趙藝妍,郭紅芳,劉衛(wèi)敏,趙小明,張建珍
飛蝗載脂蛋白對卵巢發(fā)育和脂質(zhì)沉積的影響
1山西大學(xué)應(yīng)用生物學(xué)研究所/核酸生物農(nóng)藥山西省重點(diǎn)實(shí)驗(yàn)室,太原 030006;2山西大學(xué)生命科學(xué)學(xué)院,太原 030006
【背景】脂質(zhì)是生物體重要營養(yǎng)素之一,對于昆蟲滯育、飛行、胚胎發(fā)育和能量調(diào)節(jié)至關(guān)重要。載脂蛋白(apolipophorin,apoLp)是昆蟲脂蛋白顆粒的蛋白質(zhì)部分,主要負(fù)責(zé)組織之間脂質(zhì)轉(zhuǎn)運(yùn)?!灸康摹恳允澜缧赞r(nóng)業(yè)害蟲飛蝗()為研究對象,通過RNA干擾(RNA interference,RNAi)技術(shù)對其載脂蛋白生物學(xué)功能進(jìn)行分析,探究載脂蛋白在飛蝗卵巢脂質(zhì)運(yùn)輸中的作用,為害蟲防治提供新的分子靶標(biāo)?!痉椒ā坷肦NAi技術(shù),分別對羽化后第1天(1 PAE,post adult eclosion)的成蟲2個(gè)載脂蛋白基因(/和)進(jìn)行dsRNA注射,以ds為對照,每頭注射15μg dsRNA;分別解剖羽化后第4、6、8天的卵巢進(jìn)行觀察;取羽化后第8天的卵巢,以作為內(nèi)參基因,采用實(shí)時(shí)熒光定量PCR(RT-qPCR)方法檢測沉默效率;利用脂質(zhì)組學(xué)技術(shù)測定并分析對照和沉默/后飛蝗卵巢脂代謝物差異,采用OPLS-DA模型的差異倍數(shù)(FC)、值和VIP值相結(jié)合的方法篩選差異脂質(zhì);制備冰凍切片,利用Bodipy染色技術(shù)對沉默/后飛蝗卵巢中性脂的含量和分布進(jìn)行觀察;利用甘油三酯(triglyceride,TG)測定試劑盒,對沉默/后飛蝗卵巢總甘油三酯含量進(jìn)行測定。【結(jié)果】與對照組相比,分別注射ds/和ds后,卵巢中靶基因的表達(dá)量均可被顯著抑制,沉默效率分別為80.84%和92.89%;注射ds/的飛蝗卵巢發(fā)育遲緩,而注射ds的飛蝗卵巢與對照組相同,均能夠正常發(fā)育逐漸變大,顏色由白色逐漸變黃。沉默/后,脂質(zhì)組學(xué)分析共檢測到1 166種上調(diào)代謝物和1 384種下調(diào)代謝物,其中20種甘油三酯顯著下調(diào);此外,總甘油三酯測定及Bodipy染色結(jié)果顯示,卵巢總甘油三酯含量和中性脂質(zhì)含量均較對照組顯著降低。【結(jié)論】飛蝗/是影響卵巢發(fā)育的主要載脂蛋白基因,其參與卵巢脂質(zhì)的積累和運(yùn)輸。研究結(jié)果可為基于脂質(zhì)運(yùn)輸基因?yàn)榘袠?biāo)的害蟲防治提供理論依據(jù)。
飛蝗;載脂蛋白;RNA干擾;卵巢;脂質(zhì)運(yùn)輸
【研究意義】飛蝗()為重要的世界性農(nóng)業(yè)害蟲,其分布廣泛、危害性強(qiáng)。目前針對飛蝗的防治策略依然是以化學(xué)防治為主,但化學(xué)殺蟲劑的大量使用不僅影響環(huán)境,而且易導(dǎo)致抗藥性的產(chǎn)生[1]。因此,研發(fā)新型綠色殺蟲劑,尋求更安全、高效的生物防治策略顯得尤為迫切。RNA干擾(RNAi)技術(shù)因其特異性、高效性、系統(tǒng)性及安全性等特點(diǎn),已被國際上公認(rèn)為“第四代殺蟲劑”的核心技術(shù)[2]。脂質(zhì)是構(gòu)成生物膜的主要成分,是生物體重要的營養(yǎng)物質(zhì),其與糖類、蛋白質(zhì)和核酸共同構(gòu)成細(xì)胞中四大有機(jī)物。昆蟲脂類物質(zhì)分布廣泛,包括脂肪體、中腸、卵巢、表皮和飛行肌等,其在昆蟲生長、發(fā)育、繁殖、飛行及信息交流等生命活動(dòng)中發(fā)揮重要作用[3]。目前,關(guān)于昆蟲脂質(zhì)合成通路相關(guān)基因(乙酰輔酶A羧化酶、脂肪酸還原酶、脂肪酸合成酶、脂肪酸延伸酶和細(xì)胞色素P450基因)的功能已開展了較為詳細(xì)的研究,且明確了其在昆蟲生態(tài)適應(yīng)性中的重要作用[4-10],脂質(zhì)運(yùn)輸是脂代謝的重要環(huán)節(jié),但關(guān)于昆蟲脂質(zhì)運(yùn)輸機(jī)制尚缺乏系統(tǒng)研究。因此,開展脂質(zhì)運(yùn)輸關(guān)鍵基因的分子特性及功能研究,對于全面解析昆蟲脂類物質(zhì)代謝過程具有重要的科學(xué)意義?!厩叭搜芯窟M(jìn)展】載脂蛋白(apolipophorin,apoLp)是一種載體蛋白,與脂質(zhì)結(jié)合后形成脂蛋白顆粒,能夠調(diào)節(jié)脂質(zhì)在組織間的運(yùn)輸。哺乳動(dòng)物中,載脂蛋白主要分為4類,包括apoA、apoB、apoC和apoE[11-12]。這些蛋白是血漿脂蛋白的重要組成成分,在動(dòng)物體器官之間調(diào)節(jié)各種脂質(zhì)的運(yùn)輸[13]。在昆蟲中,載脂蛋白主要包括兩種不可交換(non-exchangeable,從生物合成到分解始終在同一脂蛋白顆粒上)的載脂蛋白——載脂蛋白I(apoLp-I)和載脂蛋白II(apoLp-II),和一種可交換(exchangeable,可隨時(shí)與脂蛋白結(jié)合或解離)的載脂蛋白——載脂蛋白III(apoLp-III)[14]。其中apoLp-I和apoLp-II是同一基因()的產(chǎn)物,翻譯后被弗林蛋白酶(Furin)切割為兩個(gè)蛋白,二者以1﹕1的比例存在于脂蛋白顆粒中,共同發(fā)揮脂質(zhì)運(yùn)輸作用[15-16]。ApoLp-II/I與哺乳動(dòng)物apoB同源,屬于大型脂質(zhì)轉(zhuǎn)移蛋白超家族的一員[17],而apoLp-III則與哺乳動(dòng)物apoE同源[18]。1987年,Cole等克隆并測序了昆蟲中第1條載脂蛋白基因——煙草天蛾()[19],之后,在飛蝗、埃及伊蚊()、柞蠶()等昆蟲中其同源基因陸續(xù)被發(fā)現(xiàn)[20-23]。研究表明,昆蟲血淋巴中大約95%的脂是通過載脂蛋白運(yùn)輸?shù)腫24-26],apoLp-II/I是昆蟲體內(nèi)主要的載脂蛋白,飛蝗apoLp-II/I在其視網(wǎng)膜下層的色素膠質(zhì)細(xì)胞中高表達(dá),可能參與類維生素A或脂肪酸到視網(wǎng)膜的運(yùn)輸[27]。本課題組前期研究結(jié)果表明,飛蝗apoLp-II/I主要定位于絳色細(xì)胞和表皮細(xì)胞的細(xì)胞質(zhì)中,參與表皮脂質(zhì)運(yùn)輸以及表皮屏障功能的構(gòu)建[28]。此外,在采采蠅()中,的沉默導(dǎo)致血淋巴脂質(zhì)含量降低,卵母細(xì)胞發(fā)育延遲[29]。在黑腹果蠅()中,主要負(fù)責(zé)腸道中脂質(zhì)的動(dòng)員和運(yùn)輸[24]。昆蟲在長距離飛行過程中,apoLp-III結(jié)合到高密度脂蛋白(high-density lipophorin,HDLp)顆粒上,與apoLp-II和apoLp-I共同發(fā)揮作用,以招募更多的甘油二酯(diacylglycerol,DG)為飛行提供能量,最終HDLp轉(zhuǎn)化為低密度脂蛋白(low-density lipophorin,LDLp)顆粒[18,30]。此外,apoLp-III還參與蠟螟()、柞蠶、黃粉蟲()、中華蜜蜂()等多種昆蟲的先天免疫反應(yīng),在抵抗微生物入侵過程中發(fā)揮重要作用[31-39]。【本研究切入點(diǎn)】飛蝗載脂蛋白和序列已分別于2000年和1988年被鑒定[22,27],然而,對其參與卵巢脂質(zhì)運(yùn)輸?shù)姆肿訖C(jī)制卻少有報(bào)道?!緮M解決的關(guān)鍵問題】利用RNAi技術(shù)分別對2條載脂蛋白基因(和)進(jìn)行干擾,明確其在卵巢發(fā)育及卵巢脂質(zhì)運(yùn)輸中的作用,為基于RNAi技術(shù)的害蟲防治新靶標(biāo)發(fā)現(xiàn)提供理論依據(jù)。
試驗(yàn)于2019—2023年在山西大學(xué)應(yīng)用生物學(xué)研究所完成。
飛蝗蟲卵購自河北省滄州市孟村回族自治縣徐利養(yǎng)殖場,在恒溫恒濕養(yǎng)蟲室(溫度:(30±2)℃,相對濕度:40%±5%,光周期:14 h光照/10 h黑暗)中進(jìn)行孵育。待其孵化成1齡若蟲時(shí)移至紗網(wǎng)籠中,并繼續(xù)放置于恒溫恒濕養(yǎng)蟲室,每天飼喂新鮮的小麥苗,直至飛蝗長至3齡時(shí)輔以麥麩飼喂。
根據(jù)LmapoLp和綠色熒光蛋白(GFP)的cDNA序列,通過http://www.dkfz.de/signaling/e-rnai3//網(wǎng)站設(shè)計(jì)引物,引物見表1。使用PCR MasterMix(天根生化科技(北京)有限公司)進(jìn)行PCR擴(kuò)增,反應(yīng)體系:25 μL PCR MasterMix,10 μL上游/下游引物,2 μL整蟲cDNA,加去離子水至50 μL。PCR程序:95 ℃預(yù)變性5 min;95 ℃ 15 s,60 ℃ 30 s,72 ℃ 30 s,35個(gè)循環(huán);72 ℃延伸10 min。產(chǎn)物用E.Z.N.A.?Gel Extraction Kit按照說明進(jìn)行回收,然后參照T7 RiboMAXTMExpress RNAi System試劑盒說明書體外合成dsRNA。
為了研究兩個(gè)對飛蝗卵巢發(fā)育的影響,利用RNAi技術(shù),對羽化后第1天(1 PAE,post adult eclosion)的90頭雌成蟲進(jìn)行dsRNA注射,每頭注射15 μg ds或ds,以ds為對照,每組30頭。在恒溫恒濕養(yǎng)蟲室飼養(yǎng),解剖第4、6、8天成蟲的卵巢進(jìn)行形態(tài)學(xué)觀察,取成蟲第8天的部分卵巢進(jìn)行沉默效率檢測,剩余部分液氮速凍,用于非靶向脂質(zhì)代謝組學(xué)分析。設(shè)置6個(gè)生物學(xué)重復(fù),每組3頭。
表1 本研究所用引物
注射ds和ds后,解剖成蟲第8天的卵巢,使用RNAiso Plus(TaKaRa)提取每個(gè)重復(fù)中的總RNA,1%的瓊脂糖凝膠電泳檢測所提RNA的質(zhì)量,Nanodrop 2000對總RNA進(jìn)行定量,然后以1 μg總RNA為模板,依據(jù)TaKaRa公司反轉(zhuǎn)錄試劑說明書合成cDNA模板。通過RT-qPCR方法檢測在飛蝗卵巢中的表達(dá),每個(gè)樣本做兩個(gè)技術(shù)重復(fù)。采用ABI Prism 7300 SDS 1.1軟件對數(shù)據(jù)進(jìn)行分析并記錄。引物見表1(由生工生物工程(上海)股份有限公司合成)。以作為內(nèi)參,的相對表達(dá)量采用2-ΔCt法進(jìn)行分析[40]。
為了進(jìn)一步研究對飛蝗卵巢脂質(zhì)運(yùn)輸?shù)挠绊?,利用脂質(zhì)組學(xué)技術(shù)測定并分析正常個(gè)體和沉默后飛蝗卵巢脂代謝物差異。
樣品提?。合驑悠分屑尤?00 μL甲基叔丁基醚/甲醇提取液(5﹕1)和適量瓷珠,用組織研磨儀充分研磨;置于渦旋儀上振蕩30 s,并于冰水浴條件下超聲破碎15 min;-40 ℃冰箱中靜置1 h后,13 000 r/min,4 ℃離心15 min;取上清300 μL于1.5 mL離心管中并干燥;加入200 μL二氯甲烷和甲醇溶液(1﹕1)復(fù)溶,冰水浴條件下超聲破碎10 min;12 000 r/min,4 ℃離心15 min;取上清140 μL于2 mL色譜瓶中待測。
代謝組學(xué)分析:分別在正離子(POS)和負(fù)離子(NEG)模式下,使用液質(zhì)聯(lián)用儀進(jìn)行代謝組學(xué)分析。進(jìn)樣體積為5 μL,柱溫為55 ℃,使用采集軟件MassLynx V4.2控制下的MSe模式進(jìn)行一級、二級質(zhì)譜數(shù)據(jù)采集。所有數(shù)據(jù)處理和分析均在百邁客云平臺(http://www.biocloud.net)上進(jìn)行。將原始峰面積用總峰面積歸一化后,進(jìn)行后續(xù)分析。采用主成分分析(PCA)和Spearman相關(guān)分析來判斷組內(nèi)樣品和質(zhì)控樣品的重復(fù)性。在LIPID MAPS數(shù)據(jù)庫(https://www. lipidmaps.org/)中檢索鑒定出的化合物的分類和途徑信息。根據(jù)分組信息,計(jì)算差異倍數(shù),用檢驗(yàn)法計(jì)算各化合物的值以評估差異的顯著性。采用多重交叉驗(yàn)證法計(jì)算模型的變量相互依賴參數(shù)(VIP)值。采用OPLS-DA模型的差異倍數(shù)(FC)、值和VIP值相結(jié)合的方法篩選差異脂質(zhì)。篩選標(biāo)準(zhǔn)為FC>1,值<0.05,VIP>1。
為了進(jìn)一步驗(yàn)證代謝組學(xué)的結(jié)果,利用Bodipy染色技術(shù)對卵巢中性脂的含量和分布進(jìn)行觀察。分別取注射ds和ds后第8天的成蟲卵巢,經(jīng)4%甲醛鈣溶液固定、不同濃度蔗糖溶液(10%、20%和30%)梯度脫水和OCT包埋劑(Sakura,美國)包埋后,制備厚度為20 μm的冰凍切片;利用經(jīng)二甲基亞砜稀釋后的Bodipy505/515染液(200﹕1),37 ℃孵育40 min,PBS漂洗(5 min×3次);將DAPI滴加至樣品上,室溫孵育10 min,進(jìn)行細(xì)胞核染色;PBS漂洗(5 min×3次)后使用抗熒光淬滅封片液進(jìn)行封片,采用激光共聚焦顯微鏡(Zeiss,LSM880)進(jìn)行觀察。
利用總甘油三酯含量測定試劑盒對卵巢總甘油三酯含量進(jìn)行測定。分別取注射ds和ds后第8天的成蟲卵巢并稱重,參照南京建成生物工程研究所甘油三酯測定試劑盒(A110-1-1)說明書對總甘油三酯含量進(jìn)行測定,設(shè)置8個(gè)生物學(xué)重復(fù),每組3頭。
沉默效率檢測采用相對表達(dá)倍數(shù)來表示。
沉默效率、沉默后的卵巢面積、脂質(zhì)組學(xué)以及總甘油三酯含量的差異顯著性分析采用student-test法,*<0.05表示差異顯著,**<0.01和***<0.001表示差異極顯著。
為研究兩個(gè)對飛蝗卵巢發(fā)育的影響,利用RNAi技術(shù)對羽化后第1天的成蟲進(jìn)行干擾。結(jié)果發(fā)現(xiàn),與對照組相比,分別注射ds和ds后,卵巢中靶基因的表達(dá)量均可以被顯著抑制,沉默效率分別為80.84%和92.89%(圖1-A)。分別解剖羽化后4 d(4 PAE)、6 d(6 PAE)和8 d(8 PAE)的卵巢進(jìn)行觀察,發(fā)現(xiàn)注射ds和ds的飛蝗卵巢均能夠正常發(fā)育,體積逐漸變大,顏色由白色逐漸變黃,到第8天其正面觀面積可達(dá)100 mm2以上。而干擾后,飛蝗卵巢發(fā)育受阻,其正面觀面積始終維持在26 mm2左右(圖1-B、1-C),表明在飛蝗卵巢發(fā)育中發(fā)揮重要作用。
昆蟲卵子發(fā)生過程需要大量的脂類物質(zhì)為胚胎發(fā)育提供能量[41-42]。因此,推測ds處理后卵巢發(fā)育受阻可能影響了卵巢脂質(zhì)沉積。對飛蝗卵巢脂代謝組學(xué)進(jìn)行分析,結(jié)果表明沉默后,分別檢測到1 166種上調(diào)代謝物和1 384種下調(diào)代謝物(圖2-A)。其中下調(diào)代謝物包括442種脂肪酰類(FA)、194種甘油脂類(GL)、350種甘油磷脂類(GP)、41種多聚乙烯類(PK)、57種孕烯醇酮脂類(PR)、11種糖脂類(SL)、130種鞘脂類(SP)和159種固醇脂類(ST)(圖2-B)。
A:RT-qPCR檢測和的沉默效率Silencing efficiency ofandwas detected by RT-qPCR;B:分別注射ds和ds后卵巢的形態(tài)學(xué)觀察,標(biāo)尺為5 mm Morphology of the ovaries in adult female after injection of dsor ds. Scale bars=5 mm;C:注射ds和ds后4—8 PAE卵巢正面觀面積統(tǒng)計(jì)The area of ovaries frominjected with dsor dsat 4-8 PAE;數(shù)值用平均值±標(biāo)準(zhǔn)差表示,*表示ds對照組和ds注射組之間差異顯著(<0.05,Student’s-test,n=5,每組3頭)The data are shown as means±SD, * indicates significant difference between ds- and ds-injection groups (<0.05, Student’s-test, n=5, three locusts per group)
圖1 沉默對飛蝗卵巢發(fā)育的影響
Fig. 1 Effects ofRNAi on ovary development in
圖2 沉默LmapoLp-II/I后卵巢差異脂質(zhì)數(shù)量統(tǒng)計(jì)(A)及下調(diào)代謝物的聚類分析(B)
昆蟲卵母細(xì)胞中的脂質(zhì)主要以甘油三酯(甘油脂類)的形式存在,占中性脂的60%左右[43]。共檢測到20種顯著下調(diào)的甘油三酯,包括TG(12:0_14:1_16:0)、TG(12:0_18:2_22:5)、TG(14:0_15:1_18:4)、TG(14:0_18:2_20:5)、TG(14:0_20:0_22:4)、TG(14:1_22:1_22:3)、TG(15:1_22:0_22:5)、TG (16:0_18:0_18:4)、TG(16:0_20:4_22:0)、TG(16:1_18:1_22:0)、TG(17:1_18:3_20:2)、TG(17:2_18:0_20:5)、TG(17:2_20:1_22:5)、TG (18:0_18:3_22:0)、TG(18:3_20:2_21:0)、TG(19:0_20:2_20:5)、TG(18:3_19:1_21:0)、TG(20:3_20:5_22:2)、TG(20:4_20:4_22:1)以及TG(20:4_20:5_22:0)(圖3),表明參與了卵巢脂質(zhì)的積累和運(yùn)輸。
數(shù)值用平均值±標(biāo)準(zhǔn)差表示,*表示ds對照組和ds注射組之間差異顯著(<0.05,Student’s-test,n=6,每組3頭)
The data are shown as means±SD. * indicates significant difference between ds- and ds-injection groups (<0.05, Student’s-test, n=6, three locusts per group)
圖3 沉默/后卵巢中下調(diào)的甘油三酯含量分析
Fig. 3 The content analysis of down-regulated triglyceride in the ovary after RNAi of
為了進(jìn)一步驗(yàn)證代謝組學(xué)的結(jié)果,分別利用Bodipy染色技術(shù)和總甘油三酯含量測定試劑盒對卵巢中性脂的含量和分布進(jìn)行觀察及測定。結(jié)果顯示,與對照組相比,注射ds后綠色熒光信號顯著變?nèi)酰未笮★@著減小,表明卵巢中性脂含量顯著降低(圖4-A)。同時(shí),總甘油三酯含量降低60.04%(圖4-B),表明在卵巢脂質(zhì)運(yùn)輸中發(fā)揮重要作用。
在人類中,載脂蛋白主要包括apoA、apoB、apoC和apoE四大類,是血漿脂蛋白的重要組成部分,在血漿脂蛋白代謝中發(fā)揮重要的作用,包括脂質(zhì)運(yùn)輸、酶活性調(diào)節(jié)以及促進(jìn)脂蛋白與細(xì)胞表面受體相互作用等。其中apoA和apoE主要存在于高密度脂蛋白(HDL),apoB主要存在于低密度脂蛋白(LDL),而apoC主要存在于極低密度脂蛋白(VLDL)和高密度脂蛋白(HDL),與糖尿病、冠心病、動(dòng)脈粥樣硬化及阿爾茲海默癥等心腦血管疾病的發(fā)生密切相關(guān)[11-12,44-47]。
近年來,載脂蛋白序列已在不同昆蟲物種中被鑒定并分析,包括飛蝗、斯氏按蚊()、埃及伊蚊、家蠶()及柞蠶等。序列分析結(jié)果顯示,不同昆蟲物種的apoLp-II/I和apoLp-III均含有一個(gè)信號肽,且不同昆蟲物種的apoLp-II/I均包含LPD_N、DUF1943、DUF1081和VWD結(jié)構(gòu)域[18,20,27,32,48]。此外,與哺乳動(dòng)物相比,昆蟲apoLp-III與哺乳動(dòng)物apoE的22 kDa氨基端(N terminal,NT)結(jié)構(gòu)域高度相似,均由一束兩親性的螺旋組成,其中apoE-NT包含4個(gè)螺旋,apoLp-III包含5個(gè)螺旋[18],而昆蟲apoLp-II/I與哺乳動(dòng)物apoB均含有信號肽、LPD_N和DUF1943結(jié)構(gòu)域[16],表明載脂蛋白序列在不同物種中是相對保守的。
A:注射ds和ds后,取成蟲第8天的卵巢制備冰凍切片(20 μm),Bodipy505/515用于標(biāo)記中性脂質(zhì)(綠色),DAPI用于標(biāo)記細(xì)胞核(藍(lán)色),標(biāo)尺為20 μm The cryosections (20 μm) of ovary were prepared 8 days PAE after dsor dsinjected into, and neutral lipids were detected with Bodipy505/515(green). Nuclei were stained with DAPI (blue). Scale bar=20 μm;B:沉默后卵巢總甘油三酯含量分析。數(shù)值用平均值±標(biāo)準(zhǔn)差表示,*表示ds對照組和ds注射組之間差異顯著(<0.05,Student’s-test,n=8,每組3頭)Total triglyceride contents in the ovary after RNAi of. The data are shown as means±SD. * indicates significant difference between ds- and ds-injection groups (<0.05, Student’s-test, n=8, three locusts per group)
圖4 沉默/對卵巢中性脂質(zhì)含量的影響
Fig. 4 The effect ofsuppression on the content of neutral lipids in the ovary
目前國內(nèi)外關(guān)于昆蟲載脂蛋白的功能研究主要集中于果蠅和采采蠅等雙翅目昆蟲,發(fā)現(xiàn)其能夠參與昆蟲腸道、翅原基以及卵母細(xì)胞中中性脂質(zhì)的運(yùn)輸和攝取[24,29]。Bogerd等于2000年在飛蝗中鑒定了序列,并發(fā)現(xiàn)其在視網(wǎng)膜下層的色素膠質(zhì)細(xì)胞中高表達(dá),推測其可能參與類維生素A或脂肪酸到視網(wǎng)膜的運(yùn)輸[27]。本課題組前期研究發(fā)現(xiàn),參與飛蝗表皮脂質(zhì)的轉(zhuǎn)運(yùn),從而影響表皮碳?xì)浠衔锏暮考氨砥さ钠琳瞎δ埽蓴_后飛蝗對干燥及農(nóng)藥的敏感性顯著降低[28]。然而,在飛蝗中關(guān)于載脂蛋白參與脂質(zhì)運(yùn)輸?shù)难芯繀s未見報(bào)道。本研究在有效沉默后,飛蝗卵巢發(fā)育受阻(圖1),卵巢脂質(zhì)含量減少,表明在飛蝗卵巢發(fā)育和脂質(zhì)運(yùn)輸中發(fā)揮重要作用。然而,的沉默并沒有影響卵巢發(fā)育,推測其并不參與卵巢發(fā)育中脂質(zhì)的運(yùn)輸過程。研究表明,昆蟲血淋巴中含有大量無脂形式的apoLp-III(高達(dá)15 mg·mL-1)。飛行過程中,在脂肪動(dòng)力激素的作用下,apoLp-III與高密度脂蛋白結(jié)合,從而增加了其結(jié)合脂質(zhì)的能力,密度降低,轉(zhuǎn)變?yōu)榈兔芏戎鞍祝M(jìn)而與飛行肌上的結(jié)合位點(diǎn)結(jié)合,脂質(zhì)水解并被利用[18]。因此,推測apoLp-III可能在飛蝗其他生理過程中發(fā)揮作用,例如飛行、滯育、能量調(diào)節(jié)等,但其具體影響機(jī)制有待進(jìn)一步研究。
雌性昆蟲中,卵子發(fā)生過程需要大量的脂類物質(zhì),這些脂質(zhì)以卵黃的形式儲存起來,并作為能量來源以供胚胎發(fā)育[41-42]。然而,昆蟲卵母細(xì)胞從頭合成脂質(zhì)的能力有限,例如煙草天蛾的卵母細(xì)胞自身合成的脂質(zhì)僅占總脂的1%左右[49]。因此,卵母細(xì)胞中大部分脂質(zhì)都是從其他組織中獲得的,據(jù)報(bào)道,95%的脂質(zhì)都是由低密度脂蛋白和高密度脂蛋白遞送的[49-50]。Coelho等發(fā)現(xiàn)長紅錐蝽()脂蛋白的密度在卵黃發(fā)生和卵巢脂質(zhì)攝取期間迅速增加[51]。Atella等通過對岡比亞按蚊()的脂蛋白進(jìn)行放射性同位素標(biāo)記,發(fā)現(xiàn)脂蛋白通過受體介導(dǎo)的內(nèi)吞作用進(jìn)入卵母細(xì)胞,導(dǎo)致整個(gè)卵母細(xì)胞形成脂質(zhì)囊泡[52],而載脂蛋白是脂蛋白的主要成分,表明載脂蛋白在卵巢脂質(zhì)運(yùn)輸過程中發(fā)揮重要作用。Benoit等發(fā)現(xiàn)通過RNA干擾抑制采采蠅可導(dǎo)致卵母細(xì)胞發(fā)育延遲和幼蟲期延長[29],然而,目前關(guān)于載脂蛋白參與卵巢脂質(zhì)運(yùn)輸尚缺乏系統(tǒng)深入的研究。本文在有效沉默后,發(fā)現(xiàn)飛蝗卵巢顯著減小。在此基礎(chǔ)上,對飛蝗卵巢脂代謝組學(xué)進(jìn)行深入分析,發(fā)現(xiàn)沉默后,有20種甘油三酯顯著下調(diào)(圖3)。SANTOS等研究表明,昆蟲卵母細(xì)胞中的脂質(zhì)主要以甘油三酯的形式存在,占中性脂的60%左右[43]。進(jìn)一步對卵巢中性脂進(jìn)行染色和測定,發(fā)現(xiàn)卵巢中性脂含量顯著降低,總甘油三酯含量顯著降低(圖4),表明在卵巢脂質(zhì)運(yùn)輸,尤其是甘油脂的運(yùn)輸中發(fā)揮重要作用。本研究結(jié)果揭示了載脂蛋白LmapoLp-II/I在卵巢發(fā)育中的生物學(xué)功能,明確了甘油三酯在卵巢發(fā)育中的重要作用,可作為分子靶標(biāo)用于害蟲防治。
通過研究飛蝗兩個(gè)載脂蛋白基因(和)的生物學(xué)功能,發(fā)現(xiàn)是卵巢脂質(zhì)沉積所需的主要載脂蛋白,對飛蝗卵巢發(fā)育起著至關(guān)重要的調(diào)節(jié)作用。
[1] 石旺鵬, 譚樹乾. 蝗蟲生物防治發(fā)展現(xiàn)狀及趨勢. 中國生物防治學(xué)報(bào), 2019, 35(3): 307-324.
SHI W P, TAN S Q. Current status and trend on grasshopper and locust biological control. Chinese Journal of Biological Control, 2019, 35(3): 307-324. (in Chinese)
[2] 張建珍, 柴林, 史學(xué)凱, 高璐, 范云鶴. RNA干擾技術(shù)與害蟲防治. 山西大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 44(5): 980-987.
ZHANG J Z, CHAI L, SHI X K, GAO L, FAN Y H. RNA interference technology and pest control. Journal of Shanxi University (Natural Science Edition), 2021, 44(5): 980-987. (in Chinese)
[3] 魏琪, 蘇建亞. 昆蟲糖脂代謝研究進(jìn)展. 昆蟲學(xué)報(bào), 2016, 59(8): 906-916.
WEI Q, SU J Y. Research advances in carbohydrate and lipid metabolism in insects. Acta Entomologica Sinica, 2016, 59(8): 906-916. (in Chinese)
[4] PARVY J P, NAPAL L, RUBIN T, POIDEVIN M, PERRIN L, WICKER-THOMAS C, MONTAGNE J.acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genetics, 2012, 8(8): e1002925.
[5] YU Z T, ZHANG X Y, WANG Y W, MOUSSIAN B, ZHU K Y, LI S, MA E B, ZHANG J Z.: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust,. Scientific Reports, 2016, 6: 29980.
[6] WU L X, ZHANG Z F, YU Z T, YU R R, MA E B, FAN Y L, LIU T X, FEYEREISEN R, ZHU K Y, ZHANG J Z. Bothgenes function in decreasing cuticular penetration of insecticides in. Pest Management Science, 2020, 76(11): 3541-3550.
[7] ZHAO X M, YANG Y, NIU N, ZHAO Y Y, LIU W M, MA E B, MOUSSIAN B, ZHANG J Z. The fatty acid elongase geneis required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust,. Journal of Insect Physiology, 2020, 123: 104052.
[8] YANG Y, ZHAO X M, NIU N, ZHAO Y Y, LIU W M, MOUSSIAN B, ZHANG J Z. Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in. Insect Molecular Biology, 2020, 29(6): 555-568.
[9] LI D T, DAI Y T, CHEN X, WANG X Q, LI Z D, MOUSSIAN B, ZHANG C X. Ten fatty acyl-CoA reductase family genes were essential for the survival of the destructive rice pest,. Pest Management Science, 2020, 76(7): 2304-2315.
[10] BALABANIDOU V, KAMPOURAKI A, MACLEAN M, BLOMQUISTG J, TITTIGER C, JUAREZ M P, MIJAILOVSKY S J, CHALEPAKIS G, ANTHOUSI A, LYND A, ANTOINE S, HEMINGWAY J, RANSON H, LYCETT G J, VONTAS J. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33): 9268-9273.
[11] LIU J Q, LI W X, ZHENG J J, TIAN Q N, HUANG J F, DAI S X. Gain and loss events in the evolution of the apolipoprotein family in vertebrata. BMC Evolutionary Biology, 2019, 19(1): 209.
[12] MAHLEY R W, INNERARITY T L, RALL S C, WEISGRABER K H. Plasma lipoproteins apolipoprotein structure and function. Journal of Lipid Research, 1984, 25(12): 1277-1294.
[13] SU X, PENG D Q. The exchangeable apolipoproteins in lipid metabolism and obesity. Clinica Chimica Acta, 2020, 503: 128-135.
[14] RYAN R O, VAN DER HORST D J. Lipid transport biochemistry and its role in energy production. Annual Review of Entomology, 2000, 45: 233-260.
[15] WEERS P M, VAN MARREWIJK W J, BEENAKKERS A M, VAN DER HORST D J. Biosynthesis of locust lipophorin. Apolipophorins I and II originate from a common precursor. The Journal of Biological Chemistry, 1993, 268(6): 4300-4303.
[16] SMOLENAARS M M, KASPERAITIS M A, RICHARDSON P E, RODENBURG K W, VAN DER HORST D J. Biosynthesis and secretion of insect lipoprotein: involvement of furin in cleavage of the apoB homolog, apolipophorin-II/I. Journal of Lipid Research, 2005, 46(3): 412-421.
[17] VAN DER HORST D J, RODENBURG K W. Lipoprotein assembly and function in an evolutionary perspective. Biomolecular Concepts, 2010, 1(2): 165-183.
[18] WEERS P M, RYAN R O. Apolipophorin III: role model apolipoprotein. Insect Biochemistry and Molecular Biology, 2006, 36(4): 231-240.
[19] COLE K D, FERNANDO-WARNAKULASURIYA G P, BOGUSKI M S, FREEMAN M, GORDON J I, CLARK W A, LAW J H, WELLS M A. Primary structure and comparative sequence analysis of an insect apolipoprotein. Apolipophorin-III from. The Journal of Biological Chemistry, 1987, 262(24): 11794-11800.
[20] WEN D H, LUO H, LI T N, WU C F, ZHANG J H, WANG X L, ZHANG R. Cloning and characterization of an insect apolipoprotein (apolipophorin-II/I) involved in the host immune response of. Developmental & Comparative Immunology, 2017, 77: 221-228.
[21] SUNDERMEYER K, HENDRICKS J K, PRASAD S V, WELLS M A. The precursor protein of the structural apolipoproteins of lipophorin: cDNA and deduced amino acid sequence. Insect Biochemistry and Molecular Biology, 1996, 26(8/9): 735-738.
[22] KANOST M R, BOGUSKI M S, FREEMAN M, GORDON J I, WYATT G R, WELLS M A. Primary structure of apolipophorin-III from the migratory locust,. Potential amphipathic structures and molecular evolution of an insect apolipoprotein. The Journal of Biological Chemistry, 1988, 263(22): 10568-10573.
[23] VAN HEUSDEN M C, THOMPSON F, DENNIS J. Biosynthesis oflipophorin and gene expression of its apolipoproteins. Insect Biochemistry and Molecular Biology, 1998, 28(10): 733-738.
[24] PALM W, SAMPAIO J L, BRANKATSCHK M, CARVALHO M, MAHMOUD A, SHEVCHENKO A, EATON S. Lipoproteins in—Assembly, function, and influence on tissue lipid composition. PLoS Genetics, 2012, 8(7): e1002828.
[25] TSUCHIDA K, WELLS M. Digestion, absorption, transport and storage of fat during the last larval stadium of. Changes in the role of lipophorin in the delivery of dietary lipid to the fat body. Insect Biochemistry, 1988, 18(3): 263-268.
[26] KONUMA T, TSUKAMOTO Y, NAGASAWA H, NAGATA S. Imbalanced hemolymph lipid levels affect feeding motivation in the two-spotted cricket, G. PLoS One, 2016, 11(5): e0154841.
[27] BOGERD J, BABIN P J, KOOIMAN F P, ANDRé M, BALLAGNY C, VAN MARREWIJK W J, VAN DER HORST D J. Molecular characterization and gene expression in the eye of the apolipophorin II/I precursor from. Journal of Comparative Neurology, 2000, 427(4): 546-558.
[28] ZHAO Y, LIU W, ZHAO X, YU Z, GUO H, YANG Y, ZHANG J, MOUSSIAN B, ZHANG J. Apolipophorin-II/I contributes to cuticular hydrocarbon transport and cuticle barrier construction in. Frontiers in Physiology, 2020, 11: 790.
[29] BENOIT J B, YANG G, KRAUSE T B, PATRICK K R, AKSOY S, ATTARDO G M. Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy. Journal of Insect Physiology, 2011, 57(11): 1553-1561.
[30] VAN DER HORST D J, RODENBURG K W. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. Journal of Insect Physiology, 2010, 56(8): 844-853.
[31] ZDYBICKA-BARABAS A, CYTRY?SKA M. Apolipophorins and insects immune response. Invertebrate Survival Journal, 2013, 10(1): 58-68.
[32] DHAWAN R, GUPTA K, KAJLA M, KAKANI P, CHOUDHURY T P, KUMAR S, KUMAR V, GUPTA L. Apolipophorin-III acts as a positive regulator ofdevelopment in. Frontiers in Physiology, 2017, 8: 185.
[33] KIM B Y, JIN B R. Apolipophorin III from honeybees () exhibits antibacterial activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2015, 182: 6-13.
[34] NIERE M, MEISSLITZER C, DETTLOFF M, WEISE C, ZIEGLER M, WIESNER A. Insect immune activation by recombinantapolipophorin III. Biochimica et Biophysica Acta, 1999, 1433(1/2): 16-26.
[35] NOH J Y, PATNAIK B B, TINDWA H, SEO G W, KIM D H, PATNAIK H H, JO Y H, LEE Y S, LEE B L, KIM N J, HAN Y S. Genomic organization, sequence characterization and expression analysis ofapolipophorin-III in response to an intracellular pathogen,. Gene, 2014, 534(2): 204-217.
[36] PALUSINSKA-SZYSZ M, ZDYBICKA-BARABAS A, RESZCZYNSKA E, LUCHOWSKI R, KANIA M, GISCH N, WALDOW F, MAK P, DANIKIEWICZ W, GRUSZECKI W I, CYTRYNSKA M. The lipid composition ofmembrane modulates the interaction withapolipophorin III. Biochimica et Biophysica Acta, 2016, 1861(7): 617-629.
[37] WEN D H, WANG X L, SHANG L, HUANG Y, LI T N, WU C F, ZHANG R, ZHANG J H. Involvement of a versatile pattern recognition receptor, apolipophorin-III in prophenoloxidase activation and antibacterial defense of the Chinese oak silkworm,. Developmental & Comparative Immunology, 2016, 65: 124-131.
[38] WIJERATNE T U, WEERS P M M. Lipid-bound apoLp-III is less effective in binding to lipopolysaccharides and phosphatidylglycerol vesicles compared to the lipid-free protein. Molecular and Cellular Biochemistry, 2019, 458(1/2): 61-70.
[39] YU H Z, WANG J, ZHANG S Z, TOUFEEQ S, LI B, LI Z, YANG L A, HU P, XU J P. Molecular characterisation ofgene inand its roles in response to bacterial infection. Journal of Invertebrate Pathology, 2018, 159: 61-70.
[40] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod. Methods, 2001, 25(4): 402-408.
[41] LEYRIA J, FRUTTERO L L, AGUIRRE S A, CANAVOSO L E. Ovarian nutritional resources during the reproductive cycle of the hematophagous(Hemiptera: Reduviidae): focus on lipid metabolism. Archives of Insect Biochemistry and Physiology, 2014, 87(3): 148-163.
[42] ATELLA G C, GONDIM K C, MACHADO E A, MEDEIROS M N, SILVA-NETO M A, MASUDA H. Oogenesis and egg development in triatomines: a biochemical approach. Anais da Academia Brasileira de Ciencias, 2005, 77(3): 405-430.
[43] SANTOS R, ROSAS-OLIVEIRA R, SARAIVA F B, MAJEROWICZ D, GONDIM K C. Lipid accumulation and utilization by oocytes and eggs of. Archives of Insect Biochemistry and Physiology, 2011, 77(1): 1-16.
[44] RUBIN E M, KRAUSS R M, SPANGLER E A, VERSTUYFT J G, CLIFT S M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature, 1991, 353(6341): 265-267.
[45] ROSES A D. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annual Review of Medicine, 1996, 47: 387-400.
[46] MASUCCI-MAGOULAS L, GOLDBERG I J, BISGAIER C L, SERAJUDDIN H, FRANCONE O L, BRESLOW J L, TALL A R. A mouse model with features of familial combined hyperlipidemia. Science, 1997, 275(5298): 391-394.
[47] SHACHTER N S. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Current Opinion in Lipidology, 2001, 12(3): 297-304.
[48] HANADA Y, SEKIMIZU K, KAITO C. Silkworm apolipophorin protein inhibitsvirulence. The Journal of Biological Chemistry, 2011, 286(45): 39360-39369.
[49] KAWOOYA J K, LAW J H. Role of lipophorin in lipid transport to the insect egg. The Journal of Biological Chemistry, 1988, 263(18): 8748-8753.
[50] CANAVOSO L E, JOUNI Z E, KARNAS K J, PENNINGTON J E, WELLS M A. Fat metabolism in insects. Annual Review of Nutrition, 2001, 21: 23-46.
[51] COELHO H S, ATELLA G C, MOREIRA M F, GONDIM K C, MASUDA H. Lipophorin density variation during oogenesis on. Archives of Insect Biochemistry and Physiology, 1997, 35(3): 301-313.
[52] ATELLA G C, SILVA-NETO M A C, GOLODNE D M, AREFIN S, SHAHABUDDIN M.lipophorin: Characterization and role in lipid transport to developing oocyte. Insect Biochemistry and Molecular Biology, 2006, 36(5): 375-386.
Effects of apolipophorin on ovarian development and lipid deposition in
1Institute of Applied Biology/Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan 030006;2College of Life Science, Shanxi University, Taiyuan 030006
【Background】Lipids are one of the important nutrients required by organisms, which play important physiological functions, including diapause, flight, embryonic development and energy regulation in insects. Apolipophorins (apoLps) are the main components of insect lipophorin particles, which are involved in the transport of lipids among different tissues.【Objective】The objective of this study is to investigate the function of apolipophorins (and) by RNA interference (RNAi) in ovarian lipid transport in, and to provide a new molecular target for pest control.【Method】RNAi was performed to silence two apolipophorin genes (and) at 1 day post adult eclosion (1 PAE), respectively. dswas used as control, 15 μg dsRNA was injected into each insect. The ovaries at 4, 6 and 8 PAE were dissected and observed after dsRNA injection. The silencing efficiency ofin the ovaries at 8 PAE was analyzed by reverse-transcription quantitative PCR (RT-qPCR), andwas used as internal reference gene. Lipidomics technique was used to determine and analyze the differences of lipid metabolites in the ovaries between ds- and ds-treated groups. The approach combining the fold change, thevalue and the VIP value of the OPLS-DA model was adopted to screen for differential abundance of lipids. The contents of neutral lipids and total triglycerides were determined by Bodipy staining and triglyceride assay kit.【Result】After injection of dsand ds, the expression level of target genes could be significantly silenced by 80.84% and 92.89%, respectively. RNAi-mediated silencing ofled to a retarded ovarian development, with significantly decreased neutral lipid content and triglyceride content, while the ovaries ofinjected with dswere the same as those in the control group, which could develop normally and gradually grow larger, with the color gradually changing from white to yellow. Aftersilencing, a total of 1 166 up-regulated metabolites and 1 384 down-regulated metabolites were detected by lipidomics analysis, of which 20 triglycerides were significantly down-regulated.【Conclusion】is a major apolipophorin gene that affects ovarian development and is involved in the accumulation and transport of ovarian lipids. These research results not only enrich the research content of lipid metabolism in insects, but also help to find new targets for pest control.
; apolipophorin; RNA interference (RNAi); ovary; lipid transport
2023-10-20;
2023-11-28
國家重點(diǎn)研發(fā)計(jì)劃(2022YFE0196200)
趙藝妍,E-mail:490051225@qq.com。通信作者張建珍,E-mail:zjz@sxu.edu.cn
(責(zé)任編輯 岳梅)