩(wěn)定糖基化產(chǎn)物[13]。血管、肌肉、骨骼等組織中的AGE累積不僅與輕度認(rèn)知障礙、心血管疾病、骨質(zhì)疏松癥等疾病的慢性低度炎癥狀態(tài)有關(guān),還與肌肉骨骼系統(tǒng)力學(xué)性能的降低有關(guān)[14-17]。近年來(lái),有證據(jù)表明AGE與肌少癥的發(fā)生和發(fā)展有著密切的聯(lián)系,如在骨骼肌或血清中的AGE積累與肌肉質(zhì)量和肌肉力量的下降有關(guān)[18-19]。AGE可以通過(guò)糖化交聯(lián)導(dǎo)致骨骼肌細(xì)胞外基質(zhì)(extracellular matrix,ECM)硬化、與AGE受體(receptor for AGE,RAGE)結(jié)合導(dǎo)致炎癥和氧化應(yīng)激,進(jìn)而造成肌肉質(zhì)量與肌肉力量的下降,可在肌少癥的發(fā)生和發(fā)展中發(fā)揮重要作用[20-23]。本文對(duì)AGE在肌少癥發(fā)病機(jī)制中的作用進(jìn)行綜述,以期為肌少癥發(fā)病機(jī)制的探索以及肌少癥的預(yù)防、康復(fù)和治療等研究提供理論參考。
1? AGE及其受體
1.1? AGE
目前已經(jīng)發(fā)現(xiàn)超過(guò)20種不同的AGE,如羧甲基賴氨酸和戊糖素等,根據(jù)AGE的來(lái)源可將其分為外源性AGE和內(nèi)源性AGE,外源性AGE是指機(jī)體從外部攝入的AGE,常見(jiàn)來(lái)源為煙草和油炸食品,內(nèi)源性AGE是指蛋白質(zhì)、脂質(zhì)或核酸等物質(zhì)與還原糖在生理?xiàng)l件下通過(guò)美拉德反應(yīng)或多元醇等途徑生成的AGE[24-26]。AGE的測(cè)量方法主要有皮膚自體熒光法、酶聯(lián)免疫吸附法以及高效液相色譜法等[27]。皮膚自體熒光法是一種可重復(fù)、非侵入性測(cè)量組織中熒光AGE含量的方法,能夠代表AGE的長(zhǎng)期水平;酶聯(lián)免疫吸附法只能檢測(cè)諸多AGE中的一種分子,且操作步驟繁雜;色譜分析法的特點(diǎn)則是高靈敏度、高分辨率與高效性,但成本較高;不同測(cè)定方法均各有優(yōu)劣,目前尚無(wú)統(tǒng)一規(guī)范的測(cè)量方法[26-27]。
1.2? RAGE
RAGE是一種主要表達(dá)于固有免疫細(xì)胞表面的模式識(shí)別受體[24]。RAGE在成人肌纖維中通常不表達(dá),但是在急性肌肉損傷、肌營(yíng)養(yǎng)不良和癌癥等惡病質(zhì)狀態(tài)下RAGE的表達(dá)會(huì)上調(diào),特別是在骨骼肌發(fā)育和受傷后肌肉再生過(guò)程中,肌肉前體的活動(dòng)依賴于RAGE信號(hào)的傳遞,所以RAGE的異常表達(dá)和激活可能是肌肉萎縮的一個(gè)標(biāo)志,RAGE還能夠影響成肌細(xì)胞的形態(tài)和運(yùn)動(dòng),因此RAGE的信號(hào)傳導(dǎo)對(duì)于肌肉的生長(zhǎng)發(fā)育至關(guān)重要[23,29-31]。以往研究表明,AGE與RAGE結(jié)合介導(dǎo)AMPK下調(diào),可通過(guò)Akt通路誘導(dǎo)糖尿病小鼠骨骼肌萎縮和功能障礙,RAGE還可通過(guò)多種配體如高遷移率族蛋白B1等激活細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)級(jí)聯(lián),加快活性氧(reactive oxygen species,ROS)和炎癥細(xì)胞因子的生成,介導(dǎo)氧化應(yīng)激和炎癥反應(yīng),造成內(nèi)皮功能紊亂與肌細(xì)胞和衛(wèi)星細(xì)胞的損失,誘導(dǎo)肌肉萎縮和肌生成障礙,進(jìn)而加速肌少癥的發(fā)生發(fā)展[23,28-29,32]。
2? AGE與肌少癥及其診斷參數(shù)的相關(guān)性
在不同研究人群、不同測(cè)定方式情況下,不同類型的AGE與肌少癥及其診斷參數(shù)(肌肉質(zhì)量、肌肉力量和步行速度)的研究(表1)都證明了羧甲基賴氨酸與握力和步行速度顯著相關(guān)[33-34]。有研究根據(jù)亞洲肌少癥工作組2019共識(shí)的標(biāo)準(zhǔn)對(duì)肌少癥進(jìn)行診斷,并測(cè)定了中國(guó)中老年男性2型糖尿病患者血清戊糖素水平,結(jié)果表明血清戊糖素是肌少癥的獨(dú)立預(yù)測(cè)因素[35-36]。Waqas等[37]在一項(xiàng)針對(duì)2744名社區(qū)老年人的橫斷面研究發(fā)現(xiàn),AGE與肌肉質(zhì)量、握力和步行速度都呈獨(dú)立負(fù)相關(guān),并根據(jù)歐洲老年人肌少癥診斷標(biāo)準(zhǔn)對(duì)肌少癥進(jìn)行診斷,發(fā)現(xiàn)AGE與肌少癥患病率呈獨(dú)立顯著正相關(guān)。Egawa等[38]證明,與喂食低AGE飲食的小鼠相比,接受高AGE飲食喂養(yǎng)小鼠的肌肉質(zhì)量、肌肉強(qiáng)度和抗疲勞性都會(huì)隨著肌肉AGE水平的增加而下降。AGE的積累與肌肉質(zhì)量和肌肉力量的下降具有一定的相關(guān)性,AGE可能是肌少癥的生物標(biāo)志物,在肌少癥發(fā)病過(guò)程
中起著重要作用,但是AGE與肌少癥的相關(guān)性研究大多數(shù)為橫斷面研究,現(xiàn)有的證據(jù)仍難以闡明二者間的因果關(guān)系[33-34,37,39-40]。
3? AGE在肌少癥發(fā)病機(jī)制中的作用
目前的研究表明,AGE有可能通過(guò)幾種不同的機(jī)制參與肌少癥的發(fā)病過(guò)程,包括非酶糖化交聯(lián)(圖1)和與RAGE特異性結(jié)合導(dǎo)致炎癥和氧化應(yīng)激(圖2)等途徑[20-23]。
3.1? AGE通過(guò)糖化交聯(lián)來(lái)誘發(fā)肌少癥
糖基化是指蛋白質(zhì)與糖基共價(jià)相連,形成不同糖基化修飾的糖蛋白[41]。糖化交聯(lián)是指在非酶條件下,
AGE與蛋白質(zhì)等大分子物質(zhì)的官能團(tuán)發(fā)生共價(jià)連接,導(dǎo)致蛋白質(zhì)結(jié)構(gòu)和功能改變的一種反應(yīng)[42]。由于蛋白質(zhì)周轉(zhuǎn)速率會(huì)隨著年齡的增長(zhǎng)而降低,且膠原蛋白的壽命較長(zhǎng),所以AGE主要在膠原蛋白上優(yōu)先積累,并產(chǎn)生生物效應(yīng),同時(shí)膠原蛋白中的精氨酸和賴氨酸也會(huì)促進(jìn)膠原蛋白與AGE前體之間的反應(yīng),從而使得AGE的數(shù)量增多,濃度增加,使得膠原蛋白和AGE更容易發(fā)生糖化交聯(lián)[43]。AGE的糖化交聯(lián)主要通過(guò)骨骼肌ECM成分硬化、基底膜結(jié)構(gòu)失調(diào)以及改變周?chē)窠?jīng)的能力和肌肉支配的速度等方式導(dǎo)致肌少癥的發(fā)生和發(fā)展[20,33,51]。
基質(zhì)金屬蛋白酶是一類參與降解全身各種組織ECM的蛋白酶家族[44]。AGE的糖化交聯(lián)降低了膠原蛋白對(duì)基質(zhì)金屬蛋白酶降解的敏感性,導(dǎo)致膠原蛋白的堆積,并使得通常較為柔軟的骨骼肌ECM成分老化,降低了肌纖維的可塑性和彈性,增加了其發(fā)生損傷和萎縮的風(fēng)險(xiǎn),并降低肌肉干細(xì)胞的增殖活性,進(jìn)而通過(guò)降低肌肉的再生潛力來(lái)影響肌肉質(zhì)量,同時(shí)骨骼肌ECM成分老化也能夠影響肌肉力量的產(chǎn)生和傳導(dǎo),進(jìn)而加速肌少癥的發(fā)生和發(fā)展[20,45-47]。肌肉中過(guò)多的膠原蛋白沉積會(huì)導(dǎo)致纖維化,進(jìn)而導(dǎo)致骨骼肌的結(jié)構(gòu)和功能受損,促進(jìn)肌少癥的發(fā)生和發(fā)展[48-49]。因此,AGE的糖化交聯(lián)能夠加速骨骼肌ECM成分老化,逐漸導(dǎo)致骨骼肌質(zhì)量喪失、骨骼肌功能和再生能力下降,從而參與肌少癥的發(fā)生和發(fā)展。
基底膜中形成網(wǎng)狀的Ⅳ型膠原結(jié)構(gòu)是層粘連蛋白和其他細(xì)胞錨定蛋白的支架[50]。AGE的糖化交聯(lián)能夠降低細(xì)胞的黏附性,從而破壞層粘連蛋白與Ⅳ型膠原蛋白的組裝,經(jīng)AGE修飾的基底膜蛋白會(huì)導(dǎo)致基底膜結(jié)構(gòu)失調(diào),影響肌肉力量的生成和傳導(dǎo),同時(shí)還改變了肌肉干細(xì)胞應(yīng)對(duì)損傷的方式,可加速肌少癥的發(fā)生和發(fā)展[30,51]。
最近有研究報(bào)道,任何對(duì)肌肉內(nèi)結(jié)締組織的破壞(如AGE交聯(lián))都會(huì)極大地改變周?chē)窠?jīng)的能力和肌肉支配的速度,因此AGE的糖化交聯(lián)可能會(huì)改變周?chē)窠?jīng)自身修復(fù)的能力,造成周?chē)窠?jīng)的再生速度變慢,直接導(dǎo)致
肌肉支配的速度改變,進(jìn)而加速肌少癥發(fā)生[33,53-54]。
3.2? AGE通過(guò)受體途徑來(lái)誘發(fā)肌少癥
AGE與RAGE結(jié)合后,激活由RAGE介導(dǎo)的細(xì)胞內(nèi)信號(hào)傳導(dǎo),可以加快ROS的生成,持續(xù)激活核因子-κB(nuclear factor-kappa B,NF-κB),并通過(guò)NF-κB刺激促炎調(diào)節(jié)劑和RAGE自身的表達(dá),從而以正反饋機(jī)制來(lái)加劇炎癥反應(yīng)[29-30,55-56]。RAGE可以通過(guò)激活還原型
輔酶2來(lái)活化氧化應(yīng)激,也可通過(guò)促進(jìn)炎性細(xì)胞因子及趨化因子的轉(zhuǎn)錄,調(diào)節(jié)細(xì)胞自噬和凋亡 [22,57-58]。
骨骼肌通過(guò)控制蛋白質(zhì)合成和降解的復(fù)雜信號(hào)網(wǎng)絡(luò)的平衡來(lái)維持其質(zhì)量和功能,從而形成生理水平的蛋白質(zhì)。在肌肉萎縮時(shí),這種平衡轉(zhuǎn)向分解代謝狀態(tài),導(dǎo)致肌原纖維蛋白的分解,這是由于泛素-蛋白酶體系統(tǒng)(ubiquitin proteasome system,UPS)的激活和蛋白質(zhì)合成的減少[57]。UPS是細(xì)胞內(nèi)蛋白質(zhì)降解的主要途徑,用來(lái)降解錯(cuò)誤折疊或未折疊蛋白。而AGE能夠通過(guò)與骨骼肌細(xì)胞膜上的RAGE結(jié)合(簡(jiǎn)稱為AGE-RAGE信號(hào)),并通過(guò)上調(diào)NF-κB的轉(zhuǎn)錄加劇炎癥反應(yīng),增加循環(huán)ROS的數(shù)量,進(jìn)一步激活UPS,過(guò)度激活的UPS能夠促進(jìn)骨骼肌蛋白質(zhì)的分解,導(dǎo)致肌肉萎縮、肌肉質(zhì)量下降,最終加速肌少癥的發(fā)生發(fā)展[22,60]。
AGE-RAGE信號(hào)還能夠刺激NF-κB的磷酸化,上調(diào)ECM基因(如I型膠原)和炎癥細(xì)胞因子的表達(dá),這樣會(huì)導(dǎo)致內(nèi)皮功能紊亂,肌細(xì)胞和衛(wèi)星細(xì)胞的損失,進(jìn)而誘導(dǎo)肌少癥的發(fā)生[23,34,61]。AGE-RAGE信號(hào)還可上調(diào)P-38絲裂原活化蛋白激酶,而P-38絲裂原活化蛋白激酶信號(hào)的升高是破壞老年衛(wèi)星細(xì)胞信號(hào)的一個(gè)因素,這表明AGE-RAGE信號(hào)與老年衛(wèi)星細(xì)胞的損失之間具有相關(guān)性[62]。一項(xiàng)實(shí)驗(yàn)研究清楚地表明,AGE通過(guò)RAGE介導(dǎo)Akt信號(hào)通路的腺苷酸激活蛋白激酶來(lái)抑制糖尿病小鼠成肌細(xì)胞中的肌管形成,進(jìn)而誘導(dǎo)肌肉萎縮和肌生成障礙,同時(shí)體外實(shí)驗(yàn)也證明AGE可以減小肌管直徑,造成肌管萎縮,反之AGE抑制劑則可顯著抑制肌肉萎縮和肌生成障礙[23]。此外,AGE與RAGE的結(jié)合和ROS的生成還會(huì)造成骨骼肌細(xì)胞膜修復(fù)受損,可能引起肌肉萎縮,進(jìn)而導(dǎo)致肌肉質(zhì)量的下降[63]。
4? 總結(jié)與展望
在人口老齡化背景下,肌少癥是老年人群急需解決的健康問(wèn)題。AGE通過(guò)非酶糖化交聯(lián)影響肌肉質(zhì)量與肌肉力量、與RAGE結(jié)合導(dǎo)致肌肉萎縮和肌肉功能障礙,加速肌少癥的發(fā)生發(fā)展,有可能成為肌少癥的生物標(biāo)志物。
由于缺乏標(biāo)準(zhǔn)化的AGE測(cè)量方法,目前研究方向主要探究在肌少癥發(fā)生發(fā)展過(guò)程中單一AGE分子與肌少癥診斷參數(shù)的關(guān)系,所以AGE的整體水平在肌少癥發(fā)病中的作用仍需深入探討。AGE與肌少癥的相關(guān)性研究(特別是以肌少癥為結(jié)局的研究)均為橫斷面研究,缺乏縱向隊(duì)列研究,目前研究仍無(wú)法闡明AGE與肌少癥具體作用機(jī)制與因果關(guān)系。盡管有研究支持AGE可能在肌少癥發(fā)生過(guò)程中起著重要作用,但我們無(wú)法確定AGE與肌少癥之間是伴隨關(guān)系還是因果關(guān)系,因此,我們呼吁未來(lái)開(kāi)展大規(guī)模隊(duì)列研究,以探究不同AGE分子和AGE的整體水平在肌少癥發(fā)病過(guò)程中的作用以及AGE與肌少癥之間的相關(guān)性,從而闡明AGE與肌少癥具體作用機(jī)制與因果關(guān)系。
利益沖突? 所有作者聲明無(wú)利益沖突
作者貢獻(xiàn)聲明? 張興宇:參與研究選題,起草論文,對(duì)論文進(jìn)行審閱和修訂;郭琪:參與研究選題,對(duì)論文做出關(guān)鍵性修訂;陳小雨:參與研究選題,對(duì)論文進(jìn)行審閱和修訂并同意対研究工作誠(chéng)信負(fù)責(zé)
參? 考? 文? 獻(xiàn)
[1]Cruz-Jentoft AJ,Bahat G,Bauer J,et al.Sarcopenia:revised European consensus on definition and diagnosis[J].Age Ageing,2019,48(1):16-31.DOI:10.1093/ageing/afy169.
[2]劉娟,丁清清,周白瑜,等.中國(guó)老年人肌少癥診療專家共識(shí)(2021)[J].中華老年醫(yī)學(xué)雜志,2021,40(8):943-952.DOI:10.3760/cma.j.issn.0254-9026.2021.08.001.
[3]Ren X,Zhang X,He Q,et al.Prevalence of sarcopenia in Chinese community-dwelling elderly:a systematic review[J].BMC Public Health,2022,22(1):1702.DOI:10.1186/s12889-022-13909-z.
[4]Zhang XM,Dou QL,Zeng Y,et al.Sarcopenia as a predictor of mortality in women with breast cancer:a meta-analysis and systematic review[J].BMC Cancer,2020,20(1):172.DOI:10.1186/s12885-020-6645-6.
[5]Yeung SSY,Reijnierse EM,Pham VK,et al.Sarcopenia and its association with falls and fractures in older adults:a systematic review and meta-analysis[J].J Cachexia Sarcopenia Muscle,2019,10(3):485-500.DOI:10.1002/jcsm.12411.
[6]Zhang XM,Zhang WW,Wang CH,et al.Sarcopenia as a predictor of hospitalization among older people:a systematic review and meta-analysis[J].BMC Geriatr,2018,18(1):188.DOI:10.1186/s12877-018-0878-0.
[7]Cawthon PM,Lui LY,Taylor BC,et al.Clinical definitions of sarcopenia and risk of hospitalization in community-dwelling older men:the osteoporotic fractures in men study[J].J Gerontol A Biol Sci Med Sci,2017,72(10):1383-1389.DOI:10.1093/gerona/glw327.
[8]應(yīng)瑞雪,艾李雅,章詩(shī)琪,等.2型糖尿病患者血清正常范圍的甲狀腺激素水平與肌少癥的相關(guān)性研究[J].國(guó)際內(nèi)分泌代謝雜志,2022,42(2):114-117.DOI:10.3760/cma.j.cn121383-20200307-03016.
[9]中華醫(yī)學(xué)會(huì)老年醫(yī)學(xué)分會(huì),《中華老年醫(yī)學(xué)雜志》編輯委員會(huì).老年人肌少癥口服營(yíng)養(yǎng)補(bǔ)充中國(guó)專家共識(shí)(2019)[J].中華老年醫(yī)學(xué)雜志,2019,38(11):1193-1197.DOI:10.3760/cma.j.issn.0254-9026.2019.11.001.
[10]Bernabeu-Wittel M,Gómez-Díaz R,González-Molina ,et al.Oxidative stress,telomere shortening,and apoptosis associated to sarcopenia and frailty in patients with multimorbidity[J].J Clin Med,2020,9(8):2669.DOI:10.3390/jcm9082669.
[11]Lopes KG,F(xiàn)arinatti P,Bottino DA,et al.Sarcopenia in the elderly versus microcirculation,inflammation status,and oxidative stress:a cross-sectional study[J].Clin Hemorheol Microcirc,2022,80(2):185-195.DOI:10.3233/ch-211202.
[12]付俊玲,穆志靜,孫麗娜,等.老年住院2型糖尿病患者肌少癥與炎癥因子關(guān)系的研究.[J].中華糖尿病雜志,2023,15(1):20-25.DOI:10.3760/cma.j.cn115791-20220530-00248.
[13]Pan S,Guan Y,Ma Y,et al.Advanced glycation end products correlate with breast cancer metastasis by activating RAGE/TLR4 signaling[J].BMJ Open Diabetes Res Care,2022,10(2):e002697.DOI:10.1136/bmjdrc-2021-002697.
[14]Igase M,Ohara M,Igase K,et al.Skin Autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people[J].J Alzheimers Dis,2017,55(4):1481-1487.DOI:10.3233/jad-160917.
[15]Yamagishi SI.Role of advanced glycation endproduct(AGE)-receptor for advanced glycation endproduct(RAGE)axis in cardiovascular disease and its therapeutic intervention[J].Circ J,2019,83(9):1822-1828.DOI:10.1253/circj.CJ-19-0618.
[16]Ge W,Jie J,Yao J,et al.Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts[J].Mol Med Rep,2022,25(4):140.DOI:10.3892/mmr.2022.12656.
[17]Suzuki A,Yabu A,Nakamura H.Advanced glycation end products in musculoskeletal system and disorders[J].Methods,2022,203:179-186.DOI:10.1016/j.ymeth.2020.09.012.
[18]Tanaka K,Kanazawa I,Sugimoto T.Elevated serum pentosidine and decreased serum IGF-I levels are associated with loss of muscle mass in postmenopausal women with type 2 diabetes mellitus[J].Exp Clin Endocrinol Diabetes,2016,124(3):163-166.DOI:10.1055/s-0035-1565103.
[19]Dalal M,F(xiàn)errucci L,Sun K,et al.Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women[J].J Gerontol A Biol Sci Med Sci,2009,64(1):132-137.DOI:10.1093/gerona/gln018.
[20]Gillies AR,Lieber RL.Structure and function of the skeletal muscle extracellular matrix.[J].Muscle Nerve,2011,44(3):318-331.DOI:10.1002/mus.22094.
[21]Lacraz G,Rouleau AJ,Couture V,et al.Increased stiffness in aged skeletal muscle impairs muscle progenitor cell proliferative activity[J].PLoS One,2015,10(8):e0136217.DOI:10.1371/journal.pone.0136217.
[22]Bowen TS,Schuler G,Adams V.Skeletal muscle wasting in cachexia and sarcopenia:molecular pathophysiology and impact of exercise training[J].J Cachexia Sarcopenia Muscle,2015,6(3):197-207.DOI:10.1002/jcsm.12043.
[23]Chiu CY,Yang RS,Sheu ML,et al.Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated,AMPK-down-regulated,Akt pathway[J].J Pathol,2016,238(3):470-482.DOI:10.1002/path.4674.
[24]Azizian-Farsani F,Abedpoor N,Hasan Sheikhha M,et al.Receptor for advanced glycation end products acts as a fuel to colorectal cancer development[J].Front Oncol,2020,10:552283.DOI:10.3389/fonc.2020.552283.
[25]Twarda-Clapa A,Olczak A,Biakowska AM,et al.Advanced glycation end-products(AGEs):formation,chemistry,classification,receptors,and diseases related to AGEs[J].Cells,2022,11(8):1312.DOI:10.3390/cells11081312.
[26]喻佩.美拉德反應(yīng)中羧甲基賴氨酸和羧乙基賴氨酸的形成及調(diào)控機(jī)理的研究[D].廣州:華南理工大學(xué),2016.
[27]楊成會(huì),崔芬,戚厚興,等.皮膚晚期糖基化終末產(chǎn)物熒光檢測(cè)在糖尿病中應(yīng)用研究進(jìn)展[J].中華實(shí)用診斷與治療雜志,2020,34(9):967-969.DOI:10.13507/j.issn.1674-3474.2020.09.028.
[28]Shahab U,Ahmad MK,Mahdi AA,et al.The receptor for advanced glycation end products:a fuel to pancreatic cancer[J].Semin Cancer Biol,2018,49:37-43.DOI:10.1016/j.semcancer.2017.07.010.
[29]Riuzzi F,Sorci G,Sagheddu R,et al.RAGE in the pathophysiology of skeletal muscle[J].J Cachexia Sarcopenia Muscle,2018,9(7):1213-1234.DOI:10.1002/jcsm.12350.
[30]Olson LC,Redden JT,Schwartz Z,et al.Advanced glycation end-products in skeletal muscle aging[J].Bioengineering(Basel),2021,8(11):168.DOI:10.3390/bioengineering8110168.
[31]Riuzzi F,Sorci G,Sagheddu R,et al.HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK-and myogenin-dependent repression of Pax7 transcription[J].J Cell Sci,2012,125(6):1440-1454.DOI:10.1242/jcs.092163.
[32]張興宇,郭琪,陳小雨.晚期糖基化終末產(chǎn)物與肌少癥及其參數(shù)的研究進(jìn)展[J].中國(guó)骨質(zhì)疏松雜志,2023,29(5):758-764.DOI:10.3969/j.issn.1006-7108.2023.05.026.
[33]de la Maza MP,Uribarri J,Olivares D,et al.Weight increase is associated with skeletal muscle immunostaining for advanced glycation end products,receptor for advanced glycation end products,and oxidation injury[J].Rejuvenation Res,2008,11(6):1041-1048.DOI:10.1089/rej.2008.0786.
[34]Semba RD,Bandinelli S,Sun K,et al.Relationship of an advanced glycation end product,plasma carboxymethyl-lysine,with slow walking speed in older adults:the InCHIANTI study[J].Eur J Appl Physiol,2010,108(1):191-195.DOI:10.1007/s00421-009-1192-5.
[35]Zhang X,Liu J,Zhang Q,et al.Elevated serum pentosidine is independently associated with the high prevalence of sarcopenia in Chinese middle-aged and elderly men with type 2 diabetes mellitus[J].J Diabetes Investig,2021,12(11):2054-2061.DOI:10.1111/jdi.13581.
[36]Chen LK,Woo J,Assantachai P,et al.Asian working group for sarcopenia:2019 consensus update on sarcopenia diagnosis and treatment[J].J Am Med Dir Assoc,2020,21(3):300-307.e2.DOI:10.1016/j.jamda.2019.12.012.
[37]Waqas K,Chen J,Trajanoska K,et al.Skin autofluorescence,a noninvasive biomarker for advanced glycation end-products,is associated with sarcopenia[J].J Clin Endocrinol Metab,2022,107(2):e793-e803.DOI:10.1210/clinem/dgab632.
[38]Egawa T,Tsuda S,Goto A,et al.Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice[J].Br J Nutr,2017,117(1):21-29.DOI:10.1017/s0007114516004591.
[39]Sun K,Semba RD,F(xiàn)ried LP,et al.Elevated serum carboxymethyl-lysine,an advanced glycation end product,predicts severe walking disability in older women:the womens health and aging study I[J].J Aging Res,2012,2012:586385.DOI:10.1155/2012/586385.
[40]Mori H,Kuroda A,Ishizu M,et al.Association of accumulated advanced glycation end-products with a high prevalence of sarcopenia and dynapenia in patients with type 2 diabetes[J].J Diabetes Investig,2019,10(5):1332-1340.DOI:10.1111/jdi.13014.
[41]鄒龍,楊愛(ài)明.胃黏膜病變中異常的黏蛋白表達(dá)及糖基化修飾[J].中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào),2022,44(2):294-298.DOI:10.3881/j.issn.1000-503X.12945.
[42]許何麗,楊慧娟,宮婷婷,等.膳食晚期糖基化終末產(chǎn)物與不良健康結(jié)局的相關(guān)性[J].中國(guó)醫(yī)科大學(xué)學(xué)報(bào),2023,52(1):81-85.DOI:10.12007/j.issn.0258-4646.2023.01.016.
[43]Svensson RB,Smith ST,Moyer PJ,et al.Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and achilles tendons[J].Acta Biomater,2018,70:270-280.DOI:10.1016/j.actbio.2018.02.005.
[44]陳磊,文富強(qiáng).晚期糖基化終末產(chǎn)物在纖維化中的作用機(jī)制[J].西部醫(yī)學(xué),2008,3:643-645.DOI:10.3969/j.issn.1672-3511.2008.03.096.
[45]Lacraz G,Rouleau AJ,Couture V,et al.Increased stiffness in aged skeletal muscle impairs muscle progenitor cell proliferative activity[J].PLoS One,2015,10(8):e0136217.DOI:10.1371/journal.pone.0136217.
[46]Stearns-Reider KM,DAmore A,Beezhold K,et al.Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion[J].Aging Cell,2017,16(3):518-528.DOI:10.1111/acel.12578.
[47]Haus JM,Carrithers JA,Trappe SW,et al.Collagen,cross-linking,and advanced glycation end products in aging human skeletal muscle[J].J Appl Physiol,2007,103(6):2068-2076.DOI:10.1152/japplphysiol.00670.2007.
[48]Serrano AL,Mann CJ,Vidal B,et al.Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease[J].Curr Top Dev Biol,2011,96:167-201.DOI:10.1016/b978-0-12-385940-2.00007-3.
[49]Mann CJ,Perdiguero E,Kharraz Y,et al.Aberrant repair and fibrosis development in skeletal muscle[J].Skelet Muscle,2011,1(1):21.DOI:10.1186/2044-5040-1-21.
[50]Kiss AA,Somlyai-Popovics N,Kiss M,et al.Type IV collagen is essential for proper function of integrin-mediated adhesion in drosophila muscle fibers[J].Int J Mol Sci,2019,20(20):5124.DOI:10.3390/ijms20205124.
[51]Pastino AK,Greco TM,Mathias RA,et al.Stimulatory effects of advanced glycation endproducts(AGEs)on fibronectin matrix assembly[J].Matrix Biol,2017,59:39-53.DOI:10.1016/j.matbio.2016.07.003.
[52]Yu WM,Yu H,Chen ZL.Laminins in peripheral nerve development and muscular dystrophy[J].Mol Neurobiol,2007,35(3):288-297.DOI:10.1007/s12035-007-0026-x.
[53]Tricaud N.Myelinating schwann cell polarity and mechanically-driven myelin sheath elongation[J].Front Cell Neurosci,2018,11:414.DOI:10.3389/fncel.2017.00414.
[54]Gordon T.Peripheral nerve regeneration and muscle reinnervation[J].Int J Mol Sci,2020,21(22):8652.DOI:10.3390/ijms21228652.
[55]Chhipa AS,Borse SP,Baksi R,et al.Targeting receptors of advanced glycation end products(RAGE):preventing diabetes induced cancer and diabetic complications[J].Pathol Res Pract,2019,215(11):152643.DOI:10.1016/j.prp.2019.152643.
[56]廖延年,黃騫,黎介壽.晚期糖基化終末產(chǎn)物受體在腹腔感染膿毒癥中的研究進(jìn)展[J].醫(yī)學(xué)研究生學(xué)報(bào),2015,28(6):656-660.DOI:10.16571/j.cnki.1008-8199.2015.06.006.
[57]Wautier MP,Chappey O,Corda S,et al.Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE[J].Am J Physiol Endocrinol Metab,2001,280(5):E685-E694.DOI:10.1152/ajpendo.2001.280.5.E685.
[58]Daussin FN,Boulanger E,Lancel S.From mitochondria to sarcopenia:role of inflammaging and RAGE-ligand axis implication[J].Exp Gerontol,2021,146:111247.DOI:10.1016/j.exger.2021.111247.
[59]Sandri M.Protein breakdown in muscle wasting:role of autophagy-lysosome and ubiquitin-proteasome[J].Int J Biochem Cell Biol,2013,45(10):2121-2129.DOI:10.1016/j.biocel.2013.04.023.
[60]丁凡,李文雄,張佳莉,等.糖尿病性肌少癥發(fā)病機(jī)制和治療靶點(diǎn)的研究進(jìn)展[J].中國(guó)臨床藥理學(xué)與治療學(xué),2019,24(12):1428-1433.DOI:10.12092/j.issn.1009-2501.2019.12.016.
[61]Peng YQ,Kim JM,Park HS,et al.AGE-RAGE signal generates a specific NF-kappa B RelA “barcode” that directs collagen I expression[J].Sci Rep,2016,6:18822.DOI:10.1038/srep18822.
[62]Bernet JD,Doles JD,Hall JK,et al.p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice[J].Nat Med,2014,20(3):265-271.DOI:10.1038/nm.3465.
[63]Howard AC,McNeil AK,Xiong F,et al.A novel cellular defect in diabetes membrane repair failure[J].Diabetes,2011,60(11):3034-3043.DOI:10.2337/db11-0851.
(收稿日期:2023-02-08)